Extremal Topology as an Ideal Extension

Yousef Al-Gadid ⁽¹⁾Mabruk Ali Sola ⁽²⁾

Department of Mathematics, Tripoli University, Faculty Of Science, Tripoli, Libya

Abstract:*The aim of this paper is to find a formula for a topology Jon X such that any extremal topology τon X is an ideal extension to J for some idealI on X. Characterizations related to such ideals are also discussed.* **Keyword:***Extremal topology, filter, ultrafilter, ideal, ideal extension*

Date of Submission: 14-01-2021Date of Acceptance: 29-01-2021

I. Preliminaries

If X is a non-empty set, a non-empty collection \mathcal{F} of subsets of X is called a filter on X if (i) $\emptyset \notin \mathcal{F}$, (ii) if $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$, (iii) if $F \in \mathcal{F}$ and $G \subset X$ with $F \subset G$ then $G \in \mathcal{F}$. A filter \mathcal{F} on X is said to be free filter provided $_{F \in \mathcal{F}} F = \emptyset$ otherwise it is called a fixed filter. A filter \mathcal{F} is called an ultrafilter if it is a maximal filter; that is if \mathcal{G} is a filter containing \mathcal{F} , then $\mathcal{F} = \mathcal{G}$. A filter \mathcal{F} is an ultrafilter on X if and only if for any $E \subseteq X$ either $E \in \mathcal{F}$ or $X \setminus E \in \mathcal{F}$ and an ultrafilter \mathcal{F} is fixed ultrafilter if and only if there exists $b \in X$ such that $_{F \in \mathcal{F}} F = \{b\}$ [1]. If K is any set, P(K) denotes the power set of K.

In [2] extremal topology was defined, and it was proved that for any $a, b \in X$, $a \neq b, \tau_{\{a,b\}} = P(X \setminus \{a\}) \cup \{\{a\} \cup A: A \subset P(X \setminus \{a\}), b \in A\}$ is an extremal topology and if *X* is finite then every extremal topology on *X* has to be of the form $\tau_{\{a,b\}}$ for some $a, b \in X$, $a \neq b$.

Theorem 1-2 and Theorem2-1 of [2] were generalized in[3, Theorem2] which states: A topology τ on X is extremal if and only if there exists $a \in X$ such that $\tau = P(X \setminus \{a\}) \cup \{\{a\} \cup F: F \in \mathcal{F}\}$ for some ultrafilter \mathcal{F} on $X \setminus \{a\}$. An ideal I on a nonempty set X is a nonempty collection of subsets of X which satisfies (1) $A \in I$ and $B \subset A$ implies $B \in I$ (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space (X, τ) with an ideal I on X. For any $A \subset X$, let $A(I, \tau) = \{x \in X: A \cap U \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau: x \in U\}$. The mapping(.)*: $P(X) \to P(X)$ defined by $A^* = A \cup A(I, \tau)$ [4] is a closure operator defined on the power set P(X) and thus defines a topology $\tau^*(I, \tau)$ on X finer than τ such that $U \in \tau^*(I, \tau)$ if and only if $(X \setminus U)^* = X \setminus U$. The topology $\tau^*(I, \tau)$ is called an ideal extension to τ over the ideal I. When there is no chance for confusion, we will simply write τ^* for $\tau^*(I, \tau)$. Clearly, every topology is an ideal extension to itself simply by taking $I = \{\emptyset\}$.

II. The main results

The following Proposition holds for any set *X* with |X| > 1.

Proposition 2.1.Let $\tau_{\{a,b\}}$ be an extremal topology on *X* for some $a, b \in X$. Taking the topology $J = P(X \setminus \{a\}) \cup \{X\}$ and the ideal $I = P(X \setminus \{b\})$ on *X* makes $\tau_{\{a,b\}}$ an ideal extension to *J*over*I*i.e., $J^* = \tau_{\{a,b\}}$.

Proof.Because $J \subset J^*$, it is enough to show that $\{\{a\} \cup A : A \in P(X \setminus \{a\}), b \in A\} \subset J^*$ and $\{a\} \notin J^*(J^* \text{ is not discrete})$. Now, $((\{a\} \cup A)^c)^* = (\{a\} \cup A)^c \cup \{x \in X : (\{a\} \cup A)^c \cap U \notin I \text{ for every } U \in J(x)\}$. If $x \notin (\{a\} \cup A)^c \Rightarrow x \in \{a\} \cup A$ and we have two cases: Case $1 \cdot x = a$, then $(\{a\} \cup A)^c \cap X = (\{a\} \cup A)^c \in I$;

Case $2.x \neq a$, then $(\{a\} \cup A)^c \cap \{x\} = \{\} \in I$.

Thus, $((\{a\} \cup A)^c)^* = (\{a\} \cup A)^c$ and this implies that $\{\{a\} \cup A : A \in P(X \setminus \{a\}), b \in A\}\} \subset J^*$. However, $(X \setminus \{a\})^* = X \setminus \{a\} \cup \{x \in X : X \setminus \{a\} \cap U$ for every $U \in J(x)\}$, X is the only openset in J contating a and $X \setminus \{a\} \cap X = X \setminus \{a\} \notin I$. Thus, $(X \setminus \{a\})^* = X$ and this implies $\{a\} \notin J^*$.

Example 2.1.Let τ be any extremal topology on the set $X = \{a, b, c\}$. Without loss of generality [2, Theorem2-1], assume $\tau = \tau_{\{a,b\}} = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b\}\}$. Then by Proposition2.1, τ is an ideal extension to the topology $J = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$ where the ideal $I = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. In other words, $J^* = \tau$.

Remark. One can easily verify that τ is also an ideal extension to the same topology J and the ideal I = { \emptyset , {c}}.

Throughout the next X is an infinite set unless otherwise explicitly stated.

The following Proposition characterizes such ideals for extremal topology induced by fixed ultrafilter. **Proposition 2.2.** If $\tau = P(X \setminus \{a\}) \cup \{\{a\} \cup F: F \in \mathcal{F}\}$ is an ideal extension to the topology $J = P(X \setminus \{a\}) \cup \{X\}$ for some ideal *I* on *X* ($J^* = \tau$) where \mathcal{F} is a fixed ultrafilter on $X \setminus \{a\}$ and $a \in X$, then $I \subset P(X \setminus \{b\})$ where $\{b\} = \underset{F \in \mathcal{F}}{\bigcap} F$.

Proof.By [3, Corollary 3] and Proposition2.1, such an ideal I exists. Also, we have $\{a, b\} = \{a\} \cup \{b\} \in \tau = J^*$. Now, suppose not i.e., there exists $b \in K \in I \Rightarrow \{b\} \in I.(\{a, b\}^c)^* = \{a, b\}^c \cup \{x \in X: \{a, b\}^c \cap U \notin I \text{ for every} U \in J(x)\}$. Take x = a, then the only open set inJ containing a is Xand $\{a, b\}^c \cap X = \{a, b\}^c$, so we have two cases: Case1. $\{a, b\}^c \notin I \Rightarrow (\{a, b\}^c)^* \neq \{a, b\}^c \Rightarrow \{a, b\} \notin J^*$, which is a contradiction. Case2. $\{a, b\}^c \in I \Rightarrow X \setminus \{a\} = \{b\} \cup \{a, b\}^c \in I$ and sinceX is the only open set inJ containing a with $X \setminus \{a\} \cap X = X \setminus \{a\} \in I$, and this implies that $(X \setminus \{a\})^* = X \setminus \{a\} \Rightarrow \{a\} \in J^* = \tau$, which contradicts being τ extremal. Therefore, $I \subset P(X \setminus \{b\})$.

Lemma2.1.If \mathcal{F} is a filter on $X \setminus \{a\}$ and $a \in X$, then $I_a(\mathcal{F}) = \{X \setminus (F \cup \{a\}) = F : F \in \mathcal{F}\}$ is an ideal on X (F':= the complement of F w.r.t. $X \setminus \{a\}$).

Proof.If $A \subset F^{(F)} \in \mathcal{F} \Rightarrow F \cup \{a\} = X \setminus F^{(F)} \subset X \setminus A$ $\Rightarrow F \subset X \setminus (A \cup \{a\}), (a \notin F)$ $\Rightarrow A^{(F)} = X \setminus (A \cup \{a\}) \in \mathcal{F} \Rightarrow A \in I_{a}(\mathcal{F}).$ If F' and G' are in $I_{a}(\mathcal{F})(F, G \in \mathcal{F}) \Rightarrow (F^{(F)} \cup G^{(F)}) = (F \cap G)^{(F)} \in I(F \cap G \in \mathcal{F}).$ Therefore, $I_{a}(\mathcal{F})$ is an ideal on X.

Proposition2.3.Let τ be any extremal topology on X, $\tau = P(X \setminus \{a\}) \cup \{\{a\} \cup F: F \in \mathcal{F}\}$ where \mathcal{F} is an ultrafilter on $X \setminus \{a\}$ and $a \in X$. Then τ is an ideal extension to the topology $J = P(X \setminus \{a\}) \cup \{X\}$ over the ideal $I_a(\mathcal{F}) = \{X \setminus \{a\} \cup F: F \in \mathcal{F}\}$ on $X \setminus \{J^* = \tau\}$.

Proof.Because *J* ⊂ *J*^{*}, it is enough to show that {*a*} ∪ F ∈ *J*^{*} for every F ∈ *F* and *J*^{*} is not discrete.(*X*\({*a*} ∪ F))^{*} = *X*\({*a*} ∪ F) ∪ {*x* ∈ *X*: *X*\({*a*} ∪ F) ∩ *U* ∉ *I* for every *U* ∈ *J*(*x*)}. If *x* ∉ *X*\({*a*} ∪ F) ⇒ *x* ∈ {*a*} ∪ F and we have two cases: Case1.*x* = *a*, then *a* ∈ *X* ∈ *J* with *X*\({*a*} ∪ F) ∩ *X* = *X*\({*a*} ∪ F) ∈ I; Case2.*x* ∈ F, then {*x*} ∈ *J* with *X*\({*a*} ∪ F) ∩ {*x*} = { } ∈ I. Thus, (*X*\({*a*} ∪ F))^{*} = *X*\({*a*} ∪ F) ⇒ {*a*} ∪ F ∈ *J*^{*}. Also (*X*\{*a*})^{*} = *X*\{*a*} ∪ {*x* ∈ *X*: *X*\{*a*} ∩ *U* ∉ *I* for every *U* ∈ *J*(*x*)}.Now, *X* is the only open set in *J* containing *a* and *X*\{*a*} ∩ *X* = *X*\{*a*} ∉ *J*^{*}.

The following ideal characterization holds for any extremal topology. **Proposition2.4.**If an extremal topology τ on X (τ as in Proposition 2.3) is an ideal extension to the topology $J = P(X \setminus \{a\}) \cup \{X\}$ for some ideal K on X ($J^* = \tau$), then $I_a(\mathcal{F}) \subset K$.

Proof.Recall that $(X \setminus \{a\} \cup F))^* = X \setminus \{a\} \cup F) \cup \{x \in X : X \setminus \{a\} \cup F) \cap U \notin K$ for every $U \in J(x)\}$ and X is the only open set in J containing a. Therefore if $X \setminus \{a\} \cup F\} \notin K$ for some $F \in \mathcal{F}$, then $(X \setminus \{a\} \cup F))^* \neq X \setminus \{a\} \cup F\} \Rightarrow \{a\} \cup F \notin J^* = \tau$. A contradiction.

The following is consequence of Proposition 2.2 and Proposition 2.4. **Corollary2.1.**If an extremal topology τ on $X(\tau)$ as in Proposition 2.3) is an ideal extension to the topology $J = P(X \setminus \{a\}) \cup \{X\}$ for some ideal K on X, then $I_a(\mathcal{F}) \subset K \subset P(X \setminus \{b\})$ where $\underset{F \in \mathcal{F}}{\overset{\cap}{\mathcal{F}}} F = \{b\}$.

References

John L. Kelley, General Topology, Springer- Verlag 1955.
Kherie M. Mera and Mabruk A. Sola, Extremal Topology, DamascusUniversity Journal for basic science, vol.21, No1, 2005.

^[3] Sola, M. A. and Najm M. S, On Extremal Topology, The Libyan Journal of Sicience, 19B, 39-42, 2016.

^[4] Vaidyanathaswamy, R., Set Topology, Chelsea Publishing Company, 1946.