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Abstract 
In this paper we have solved initial value problem (IVP) for ordinary differential equations (ODE) by using 

Runge-Kutta fourth order method only. Despite various analytical methods for finding the solution of initial 

value problems, there are large number of ordinary differential equations which have no analytical solutions. In 

that case we have to solve ordinary differential equations by using numerical methods. There are numerous 

numerical methods such as Euler’s, Heun’s, Runge-Kutta third order and Runge-Kutta fourth order methods. 

Runge-Kutta fourth order method is the powerful numerical technique to solve initial value problems. In this 

paper different four examples have been solved by using MATLAB programming and numerical results have 

been shown in tables and graphs. 
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I. Introduction: 
In this paper Runge-Kutta fourth order method (RK4) is used to solve Initial value problems for 

ordinary differential equations by using MATLAB Programming. Maximum problems in physical sciences, Life 

sciences and Engineering are solved by differential equations. Differential equations solutions are very 

important part to develop the various models in Physics and Engineering. But a minimum number of differential 

equations have been solved analytically to obtain the solution of differential equation under given conditions. 

Therefore, we have used numerical method to obtain the solution of the initial value problems by using 

MATLAB programming. Differential equations are the most important mathematical tools used in providing 

models in the mathematics, physics, banking, engineering, elasticity, astronomy, dynamics, biology, chemistry, 

medicine environmental science and many other areas. Many researchers have studied the various kind of 

differential equations and many complicated systems that can be expressed quite precisely with mathematical 

expressions. Many differential equations emerging in applications are so complicated that in sometimes 

inappropriate to have solution formulas. In this case numerical methods come up with a powerful different tool 

for solving the differential equations under the prescribed initial condition or conditions. Runge-Kutta method 
has the advantage of being the most widely used numerical medium, since it gives calculable values, starting 

values and particularly capable when the computation of higher order derivatives are complicated. It gives a 

higher accuracy than on Euler’s method and also possesses the advantage of requiring only the function values 

at some selected points on the sub-intervals. Moreover, it is easy to change step length for special procedures 

necessary for starting, which minimize the computing time. The Runge-Kutta method is very useful. The 

inherent error in the Runge-Kutta method hard to be assessed. From the literature review analysis, we came 

across plenty of work have been carried out to find the numerical solutions of initial value problems by using 

Runge - Kutta first, second, third, and fourth order methods. Gowri et al. [2017] solved differential equation 

problems by using Runge - Kutta fourth order method. A comparative exploration on different numerical 

methods for solving ordinary differential equations by Arefin et al. [2020]. Hossen et al. [2019] performed 

comparative investigation on numerical solution of initial value problems by using modified Euler’s method and 
Runge-Kutta method. They concluded that Runge-Kutta fourth order method gave more accurate results. 

Sharma and Kumar [2021] have written a review paper after reviewing many research papers on Runge- Kutta 

methods to study numerical solutions of initial value problems in ordinary differential equations, they came to 

know that the Runge- Kutta fourth order method gives more accurate results. Sharma [2021] also has analysed 

that the Runge-Kutta fourth order method is the best among all the remaining three methods therefore, in this 

paper Runge-Kutta fourth order method (RK4) is used to solve initial value problems for ordinary differential 

equations by using MATLAB programming. 
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Problem Formulation 

In this paper, we have taken Runge-Kutta fourth Order method to find numerical solutions of the initial value 

problem (IVP) of the first-order ordinary differential equations of the form 

                                 

 

(1) 
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  and           is the given function and      is the solution of the equation (1). In this paper, 

we find a solution of the equation on a finite interval       , starting with initial point   . A continuous 

approximation to the solution      will not be obtained; instead, approximations to   will be generated at 

various values. 

 

Runge-Kutta’s Fourth Order Method 
The fourth order Runge-Kutta’s method is used to find the numerical solution of linear or non-linear ordinary 

differential equations. The universal formula for Runge-Kutta’s fourth order method is  
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Numerical Experiments 
 

Numerical Experiment 1: Consider the initial the problem                                             
   on the interval      . 

MATLAB Programming for above Numerical Experiment: 

% Runge-Kutta 4th order with MATLAB 

% It calculates an ODE using Runge-Kutta 4th order method 

% Equation to solve: Y'=2*exp(x)-0.4*Y; Y(0)=5; x=[1,3]; 

clc, clear all, close all 

% instruction to write results on external file 

fid=fopen('Expotential.m','w'); 

h=0.1; a=1; b=3;       % h is the step size, x=[a,b] x-range 

x=a:h:b;                    % computes x-array up to x=3 
y=zeros(1,numel(x));   % Memory preallocation 

y(1)=5;                     % initial condition; in MATLAB indices start at 1 

Fyt=@(x,y)2*exp(x)-0.4*y;      % change the function as you desire 

                  % the function is the expression after (x,y) 

% table title 

fprintf(fid,'%7s %7s %7s %7s %7s %7s %7s\n','i','x(i)','k1','k2','k3','k4','y(i)'); 

for ii=1:1:numel(x) 

    k1=Fyt(x(ii),y(ii)); 

    k2=Fyt(x(ii)+0.5*h,y(ii)+0.5*h*k1); 

    k3=Fyt((x(ii)+0.5*h),(y(ii)+0.5*h*k2)); 

    k4= Fyt((x(ii)+h),(y(ii)+h*k3)); 
    y(ii+1)=y(ii)+(h/6)*(k1+2*k2+2*k3+k4);   % min equation 

    % table data 

    fprintf(fid,'%7d %7.2f %7.3f %7.3f',ii, x(ii), k1, k2); 

    fprintf(fid,' %7.3f %7.3f %7.3f\n', k3, k4, y(ii)); 

end 

y(numel(x))=[ ];   % erase the last computation of y(n+1) 

% Solution PLOT: 

plot(x,y,'ok') 

xlim([1,3]) 
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ylim([5,25]) 

title('RK-4--Numerical Solution---'); 

ylabel('Y-Approximate Value');    xlabel('X-Subdivision');    legend('RK4'); 

grid on 

fclose(fid); 

 

 
Figure 1: Graphically representation for the solutions of table 1. 

 

Numerical Experiment 2: 

Consider the initial value problem                                               
 

  
  on the interval  

l     . 
 

MATLAB Programming for above Numerical Experiment: 

 

% Runge-Kutta 4th order with MATLAB 

% It calculates an ODE using Runge-Kutta 4th order method 

% Equation to solve: Y'=-4*y+6*x^2+3*x; Y(0)=1/2; x=[0,2]; 

clc, clear all, close all 

% instruction to write results on external file 
fid=fopen('final11.m','w'); 

h=0.1; a=0; b=2;    % h is the step size, x=[a,b] t-range 

x=a:h:b;           % computes t-array up to t=2 

Table 1: Approximate solutions of the Numerical Experiment 1 
i x(i) k1 k2 k3 k4 y(i) 

1 1.00 3.437 3.647 3.642 3.863 5.000 

2 1.10 3.862 4.093 4.089 4.331 5.365 

3 1.20 4.331 4.585 4.579 4.846 5.774 

4 1.30 4.846 5.125 5.119 5.413 6.232 

5 1.40 5.412 5.720 5.714 6.037 6.745 

6 1.50 6.037 6.376 6.369 6.725 7.317 

7 1.60 6.724 7.098 7.090 7.483 7.954 

8 1.70 7.482 7.894 7.886 8.318 8.664 

9 1.80 8.318 8.772 8.763 9.240 9.453 

10 1.90 9.240 9.740 9.730 10.257 10.330 

11 2.00 10.256 10.809 10.798 11.379 11.304 

12 2.10 11.378 11.988 11.976 12.617 12.385 

13 2.20 12.616 13.290 13.276 13.984 13.584 

14 2.30 13.983 14.726 14.712 15.493 14.913 

15 2.40 15.492 16.313 16.296 17.159 16.385 

16 2.50 17.158 18.064 18.046 18.999 18.016 

17 2.60 18.998 19.999 19.979 21.031 19.823 

18 2.70 21.030 22.136 22.114 23.276 21.823 

19 2.80 23.275 24.496 24.471 25.755 24.036 

20 2.90 25.754 27.103 27.076 28.494 26.485 
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y=zeros(1,numel(x));  % Memory preallocation 

y(1)=1/2; % initial condition; in MATLAB indices start at 1 

Fyt=@(x,y)-4*y+6*x^2+3*x; % change the function as you desire 

                  % the function is the expression after (t,y) 

% table title 

fprintf(fid,'%7s %7s %7s %7s %7s %7s %10s\n','i','x(i)','k1','k2','k3','k4','y(i)'); 

for ii=1:1:numel(x) 

    k1=Fyt(x(ii),y(ii)); 

    k2=Fyt(x(ii)+0.5*h,y(ii)+0.5*h*k1); 

    k3=Fyt((x(ii)+0.5*h),(y(ii)+0.5*h*k2)); 
    k4= Fyt((x(ii)+h),(y(ii)+h*k3)); 

    y(ii+1)=y(ii)+(h/6)*(k1+2*k2+2*k3+k4);   % min equation 

    % table data 

    fprintf(fid,'%7d %7.2f %7.3f %7.3f',ii, x(ii), k1, k2); 

    fprintf(fid,' %7.3f %7.3f %10.6f\n', k3, k4, y(ii)); 

end 

y(numel(x))=[ ];   % erase the last computation of y(n+1) 

% Solution PLOT: 

plot(x,y,'ok') 

xlim([0,2]) 

ylim([0,6]) 

title('RK-4--Numerical Solution---'); 
ylabel('Y-Approximated values');    xlabel('X-Subdivision');    legend('RK4'); 

grid on 

fclose(fid); 
 

 

Table 2: Approximate solutions of the Numerical Experiment 2 
i x(i) k1 k2 k3 k4 y(i) 

1 0.00  -2.000    -1.435     -1.548 -1.021 0.500000 

2 0.10  -1.041    -0.608     -0.694 -0.283 0.350220 

3 0.20  -0.299   0.046   -0.023 0.310 0.284751 

4 0.30 0.297        0.583     0.526     0.807      0.285693 

5 0.40 0.796 1.042 0.992 1.239 0.341045 

6 0.50 1.229 1.448 1.404 1.627 0.442760 

7 0.60 1.618 1.820 1.779 1.986 0.585447 

8 0.70      1.978 2.167 2.130 2.326 0.765487 

9 0.80 2.318 2.500 2.463 2.653 0.980459 

10 0.90 2.645 2.821 2.786 2.971 1.228736 

11 1.00 2.963 3.135 3.101 3.283 1.509228 

12 1.10 3.275 3.445 3.411 3.591 1.821207 

13 1.20 3.583 3.752 3.718 3.896 2.164181 

14 1.30 3.889 4.056 4.023 4.200 2.537823 

15 1.40 4.192 4.359 4.326 4.502 2.941912 

16 1.50 4.495 4.661 4.628 4.804 3.376302 

17 1.60 4.796 4.962 4.929 5.105 3.840893 

18 1.70 5.098 5.263 5.230 5.406 4.335619 

19 1.80 5.398      5.564 5.531         5.706 4.860435 

20 1.90 5.699 5.864   5.831 6.006 5.415311 

21 2.00 5.999 6.164   6.131         6.307 6.000229 
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                       Figure 2: Graphically representation for the solutions of table 2. 

 

Numerical Experiment 3: 
Consider the initial value problem 

                                                                            . 

 

MATLAB Programming for above Numerical Experiment: 

% Runge-Kutta 4th order with MATLAB 
% It calculates an ODE using Runge-Kutta 4th order method 

% Equation to solve: Y'=3*log(sin(x))-1.5*Y; Y(0)=6; x=[1,3]; 

clc, clear all, close all 

% instruction to write results on external file 

fid=fopen('Logsin.m','w'); 

h=0.1; a=1; b=3;    % h is the step size, x=[a,b] x-range 

x=a:h:b;           % computes x-array up to x=3 

y=zeros(1,numel(x));  % Memory preallocation 

y(1)=6; % initial condition; in MATLAB indices start at 1 

Fyt=@(x,y)3*log(sin(x))-1.5*y; % change the function as you desire 

                  % the function is the expression after (x,y) 

% table title 

fprintf(fid,'%7s %7s %7s %7s %7s %7s %7s\n','i','x(i)','k1','k2','k3','k4','y(i)'); 

for ii=1:1:numel(x) 

    k1=Fyt(x(ii),y(ii)); 

    k2=Fyt(x(ii)+0.5*h,y(ii)+0.5*h*k1); 

    k3=Fyt((x(ii)+0.5*h),(y(ii)+0.5*h*k2)); 

    k4= Fyt((x(ii)+h),(y(ii)+h*k3)); 

    y(ii+1)=y(ii)+(h/6)*(k1+2*k2+2*k3+k4);   % min equation 
    % table data 

    fprintf(fid,'%7d %7.2f %7.3f %7.3f',ii, x(ii), k1, k2); 

    fprintf(fid,' %7.3f %7.3f %7.3f\n', k3, k4, y(ii)); 

end 

y(numel(x))=[ ];   % erase the last computation of y(n+1) 

% Solution PLOT: 

plot(x,y,'ok') 

xlim([1,3]) 

ylim([-2,8]) 

title('RK-4--Numerical Solution---'); 

ylabel('Y-Approximated Values');    xlabel('X-Subdivision');    legend('RK4'); 
grid on 

fclose(fid); 
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Table 3: Approximate solutions of the Numerical Experiment 3 
i x(i)        k1 k2 k3 k4 y(i) 

1 1.00 -9.518 -8.713 -8.773 -8.030 6.000 

2 1.10 -8.033 -7.358 -7.409 -6.787 5.125 

3 1.20 -6.789 -6.226 -6.268 -5.749 4.385 

4 1.30 -5.751 -5.282 -5.318 -4.886 3.760 

5 1.40 -4.888 -4.499 -4.529 -4.172 3.229 

6 1.50 -4.174 -3.854 -3.878 -3.586 2.777 

7 1.60 -3.587 -3.326 -3.346 -3.109 2.390 

8 1.70 -3.110 -2.900 -2.916 -2.727 2.056 

9 1.80 -2.727 -2.562 -2.574 -2.427 1.765 

10 1.90 -2.428 -2.301 -2.311 -2.201 1.508 

11 2.00 -2.201 -2.109 -2.116 -2.040 1.277 

12 2.10 -2.040 -1.980 -1.984 -1.939 1.066 

13 2.20 -1.939 -1.908 -1.911 -1.895 0.867 

14 2.30 -1.894 -1.893 -1.893 -1.907 0.676 

15 2.40 -1.907 -1.936 -1.934 -1.980 0.487 

16 2.50 -1.979 -2.043 -2.038 -2.121 0.293 

17 2.60 -2.120 -2.226 -2.218 -2.350 0.088 

18 2.70 -2.349 -2.512 -2.500 -2.705 -0.134 

19 2.80 -2.703 -2.959 -2.940 -3.272 -0.386 

20 2.90 -3.268 -3.708 -3.675 -4.301 -0.682 

21 3.00 -4.294 -5.272 -5.199 -7.180 -1.054 

 

 
 

Numerical Experiment 4: 

Consider the initial value problem                                                                  
   . 

 

MATLAB Programming for above Numerical Experiment: 
% Runge-Kutta 4th order with MATLAB 

% It calculates an ODE using Runge-Kutta 4th order method 

% Equation to solve: Y'=4*log(x)-2*Y; Y(0)=4; x=[1,3]; 

% Author Ido Schwartz, modified by Marco Arocha 

clc, clear all, close all 

% instruction to write results on external file 

fid=fopen('Log.m','w'); 

h=0.1; a=1; b=3;    % h is the step size, x=[a,b] x-range 

x=a:h:b;           % computes x-array up to x=3 

y=zeros(1,numel(x));  % Memory preallocation 

y(1)=4; % initial condition; in MATLAB indices start at 1 

Fyt=@(x,y)4*log(x)-2*y; % change the function as you desire 
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                  % the function is the expression after (x,y) 

% table title 

fprintf(fid,'%7s %7s %7s %7s %7s %7s %7s\n','i','x(i)','k1','k2','k3','k4','y(i)'); 

for ii=1:1:numel(x) 

    k1=Fyt(x(ii),y(ii)); 

    k2=Fyt(x(ii)+0.5*h,y(ii)+0.5*h*k1); 

    k3=Fyt((x(ii)+0.5*h),(y(ii)+0.5*h*k2)); 

    k4= Fyt((x(ii)+h),(y(ii)+h*k3)); 

    y(ii+1)=y(ii)+(h/6)*(k1+2*k2+2*k3+k4);   % min equation 

    % table data 
    fprintf(fid,'%7d %7.2f %7.3f %7.3f',ii, x(ii), k1, k2); 

    fprintf(fid,' %7.3f %7.3f %7.3f\n', k3, k4, y(ii)); 

end 

y(numel(x))=[ ];   % erase the last computation of y(n+1) 

% Solution PLOT: 

plot(x,y,'ok') 

xlim([1,3]) 

ylim([0,6]) 

title('RK-4--Numerical Solution---'); 

ylabel('Y-Approximated values');    xlabel('X-Subdividions');    legend('RK4'); 

grid on 

fclose(fid); 
 

Table 4: Approximate solutions of the Numerical Experiment 4 

i x(i) k1 k2 k3 k4 y(i) 

1 1.00 -8.000 -7.005 -7.104 -6.198 4.000 

2 1.10 -6.205 -5.407 -5.486 -4.760 3.293 

3 1.20 -4.765 -4.125 -4.189 -3.607 2.747 

4 1.30 -3.612 -3.099 -3.151 -2.685 2.331 

5 1.40 -2.689 -2.279 -2.320 -1.949 2.017 

6 1.50 -1.951 -1.625 -1.658 -1.362 1.787 

7 1.60 -1.364 -1.104 -1.130 -0.895 1.622 

8 1.70 -0.897 -0.691 -0.712 -0.526 1.510 

9 1.80 -0.528 -0.365 -0.381 -0.235 1.439 

10 1.90 -0.236 -0.109 -0.121 -0.007 1.402 

11 2.00 -0.007 0.092 0.082 0.171 1.390 

12 2.10 0.171 0.248 0.240 0.309 1.399 

13 2.20 0.308 0.367 0.361 0.414 1.423 

14 2.30 0.413 0.458 0.454 0.493 1.459 

15 2.40 0.493 0.526 0.523 0.551 1.505 

16 2.50 0.551 0.575 0.573 0.594 1.557 

17 2.60 0.593 0.610 0.609 0.623 1.614 

18 2.70 0.623 0.634 0.633 0.642 1.675 

19 2.80 0.641 0.648 0.647 0.652 1.738 

20 2.90 0.652 0.655 0.655 0.657 1.803 

21 3.00 0.657 0.657 0.657 0.657 1.869 
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II. Result and Discussion 
In the present investigation we have analysed for different numerical problems by using Runge-Kutta 

fourth order method with the help of MATLAB programming. The results are compiled in tables 1 to 4 

simultaneously results are also graphically represented in figures 1 to 4. Islam [2015], Hossen et.al [2019], 
Jamali [2019] Sharma [2021] and Sharma and Kumar [2021] have proved by taking different numerical 

examples the Runge-Kutta 4th order method is the best. We have applied this method to solve different initial 

value problems which cannot be solved analytically 

 

III. Conclusion: 
The problem which cannot be solved analytically, can be easily handled by Runge-Kutta fourth order method 

which has also been recommended by earlier workers. 
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