
IOSR Journal of Mathematics (IOSR-JM)

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 17, Issue 4 Ser. III (Jul. – Aug. 2021), PP 01-09
www.iosrjournals.org

DOI: 10.9790/5728-1704030109 www.iosrjournals.org 1 | Page

Demonstration Study on Runge-Kutta Fourth Order

Method by Using MATLAB Programming

Pushap Lata Sharma & Ashok Kumar
Department of Mathematics, Himachal Pradesh University, Summer Hill,

Shimla, India

Abstract
In this paper we have solved initial value problem (IVP) for ordinary differential equations (ODE) by using

Runge-Kutta fourth order method only. Despite various analytical methods for finding the solution of initial

value problems, there are large number of ordinary differential equations which have no analytical solutions. In

that case we have to solve ordinary differential equations by using numerical methods. There are numerous

numerical methods such as Euler’s, Heun’s, Runge-Kutta third order and Runge-Kutta fourth order methods.

Runge-Kutta fourth order method is the powerful numerical technique to solve initial value problems. In this

paper different four examples have been solved by using MATLAB programming and numerical results have

been shown in tables and graphs.

Keyword: Initial value problem, ordinary differential equation, Runge-Kutta fourth order method and
MATLAB programming.

Date of Submission: 10-08-2021 Date of Acceptance: 25-08-2021

I. Introduction:
In this paper Runge-Kutta fourth order method (RK4) is used to solve Initial value problems for

ordinary differential equations by using MATLAB Programming. Maximum problems in physical sciences, Life

sciences and Engineering are solved by differential equations. Differential equations solutions are very

important part to develop the various models in Physics and Engineering. But a minimum number of differential

equations have been solved analytically to obtain the solution of differential equation under given conditions.

Therefore, we have used numerical method to obtain the solution of the initial value problems by using

MATLAB programming. Differential equations are the most important mathematical tools used in providing

models in the mathematics, physics, banking, engineering, elasticity, astronomy, dynamics, biology, chemistry,

medicine environmental science and many other areas. Many researchers have studied the various kind of

differential equations and many complicated systems that can be expressed quite precisely with mathematical

expressions. Many differential equations emerging in applications are so complicated that in sometimes

inappropriate to have solution formulas. In this case numerical methods come up with a powerful different tool

for solving the differential equations under the prescribed initial condition or conditions. Runge-Kutta method
has the advantage of being the most widely used numerical medium, since it gives calculable values, starting

values and particularly capable when the computation of higher order derivatives are complicated. It gives a

higher accuracy than on Euler’s method and also possesses the advantage of requiring only the function values

at some selected points on the sub-intervals. Moreover, it is easy to change step length for special procedures

necessary for starting, which minimize the computing time. The Runge-Kutta method is very useful. The

inherent error in the Runge-Kutta method hard to be assessed. From the literature review analysis, we came

across plenty of work have been carried out to find the numerical solutions of initial value problems by using

Runge - Kutta first, second, third, and fourth order methods. Gowri et al. [2017] solved differential equation

problems by using Runge - Kutta fourth order method. A comparative exploration on different numerical

methods for solving ordinary differential equations by Arefin et al. [2020]. Hossen et al. [2019] performed

comparative investigation on numerical solution of initial value problems by using modified Euler’s method and
Runge-Kutta method. They concluded that Runge-Kutta fourth order method gave more accurate results.

Sharma and Kumar [2021] have written a review paper after reviewing many research papers on Runge- Kutta

methods to study numerical solutions of initial value problems in ordinary differential equations, they came to

know that the Runge- Kutta fourth order method gives more accurate results. Sharma [2021] also has analysed

that the Runge-Kutta fourth order method is the best among all the remaining three methods therefore, in this

paper Runge-Kutta fourth order method (RK4) is used to solve initial value problems for ordinary differential

equations by using MATLAB programming.

Demonstration Study on Runge-Kutta Fourth Order Method by Using MATLAB Programming

DOI: 10.9790/5728-1704030109 www.iosrjournals.org 2 | Page

Problem Formulation

In this paper, we have taken Runge-Kutta fourth Order method to find numerical solutions of the initial value

problem (IVP) of the first-order ordinary differential equations of the form

(1)

Where

 and is the given function and is the solution of the equation (1). In this paper,

we find a solution of the equation on a finite interval , starting with initial point . A continuous

approximation to the solution will not be obtained; instead, approximations to will be generated at

various values.

Runge-Kutta’s Fourth Order Method
The fourth order Runge-Kutta’s method is used to find the numerical solution of linear or non-linear ordinary

differential equations. The universal formula for Runge-Kutta’s fourth order method is

But

Therefore

Numerical Experiments

Numerical Experiment 1: Consider the initial the problem
 on the interval .

MATLAB Programming for above Numerical Experiment:

% Runge-Kutta 4th order with MATLAB

% It calculates an ODE using Runge-Kutta 4th order method

% Equation to solve: Y'=2*exp(x)-0.4*Y; Y(0)=5; x=[1,3];

clc, clear all, close all

% instruction to write results on external file

fid=fopen('Expotential.m','w');

h=0.1; a=1; b=3; % h is the step size, x=[a,b] x-range

x=a:h:b; % computes x-array up to x=3
y=zeros(1,numel(x)); % Memory preallocation

y(1)=5; % initial condition; in MATLAB indices start at 1

Fyt=@(x,y)2*exp(x)-0.4*y; % change the function as you desire

 % the function is the expression after (x,y)

% table title

fprintf(fid,'%7s %7s %7s %7s %7s %7s %7s\n','i','x(i)','k1','k2','k3','k4','y(i)');

for ii=1:1:numel(x)

 k1=Fyt(x(ii),y(ii));

 k2=Fyt(x(ii)+0.5*h,y(ii)+0.5*h*k1);

 k3=Fyt((x(ii)+0.5*h),(y(ii)+0.5*h*k2));

 k4= Fyt((x(ii)+h),(y(ii)+h*k3));
 y(ii+1)=y(ii)+(h/6)*(k1+2*k2+2*k3+k4); % min equation

 % table data

 fprintf(fid,'%7d %7.2f %7.3f %7.3f',ii, x(ii), k1, k2);

 fprintf(fid,' %7.3f %7.3f %7.3f\n', k3, k4, y(ii));

end

y(numel(x))=[]; % erase the last computation of y(n+1)

% Solution PLOT:

plot(x,y,'ok')

xlim([1,3])

Demonstration Study on Runge-Kutta Fourth Order Method by Using MATLAB Programming

DOI: 10.9790/5728-1704030109 www.iosrjournals.org 3 | Page

ylim([5,25])

title('RK-4--Numerical Solution---');

ylabel('Y-Approximate Value'); xlabel('X-Subdivision'); legend('RK4');

grid on

fclose(fid);

Figure 1: Graphically representation for the solutions of table 1.

Numerical Experiment 2:

Consider the initial value problem

 on the interval

l .

MATLAB Programming for above Numerical Experiment:

% Runge-Kutta 4th order with MATLAB

% It calculates an ODE using Runge-Kutta 4th order method

% Equation to solve: Y'=-4*y+6*x^2+3*x; Y(0)=1/2; x=[0,2];

clc, clear all, close all

% instruction to write results on external file
fid=fopen('final11.m','w');

h=0.1; a=0; b=2; % h is the step size, x=[a,b] t-range

x=a:h:b; % computes t-array up to t=2

Table 1: Approximate solutions of the Numerical Experiment 1
i x(i) k1 k2 k3 k4 y(i)

1 1.00 3.437 3.647 3.642 3.863 5.000

2 1.10 3.862 4.093 4.089 4.331 5.365

3 1.20 4.331 4.585 4.579 4.846 5.774

4 1.30 4.846 5.125 5.119 5.413 6.232

5 1.40 5.412 5.720 5.714 6.037 6.745

6 1.50 6.037 6.376 6.369 6.725 7.317

7 1.60 6.724 7.098 7.090 7.483 7.954

8 1.70 7.482 7.894 7.886 8.318 8.664

9 1.80 8.318 8.772 8.763 9.240 9.453

10 1.90 9.240 9.740 9.730 10.257 10.330

11 2.00 10.256 10.809 10.798 11.379 11.304

12 2.10 11.378 11.988 11.976 12.617 12.385

13 2.20 12.616 13.290 13.276 13.984 13.584

14 2.30 13.983 14.726 14.712 15.493 14.913

15 2.40 15.492 16.313 16.296 17.159 16.385

16 2.50 17.158 18.064 18.046 18.999 18.016

17 2.60 18.998 19.999 19.979 21.031 19.823

18 2.70 21.030 22.136 22.114 23.276 21.823

19 2.80 23.275 24.496 24.471 25.755 24.036

20 2.90 25.754 27.103 27.076 28.494 26.485

Demonstration Study on Runge-Kutta Fourth Order Method by Using MATLAB Programming

DOI: 10.9790/5728-1704030109 www.iosrjournals.org 4 | Page

y=zeros(1,numel(x)); % Memory preallocation

y(1)=1/2; % initial condition; in MATLAB indices start at 1

Fyt=@(x,y)-4*y+6*x^2+3*x; % change the function as you desire

 % the function is the expression after (t,y)

% table title

fprintf(fid,'%7s %7s %7s %7s %7s %7s %10s\n','i','x(i)','k1','k2','k3','k4','y(i)');

for ii=1:1:numel(x)

 k1=Fyt(x(ii),y(ii));

 k2=Fyt(x(ii)+0.5*h,y(ii)+0.5*h*k1);

 k3=Fyt((x(ii)+0.5*h),(y(ii)+0.5*h*k2));
 k4= Fyt((x(ii)+h),(y(ii)+h*k3));

 y(ii+1)=y(ii)+(h/6)*(k1+2*k2+2*k3+k4); % min equation

 % table data

 fprintf(fid,'%7d %7.2f %7.3f %7.3f',ii, x(ii), k1, k2);

 fprintf(fid,' %7.3f %7.3f %10.6f\n', k3, k4, y(ii));

end

y(numel(x))=[]; % erase the last computation of y(n+1)

% Solution PLOT:

plot(x,y,'ok')

xlim([0,2])

ylim([0,6])

title('RK-4--Numerical Solution---');
ylabel('Y-Approximated values'); xlabel('X-Subdivision'); legend('RK4');

grid on

fclose(fid);

Table 2: Approximate solutions of the Numerical Experiment 2
i x(i) k1 k2 k3 k4 y(i)

1 0.00 -2.000 -1.435 -1.548 -1.021 0.500000

2 0.10 -1.041 -0.608 -0.694 -0.283 0.350220

3 0.20 -0.299 0.046 -0.023 0.310 0.284751

4 0.30 0.297 0.583 0.526 0.807 0.285693

5 0.40 0.796 1.042 0.992 1.239 0.341045

6 0.50 1.229 1.448 1.404 1.627 0.442760

7 0.60 1.618 1.820 1.779 1.986 0.585447

8 0.70 1.978 2.167 2.130 2.326 0.765487

9 0.80 2.318 2.500 2.463 2.653 0.980459

10 0.90 2.645 2.821 2.786 2.971 1.228736

11 1.00 2.963 3.135 3.101 3.283 1.509228

12 1.10 3.275 3.445 3.411 3.591 1.821207

13 1.20 3.583 3.752 3.718 3.896 2.164181

14 1.30 3.889 4.056 4.023 4.200 2.537823

15 1.40 4.192 4.359 4.326 4.502 2.941912

16 1.50 4.495 4.661 4.628 4.804 3.376302

17 1.60 4.796 4.962 4.929 5.105 3.840893

18 1.70 5.098 5.263 5.230 5.406 4.335619

19 1.80 5.398 5.564 5.531 5.706 4.860435

20 1.90 5.699 5.864 5.831 6.006 5.415311

21 2.00 5.999 6.164 6.131 6.307 6.000229

Demonstration Study on Runge-Kutta Fourth Order Method by Using MATLAB Programming

DOI: 10.9790/5728-1704030109 www.iosrjournals.org 5 | Page

 Figure 2: Graphically representation for the solutions of table 2.

Numerical Experiment 3:
Consider the initial value problem

 .

MATLAB Programming for above Numerical Experiment:

% Runge-Kutta 4th order with MATLAB
% It calculates an ODE using Runge-Kutta 4th order method

% Equation to solve: Y'=3*log(sin(x))-1.5*Y; Y(0)=6; x=[1,3];

clc, clear all, close all

% instruction to write results on external file

fid=fopen('Logsin.m','w');

h=0.1; a=1; b=3; % h is the step size, x=[a,b] x-range

x=a:h:b; % computes x-array up to x=3

y=zeros(1,numel(x)); % Memory preallocation

y(1)=6; % initial condition; in MATLAB indices start at 1

Fyt=@(x,y)3*log(sin(x))-1.5*y; % change the function as you desire

 % the function is the expression after (x,y)

% table title

fprintf(fid,'%7s %7s %7s %7s %7s %7s %7s\n','i','x(i)','k1','k2','k3','k4','y(i)');

for ii=1:1:numel(x)

 k1=Fyt(x(ii),y(ii));

 k2=Fyt(x(ii)+0.5*h,y(ii)+0.5*h*k1);

 k3=Fyt((x(ii)+0.5*h),(y(ii)+0.5*h*k2));

 k4= Fyt((x(ii)+h),(y(ii)+h*k3));

 y(ii+1)=y(ii)+(h/6)*(k1+2*k2+2*k3+k4); % min equation
 % table data

 fprintf(fid,'%7d %7.2f %7.3f %7.3f',ii, x(ii), k1, k2);

 fprintf(fid,' %7.3f %7.3f %7.3f\n', k3, k4, y(ii));

end

y(numel(x))=[]; % erase the last computation of y(n+1)

% Solution PLOT:

plot(x,y,'ok')

xlim([1,3])

ylim([-2,8])

title('RK-4--Numerical Solution---');

ylabel('Y-Approximated Values'); xlabel('X-Subdivision'); legend('RK4');
grid on

fclose(fid);

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

RK-4--Numerical Solution---

Y
-A

p
p

ro
x
im

a
te

d
 v

a
lu

e
s

X-Subdivision

RK4

Demonstration Study on Runge-Kutta Fourth Order Method by Using MATLAB Programming

DOI: 10.9790/5728-1704030109 www.iosrjournals.org 6 | Page

Table 3: Approximate solutions of the Numerical Experiment 3
i x(i) k1 k2 k3 k4 y(i)

1 1.00 -9.518 -8.713 -8.773 -8.030 6.000

2 1.10 -8.033 -7.358 -7.409 -6.787 5.125

3 1.20 -6.789 -6.226 -6.268 -5.749 4.385

4 1.30 -5.751 -5.282 -5.318 -4.886 3.760

5 1.40 -4.888 -4.499 -4.529 -4.172 3.229

6 1.50 -4.174 -3.854 -3.878 -3.586 2.777

7 1.60 -3.587 -3.326 -3.346 -3.109 2.390

8 1.70 -3.110 -2.900 -2.916 -2.727 2.056

9 1.80 -2.727 -2.562 -2.574 -2.427 1.765

10 1.90 -2.428 -2.301 -2.311 -2.201 1.508

11 2.00 -2.201 -2.109 -2.116 -2.040 1.277

12 2.10 -2.040 -1.980 -1.984 -1.939 1.066

13 2.20 -1.939 -1.908 -1.911 -1.895 0.867

14 2.30 -1.894 -1.893 -1.893 -1.907 0.676

15 2.40 -1.907 -1.936 -1.934 -1.980 0.487

16 2.50 -1.979 -2.043 -2.038 -2.121 0.293

17 2.60 -2.120 -2.226 -2.218 -2.350 0.088

18 2.70 -2.349 -2.512 -2.500 -2.705 -0.134

19 2.80 -2.703 -2.959 -2.940 -3.272 -0.386

20 2.90 -3.268 -3.708 -3.675 -4.301 -0.682

21 3.00 -4.294 -5.272 -5.199 -7.180 -1.054

Numerical Experiment 4:

Consider the initial value problem
 .

MATLAB Programming for above Numerical Experiment:
% Runge-Kutta 4th order with MATLAB

% It calculates an ODE using Runge-Kutta 4th order method

% Equation to solve: Y'=4*log(x)-2*Y; Y(0)=4; x=[1,3];

% Author Ido Schwartz, modified by Marco Arocha

clc, clear all, close all

% instruction to write results on external file

fid=fopen('Log.m','w');

h=0.1; a=1; b=3; % h is the step size, x=[a,b] x-range

x=a:h:b; % computes x-array up to x=3

y=zeros(1,numel(x)); % Memory preallocation

y(1)=4; % initial condition; in MATLAB indices start at 1

Fyt=@(x,y)4*log(x)-2*y; % change the function as you desire

Demonstration Study on Runge-Kutta Fourth Order Method by Using MATLAB Programming

DOI: 10.9790/5728-1704030109 www.iosrjournals.org 7 | Page

 % the function is the expression after (x,y)

% table title

fprintf(fid,'%7s %7s %7s %7s %7s %7s %7s\n','i','x(i)','k1','k2','k3','k4','y(i)');

for ii=1:1:numel(x)

 k1=Fyt(x(ii),y(ii));

 k2=Fyt(x(ii)+0.5*h,y(ii)+0.5*h*k1);

 k3=Fyt((x(ii)+0.5*h),(y(ii)+0.5*h*k2));

 k4= Fyt((x(ii)+h),(y(ii)+h*k3));

 y(ii+1)=y(ii)+(h/6)*(k1+2*k2+2*k3+k4); % min equation

 % table data
 fprintf(fid,'%7d %7.2f %7.3f %7.3f',ii, x(ii), k1, k2);

 fprintf(fid,' %7.3f %7.3f %7.3f\n', k3, k4, y(ii));

end

y(numel(x))=[]; % erase the last computation of y(n+1)

% Solution PLOT:

plot(x,y,'ok')

xlim([1,3])

ylim([0,6])

title('RK-4--Numerical Solution---');

ylabel('Y-Approximated values'); xlabel('X-Subdividions'); legend('RK4');

grid on

fclose(fid);

Table 4: Approximate solutions of the Numerical Experiment 4

i x(i) k1 k2 k3 k4 y(i)

1 1.00 -8.000 -7.005 -7.104 -6.198 4.000

2 1.10 -6.205 -5.407 -5.486 -4.760 3.293

3 1.20 -4.765 -4.125 -4.189 -3.607 2.747

4 1.30 -3.612 -3.099 -3.151 -2.685 2.331

5 1.40 -2.689 -2.279 -2.320 -1.949 2.017

6 1.50 -1.951 -1.625 -1.658 -1.362 1.787

7 1.60 -1.364 -1.104 -1.130 -0.895 1.622

8 1.70 -0.897 -0.691 -0.712 -0.526 1.510

9 1.80 -0.528 -0.365 -0.381 -0.235 1.439

10 1.90 -0.236 -0.109 -0.121 -0.007 1.402

11 2.00 -0.007 0.092 0.082 0.171 1.390

12 2.10 0.171 0.248 0.240 0.309 1.399

13 2.20 0.308 0.367 0.361 0.414 1.423

14 2.30 0.413 0.458 0.454 0.493 1.459

15 2.40 0.493 0.526 0.523 0.551 1.505

16 2.50 0.551 0.575 0.573 0.594 1.557

17 2.60 0.593 0.610 0.609 0.623 1.614

18 2.70 0.623 0.634 0.633 0.642 1.675

19 2.80 0.641 0.648 0.647 0.652 1.738

20 2.90 0.652 0.655 0.655 0.657 1.803

21 3.00 0.657 0.657 0.657 0.657 1.869

Demonstration Study on Runge-Kutta Fourth Order Method by Using MATLAB Programming

DOI: 10.9790/5728-1704030109 www.iosrjournals.org 8 | Page

II. Result and Discussion
In the present investigation we have analysed for different numerical problems by using Runge-Kutta

fourth order method with the help of MATLAB programming. The results are compiled in tables 1 to 4

simultaneously results are also graphically represented in figures 1 to 4. Islam [2015], Hossen et.al [2019],
Jamali [2019] Sharma [2021] and Sharma and Kumar [2021] have proved by taking different numerical

examples the Runge-Kutta 4th order method is the best. We have applied this method to solve different initial

value problems which cannot be solved analytically

III. Conclusion:
The problem which cannot be solved analytically, can be easily handled by Runge-Kutta fourth order method

which has also been recommended by earlier workers.

Acknowledgment
 Thanks are due to the Himachal Pradesh University, Shimla for providing funds to carry out this work.

REFERENCES
[1]. Arefin, M.A. Gain, B. Karim R. and Hossain. S. (2020). A Comparative Exploration on Different

Numerical Methods for Solving Ordinary Differential Equations, Journal of Mechanics of Continua and

Mathematical Sciences, Vol. 15, pp. 1-11.

[2]. Gowri, P. Priyadharsini S. and Maheswari. T. (2017). A case study on Runge-Kutta fourth order
differential equations and Its application, Impeial Journal of Interdisciplinary Research, Vol. 3(2), pp.

134-139.

[3]. Hossen, M. Ahemed, Z. Kabir R. and Hossain. Z. (2019). A Comparative Investigation on Numerical

Solution Of Initial Value Problem by Using Modified Euler’s Method and Runge-Kutta Method, IOSR

Journal of Mathematics, Vol. 15, pp. 40-45.

[4]. Islam. M.A. (2015). Accuracy Analysis of Numerical solutions of initial value problems (IVP) for

ordinary differential equations (ODE), IOSR Journal of Mathematics, Vol. 11(3), pp. 18-23.

[5]. Islam. M.A. (2015). Accurate solutions of initial value problems for ordinary differential equations with

the fourth order Runge-Kutta method, Journal of Mathematics Research, Vol. 7(3), pp. 41-45.

[6]. Islam. M.A. (2015). A Comparative Study on Numerical Solutions of Initial Value Problems (IVP) for

Ordinary Differential Equations (ODE) with Euler and Runge-Kutta Methods, American Journal of

Computational Mathematics, Vol. 5(03), pp. 393-404.
[7]. Jamali. N. (2019). Analysis and Comparative Study of Numerical Methods to Solve Ordinary Differential

Equation with Initial Value Problem, International Journal of Advanced Research (IJAR), Vol. 7(5), pp.

117-128.

Demonstration Study on Runge-Kutta Fourth Order Method by Using MATLAB Programming

DOI: 10.9790/5728-1704030109 www.iosrjournals.org 9 | Page

[8]. Sharma P.L. and Kumar. A. (2021). Review Paper on The Runge-Kutta Methods to Study Numerical

Solutions of Initial Value Problems in Ordinary Differential Equations, IASET International journal of

applied Mathematics and Statistical Sciences (IJAMSS), Vol. 107, pp. 45-54.

[9]. Sharma. P.L. (2021). Analysis of different Numerical Methods for Solving Initial Value Problems in

Ordinary Differential Equations, Journal of Physical Sciences, Vol. 1(1), pp. 135-142.

Pushap Lata Sharma, et. al. "Demonstration Study on Runge-Kutta Fourth Order Method by

Using MATLAB Programming." IOSR Journal of Mathematics (IOSR-JM), 17(4), (2021): pp.

01-09.

