Some considerations relating γ and $\log (\pi)$

Danilo Merlini ${ }^{1,2,3}$, Luca Rusconi ${ }^{1,3}$, Massimo Sala ${ }^{2,3}$, Nicoletta Sala ${ }^{2,3}$
${ }^{1}$ Research Center for Mathematics and Physics (CERFIM, Locarno, Switzerland)
${ }^{2}$ Institute for Scientific and Interdisciplinary Studies (ISSI, Locarno, Switzerland)
${ }^{3}$ Research Institute in Arithmetic Physics (IRFIA, Locarno, Switzerland)

Abstract

We consider two Equations of Matiyasevich concerning the constant rand $\log (\pi)$ (binary system) and two other Equations of Keiper (with the primes). We connect the two systems of Equations and analyse with them the first Li-Keiper coefficient and two special values of integrals over the Zeta function connecting outside and inside of the critical strip (on the Riemann Hypothesis), with a numerical experiment.

Key words: Constants gamma and $\log (\pi)$, Binary system, Primes numbers, Critical strip.
Date of Submission: 08-06-2021
Date of Acceptance: 21-06-2021

I. Introduction

In this paper we present a relation between two Equations of Matiyasevich in the binary system and two others by Keiper given with the primes.
Different works
We start with the Equations obtained by Matiyasevich in his work[1],i.e.

$$
\begin{align*}
& \gamma-\log \left(\frac{4}{\pi}\right)=2 \cdot \sum_{n=1}^{\infty} \mathrm{N}_{0}(n) \cdot \frac{1}{2 \cdot n \cdot(2 \cdot n+1)} \tag{1}\\
& \gamma+\log \left(\frac{4}{\pi}\right)=2 \cdot \sum_{n=1}^{\infty} \mathrm{N}_{1}(n) \cdot \frac{1}{2 \cdot n \cdot(2 \cdot n+1)} \tag{2}
\end{align*}
$$

where N_{0} and N_{1} respectively are the number of 0 and of 1 in the binary representation of the integer n . It is known that

$$
\mathrm{N}_{0}(n)+\mathrm{N}_{1}(n)=\left\lfloor\frac{\log (2 \cdot n)}{\log (2)}\right\rfloor=\left\lfloor 1+\frac{\log (n)}{\log (2)}\right\rfloor
$$

(where the symbol $L\lrcorner$ represents the floor).
Here the computations are carried out using the binary system.
We now consider two Equations obtained by Keiper in his pioneering work [2],i.e.

$$
\begin{gather*}
\sum_{k=2}^{\infty}[\zeta(\mathrm{k})-1] \cdot\left(\frac{1}{k \cdot 2^{k}}\right)=\frac{1-\gamma-\log \left(\frac{4}{\pi}\right)}{2} \tag{3}\\
\sum_{k=2}^{\infty}[\zeta(\mathrm{k})-1] \cdot\left(\frac{1}{2^{k}}\right)=\log (2)-\frac{1}{2} \tag{4}
\end{gather*}
$$

where ζ is the Riemann Zeta function. For particular studies see [3, 4].
Here the computations may be carried out using the primes ($n>1$, the Euler product), for example the Zeta function in the region of absolute convergence.

It is interesting to combine the four above Equations for the computations of some constants.
We first use the four Equations to express the right hand side of Eq.(1) and Eq.(2), using Eq.(3) and Eq.(4).

$$
\begin{gather*}
\mathbf{N}_{\mathbf{1}}=\sum_{n=1}^{\infty} \mathrm{N}_{1}(\mathrm{n}) \cdot\left[\frac{1}{2 \cdot n \cdot(2 \cdot n+1)}\right]=\frac{1}{2}-\sum_{k=2}^{\infty}[\zeta(\mathrm{k})-1] \cdot\left(\frac{1}{k \cdot 2^{k}}\right) \tag{5}\\
\mathbf{N}_{\mathbf{0}}=\sum_{n=1}^{\infty} \mathrm{N}_{0}(\mathrm{n}) \cdot\left[\frac{1}{2 \cdot n \cdot(2 \cdot n+1)}\right]=\gamma-\frac{1}{2}+\sum_{k=2}^{\infty}[\zeta(\mathrm{k})-1] \cdot\left(\frac{1}{k \cdot 2^{k}}\right) \tag{6}\\
\text { and } \mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{0}}=\gamma \tag{7}\\
\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{0}}:=1-\gamma-2 \cdot \sum_{k=2}^{\infty}[\zeta(\mathrm{k})-1] \cdot\left(\frac{1}{k \cdot 2^{k}}\right)=\log \left(\frac{4}{\pi}\right) \tag{8}
\end{gather*}
$$

Computations of the right hand side of Eq.(5) and Eq.(6) give:
$\mathbf{N}_{1}=0.409390070086 \ldots$
$\mathbf{N}_{\mathbf{0}}=0.167825594815 \ldots$
The independent calculation of functions of the type $\sum N_{0}(n) \cdot f(n)$ or of the type $\sum N_{1}(n) \cdot f(n)$ is given below, in particular for N_{0} and N_{1} the left hand side of Eq.(5) and Eq.(6) where

$$
f(n)=\frac{1}{2 \cdot n \cdot(2 \cdot n+1)}
$$

We have:
$\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{0}}=0.577215 \ldots .=\gamma$.
$\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{0}}=0.241564475270 . .=\log (4 / \square)$.

Fig. 1 In red $\mathbf{N}_{\mathbf{0}}$, in green $\mathbf{N}_{\mathbf{1}}$, in blue $\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{0}}$, in maroon the limit γ; in pink $\mathbf{N}_{\mathbf{1}}-\mathbf{N}_{\mathbf{0}}$, in light hell the limit $\log (4 / \pi)$. (\mathbf{N}_{1} and \mathbf{N}_{0} are calculated with Eq.(1) and Eq.(2)).

Numerical experiment

We now present our numerical experiment.

1. First Li-Keiper coefficient λ_{1}.

It is known that λ_{1} is independent of the truth of the RH [5,6].
RH is true if
$\lambda_{1}=1+\gamma / 2-\log (4 \cdot \pi) / 2=0.0230957 \ldots$
exhausts the sum of the reciprocal values of all nontrivial zeros sitting on the critical line $\mathrm{s}=1 / 2$.
We may express λ_{1} using the above relations; we find

$$
\begin{equation*}
\lambda_{1}=\mathbf{N}_{1}-2 \cdot(\log (2)-1 / 2) \tag{9}
\end{equation*}
$$

Thus λ_{1}, from Eq.(9), is entirely given by a function on the binary system.
Moreover, with Eq.(5) and Eq.(4) we also have:

$$
\begin{equation*}
\lambda_{1}=\frac{1}{2}-\sum_{k=2}^{\infty}[\zeta(\mathrm{k})-1] \cdot\left(\frac{1}{2^{k}}\right) \cdot\left(\frac{1}{k}+2\right) \tag{10}
\end{equation*}
$$

Below the plot of the right hand side of Eq.(10).

Fig. 2 Plot of the right hand side of Eq.(10)
With some few terms (up to $\mathrm{k} \sim 12$) we obtain $\lambda_{1}=0.0230957575 \ldots$.. exact to 7 digits.
λ_{1} may thus be calculated using the primes (i.e., with Zeta values outside the critical strip) or with N_{1} or N_{0}, i.e. in connection with a function on the number of 1 or 0 in the binary expression of an integer n.
2.Critical strip

Another example concerns the relation between outside and inside of the critical strip. We take as an example the function φ given by:

$$
\begin{equation*}
\varphi(\rho)=\log \left[\frac{\zeta\left(\rho+\frac{1}{2}\right) \cdot\left(\rho-\frac{1}{2}\right)}{\left(|\rho-1|+\frac{1}{2}\right)}\right] \tag{11}
\end{equation*}
$$

Eq. (11) was obtained as an integration of $\log (|\zeta(\rho+\mathrm{i} \cdot \mathrm{t})|)$ with a Lorentz measure $\mathrm{d} \mu=1 /\left(1 / 4+\mathrm{t}^{2}\right) \cdot \mathrm{dt}$ on vertical straight lines of abscissa $\rho \geq 1 / 2$ and is equivalent to the RH [9]. For related works see [7, 8,10, 11, 12]. The function of Eq.(11) is not injective.
Notice also the presence of the shift of $1 / 2$ due to such a measure. Outside the critical strip the function of Eq.(11) is given by $\varphi(\rho)=\log (\zeta(\rho+1 / 2)), \rho \geq 1$.
We may now choose a value ρ^{\prime} outside the critical strip. On the RH there exists the same value of the function inside the critical strip for a value $\rho\left(\rho^{\prime}\right)<1$ and this for all values of $\rho \geq 1 / 2$ (see next Figure).

Fig. 3 The function given by Eq.(11) with the constant $\log (2)-1 / 2$ in green, the abscissa of intersection are given below with 10 digits.

We choose for example, the value at our disposal given by the right hand side of Eq.(4) i.e. $\varphi(\rho)=\log (2)-1 / 2$ and the solutions with 9 digits are given by:

$$
\rho_{0}^{\prime}=2.446255389 \ldots \text { and } \quad \rho_{0}=0.618444186 \ldots
$$

We define here:

$$
\varphi\left(\rho_{0}, \mathrm{~N}\right):=\sum_{k=2}^{N}[\zeta(\mathrm{k})-1] \cdot\left(\frac{1}{2^{k}}\right)
$$

Thus (on the RH):

$$
\begin{align*}
& f(\rho)=\left(\frac{1}{2 \cdot \pi}\right) \int_{R} d \mu \cdot \log |\zeta(\rho+i \cdot t)| \cdot \frac{1}{\left(\frac{1}{4}+t^{2}\right)}= \\
& =\mathrm{g}\left(\rho^{\prime}\right)=\left(\frac{1}{2 \cdot \pi}\right) \int_{R} d \mu \cdot \log |\zeta(\rho+i \cdot t)| \cdot \frac{1}{\left(\frac{1}{4}+t^{2}\right)}= \\
& =\log (2)-\frac{1}{2}=\lim _{N \rightarrow \infty} \varphi\left(\rho_{0}, \mathrm{~N}\right):=\sum_{k=2}^{\infty}[\zeta(k)-1] \cdot\left(\frac{1}{2^{k}}\right) \tag{12}
\end{align*}
$$

Thus, we may control the above integral on the straight vertical line inside the critical strip by means of the primes given by the righthand side of the above Equation, whose plot is given below.

Fig. 4 The right hand side of Eq.(12) as a function of Nand the constant $\log (2)-1 / 2$.
We notice that the true value of Eq.(12) to 10 digits is: 0.1931471806 .On the Table below we give the values of the function given by Eq. (11). $\varphi(\rho)$ up to $n=12$ (first column) and f_{1}, g_{1} as a function of t_{k} (values of t solutions off $(\mathrm{t})=\mathrm{g}(\mathrm{t})$ for t in the range $\mathrm{t}=(0 . .61 .4))$ where

$$
\begin{align*}
& f_{1}\left(t_{k}\right)=\int_{0}^{t_{k}} d t \cdot\left(\frac{1}{\pi}\right) \cdot \log \left(\left\lvert\,\left(\zeta\left(\rho_{0}+i \cdot t \mid\right)\right) \cdot \frac{1}{\left(\frac{1}{4}+t^{2}\right)}\right.\right. \\
& \mathrm{g}_{1}\left(t_{k}\right)=\int_{0}^{t_{k}} d t \cdot\left(\frac{1}{\pi}\right) \cdot \log \left(\left\lvert\,\left(\zeta\left(\rho_{0}^{\prime}+i \cdot t \mid\right)\right) \cdot \frac{1}{\left(\frac{1}{4}+t^{2}\right)}\right.\right. \tag{13}
\end{align*}
$$

N	$\varphi(\rho, \mathrm{N})$	t_{k}	f_{1}	$\mathrm{~g}_{1}$
2	0.1612335169	6.432	0.189489	0.191921
3	0.1864906298	12.796	0.195226	0.193603
4	0.1916358319	15.270	0.192979	0.193197
5	0.1930608096	21.943	0.192568	0.193027
6	0.1927898242	24.164	0.193211	0.193079
7	0.1930608096	25.767	0.192568	0.193027
8	0.1931260383	31.437	0.193180	0.193170
9	0.1931419655	31.946	0.193151	0.193137
10	0.1931458881	33.611	0.192755	0.193064
11	0.1931468593	36.987	0.193353	0.193179
12	0.1931471007	38.218	0.193170	0.193187
13	0.1931471608	40.258	0.193306	0.193172
		41.701	0.193079	0.193131
		42.582	0.193074	0.193109
		43.889	0.192917	0.193099
		47.424	0.193373	0.193193
		50.393	0.193027	0.193129
		52.448	0.193126	0.193124
		53.426	0.193058	0.193130
		55.955	0.193240	0.193166
		56.970	0.193178	0.193169
		58.729	0.193227	0.193157
		61.360	0.193005	0.193118

Table 1

Fig. 5 The integrand in Eq.(13) (in red) and the integrand in Eq.(14) (in green) in the range $t=(6 . .32)$

Fig. 6 The integrand in Eq.(13) (in red) and the integrand in Eq.(14) (in green) in the range $t=(32 . .61 .4)$.
We notice that $\varphi(\rho)=\varphi\left(\rho^{\prime}\right)=\log (2)-1 / 2$ "appears" as an attractor to the sequences above for f_{1} and g_{1} : the values of f_{1} and g_{1} alternatethe "fix point" $\log (2)-1 / 2 \sim 0.193147$..

Fig. 7 The function $\mathrm{f}_{\mathbf{1}}\left(\mathrm{t}_{\mathrm{k}}\right), \mathrm{k}=1 . .12$ (in reed the "fixpoint" $\log (2)-1 / 2$).

Fig. 8 The function $\mathrm{g}_{\mathbf{1}}\left(\mathrm{t}_{\mathrm{k}}\right), \mathrm{k}=1 . .12$.In reed the "fixpoint" $\log (2)-1 / 2$.
We now construct a graphic with more points, i.e. with all 23 points of Table 1 which illustrate more in details the alternating behaviour of the two sequences around the "attractor" given by $\log (2)-1 / 2=0.193147$...

Fig. 9 Graphic representation of the values in Table 1 for f_{1} and g_{1}
3. Another computation concerns a value still in the critical strip but more near to the region of absolute convergence studied recently in another approach, i.e. the case $\rho_{0}=0.9$ [7]; from Eq.(11), we obtain: $\rho_{0}{ }^{\prime}=$ 1.191957288.

Then, $f\left(\rho_{0}\right)=g\left(\rho_{0}^{\prime}\right)=0.7277248488$ (see Fig.3).

Fig. 10 Plot of the integrands $\left(\frac{1}{\pi}\right) \cdot \frac{\log (\mid \zeta(x+i \cdot t \mid)}{\left(\frac{1}{4}+t^{2}\right)}$ for $\mathrm{x}=\rho_{0}=0.9$ (in red) and for $\mathrm{x}=\rho_{0}{ }^{\prime}=1.1919$.. (in green with the first intersection t_{1} around $t=0.25$).

Fig. 11 Plot of the same integrands in the range $t=(1 . .20)$

Fig. 12 Plot of the same integrands in the range of $t=(20 . .30)$ with 5 intersections.

As for the first case of computation above we may use Eq.(12), i.e.

$$
\begin{gather*}
0.7277248488=\lim _{N \rightarrow \infty} \varphi\left(\rho_{0}, \mathrm{~N}\right):= \\
=\left[\frac{0.7277248488}{\left(\log (2)-\frac{1}{2}\right)}\right] \cdot \sum_{k=2}^{\infty}[\zeta(k)-1] \cdot\left(\frac{1}{2^{k}}\right) \tag{15}
\end{gather*}
$$

The right hand side of Eq. (15) is a function $[0.727 . . /(\log (2)-1 / 2)]=3.76$..time the function of the right hand side of Eq.(12): for $\mathrm{n}=13$ the value is 0.7277248441 exact to 8 digits.
Here too we note the same behaviour as in the first case: the alternance of points; below we give 22 intersection points t_{k} and the values of the corresponding integrals from zero to t_{k} on the Table 2 .
The "attractor" has here the value $\mathrm{f}\left(\rho_{0}\right)=\mathrm{g}\left(\rho_{0}{ }^{\prime}\right)=0.7277248488$..

$\mathbf{t}_{\mathbf{k}}$	$\mathbf{f}_{\mathbf{1}}$	$\mathbf{g}_{\mathbf{1}}$
0.2419	0.520698	0.453033
6.3819	0.724621	0.725108
12.9914	0.729279	0.728916
15.1572	0.726455	0.726748
20.1625	0.728459	0.728289
21.8692	0.727665	0.727727
24.2112	0.727712	0.727670
25.7673	0.727286	0.727390
29.7036	0.728125	0.728033
32.1439	0.727694	0.727687
33.6191	0.727426	0.727496
36.9443	0.727780	0.727829
38.2378	0.727771	0.727781
41.6205	0.727682	0.727695
42.6408	0.727552	0.727651
47.4001	0.727896	0.727856
50.3877	0.727639	0.727663
52.3990	0.727692	0.727688
53.5223	0.727663	0.727680
57.0105	0.727763	0.727763
58.7472	0.727780	0.727763
61.3901	0.727617	0.727642

Table 2

Fig. 13 Graphic of the plots of $\left(\mathrm{t}, \mathrm{f}_{1}\right)$ and of $\left(\mathrm{t}, \mathrm{g}_{1}\right)$ and the "attractor" $0.727724 \ldots$....first row of Table 2 is omitted for a better readable of the graphic).

II. Concluding remark

In this paper we have considered a set of four Equations relating the constants $\gamma, \log (\pi)$ from the pioneering works of Matiyasevich and of Keiper. As an application we have presented three numerical experiments concerning the first exact known coefficient λ_{1} and other two concerning the global symmetry (ρ, ρ^{\prime}) relating inside and outside of the critical strip ($\rho \geq 1 / 2$). The computations concerning such quantities may be set with functions on the binary system or by the primes. We have considered the numerical findings are sequences whose values alternate around the corresponding "attractor" i.e. $\log (2)-1 / 2=0.193147$ in the first case, and0.727724...in the second case.

References

[1]. Matiyasevich Y., "Yet another Representation for the Reciprocals of the Non trivial Zeros of the Riemann Zeta Function", Mat. Zametki, 97:3 (2015).
[2]. Keiper J.B., "Power Series Expansions of Riemann's function", Mathematics, Volume 58, number 198, (1992), pp. 765-773
[3]. Vacca G., "A new series for the Eulerian constant $\gamma=0.577 \ldots$. ", Quart. J. Pure Appl. Math. 41 (1909-1910), pp. 363-366.
[4]. Sondow J., "New Vacca-type rational series for Euler's constant γ and its "alternating" analog $\ln 4 / \pi$ ", Additive number theory, Springer, New York (2010), pp. 331-340.
[5]. Patterson S.J., An introduction to the theory of the Riemann zeta-function (No. 14). Cambridge University Press. (1995).
[6]. Edwards H.M., Riemann's Zeta Function, Academic Press, Dover Publications, Inc. Mineola, New York (1974).
[7]. Merlini D., Sala M., and Sala N., "Primitive Riemann Wave at $\operatorname{Re}(\mathrm{s})=0.9$ and Application of Gauss-Luc Theorem", Chaos and Complexity Letters, vol. 14, issue 1, (2020), pp. 3-32.
[8]. Merlini D., Sala M., and Sala N., "A possible Non Negative lower bound on the Li-Keiper coefficients", IOSR Journal of Mathematics, Vol. 15 Issue 6 (Ser. IV), (2019), pp. 01-16.
[9]. Merlini D., "The Riemann Magneton of Primes", Chaos and Complexity Letters, vol. 2 issue 1, (2006), pp. 93-111.
[10]. Merlini D., Rusconi L., "The Quantum Riemann Wave", Chaos and Complexity Letters, Vol.11, issue 2 (2017), pp. 219-238.
[11]. Merlini D., Rusconi L., "Small Ferromagnetic Systems and Polynomial Truncations of the Riemann ξ Function", Chaos and Complexity Letters, vol. 12, issue 2, (2018), pp. 101-122.
[12]. Merlini D., Rusconi L., and Sala N. (1999)., "I numeri naturali come autovalori di un modello di oscillatori classici a bassa temperatura" ("Natural numbers as eigenvalues of a classic low temperature oscillators model"), Bollettino della Società ticinese di Scienze Naturali 87 (1999), 1-2, 29

Danilo Merlini, et. al. "Some considerations relating γ and $\log (\pi)$." IOSR Journal of Mathematics (IOSR-JM), 17(3), (2021): pp. 48-57.

