On Topology of epi \hypo-graphicaloperations in a sense of Mosco 's epi \hypo graphical

Mohamed Soueycatt ${ }^{1}$, Nisreen Alkhamir ${ }^{2}$

Abstract

In this paper, we generalize the topological results of the convergence of convex - sequences in the epigraphical sense to the convex-concave sequences in Mosco - epi \backslash hypo graphical sense. We actually prove that if two convex - concave sequences are convergent in Mosco - epi \backslash hypo graphical sense, then the sequence of epi \backslash hypo graphical - sum of the two sequences is convergent in Mosco - epi \backslash hypo graphical sense.Also, we useour result to study the convergence of a sequence of Moreau - Yosida functions for convex concave functions.

Keywords and Phrases: convex-concave function, epi-graph, epiVhypo-graph, epiVhypo-sum, epiVhypomultiplication, parent convex function, parent concave function, Mosco's epi \backslash hypo graphical convergence.

I. Introduction

Epigraphical analysis studies minimization problems by using the epigraph concept:
epi $f=\{(x, r) \in X \times R / f(x) \leq r\}$
Hypographical analysis studies maximization problems by using the hypograph concept:

$$
\text { hypo } f=\{(x, r) \in X \times R / f(x) \geq r\}, \text { where } X \text { is a vector space } .
$$

whereas epi \backslash hypo graphical analysis studies maximization-maximization problems,sometimes called the saddle points problems. This led to creation of new concepts such as : epi \backslash hypo graphical convergence - epi \backslash hypo graphical derivation - epi \hypo graphical integration - epi \hypo graphical sum - epi \hypo graphical multiplication \qquad etc.
Many mathematicians haveadopted these concepts in the study ofsaddle points problems. For more details, see [1,11,12,13].

II. Preliminaries

We recall some basic definitions and concepts that will be needed through the paper.
X will be a vector space unless Otherwise is stated.
Definition2.1(the epigraphical operation):
Let $f, g: X \rightarrow \bar{R}$. Then theepi-sum of f and g is defined by the relation
$(f+g)(x)=\inf _{u \in X}\{f(u)+g(x-u)\} \quad \forall x \in X$
The epi-multiplication of $f: X \rightarrow \bar{R}$ by $\lambda>0$ is defined by the relation

$$
(\lambda \underset{e}{*} f)(x)=\lambda f\left(\lambda^{-1} x\right) \quad \forall x \in X
$$

In [] Attouch andWets proved that
$e p i_{s}(f+g)=e p i_{s}(f)+e p i_{s}(g) \quad, \quad e p i\binom{\lambda * f}{e}=\lambda e p i(f)$
where $e p i_{s} f=\{(x, r) \in X \times R / f(x)<r\}$
${ }^{1}$ Professor of Pure Mathematics, Tishreen University, Syria.
${ }^{2}$ Master of Pure Mathematics, Tishreen University, Syria.

Definition2.2 (the hypographical operation)

Let $f, g: X \rightarrow \bar{R}$. Then the hypo-sum of f and g is defined by the relation

$$
\left.\begin{array}{rl}
(f+g \\
(f)
\end{array}\right)(x)=\sup _{u \in X}\{f(u)+g(x-u)\} \quad \forall x \in X
$$

The hypo-multiplication of $f: X \rightarrow \bar{R}$ by $\lambda>0$ is defined by the relation

$$
\binom{h}{\lambda^{*} f}(x)=\lambda f\left(\lambda^{-1} x\right) \quad \forall x \in X
$$

Definition2.3 $\left\{f_{n}: X \rightarrow \bar{R} \quad ; \quad n \in N\right\}$ is equi - coercive function if there exists
$\theta: R^{+} \rightarrow\left[0,+\infty\left[\right.\right.$ where $\lim _{t \rightarrow \infty} \theta(t)=+\infty$, such that:

$$
\forall n \in N \quad, \quad \forall x \in X \quad ; \quad f_{n}(x) \geq \theta(\|x\|)
$$

We alsorecallsome basic definitions and notions from epi \backslash hypo graphical analysis.
For more information see [2,3,5,7,14].
Let $L: X \times Y \rightarrow \bar{R}$. Then, we have
Definition2.4 L is a convex - concave function if it is convex with respect to the first variable and concave with respect to the second variable, i.e., $\forall x \in X \quad L(., y)$ is a convex function, and $\forall y \in Y \quad L(x,$.$) is a concave function.$
Definition2.5 Let L be aconvex - concave function.
The parent convex $F_{L}: X \times Y^{*} \rightarrow \bar{R}$ of L is defined by the relation

$$
F_{L}\left(x, y^{*}\right)=\sup _{y \in Y}\left\{L(x, y)+\left\langle y, y^{*}\right\rangle\right\}
$$

The parent concave $G_{L}: X^{*} \times Y \rightarrow \bar{R}$ of L is defined by the relation

$$
G_{L}\left(x^{*}, y\right)=\inf _{x \in X}\left\{L(x, y)-\left\langle x, x^{*}\right\rangle\right\}
$$

L is closed if $F_{L}=-G_{L}^{*} \quad, \quad F_{L}^{*}=-G_{L}$ whereas F_{L}^{*}, G_{L}^{*} the conjugate functions for F, G respectively.

Definition 2.6 (epi \hypo - graphical operators)

Let $L, K: X \times Y \rightarrow \bar{R}$. The epilhypo-sum of L and K is defined by the relation

$$
\begin{aligned}
(L+K)(x, y) & =\inf _{u \in X} \sup _{v \in Y}\{L(u, v)+K(x-u, y-v)\} \\
& =\inf _{\substack{u_{1}, u_{2} \in X \\
u_{1}+u_{2}=x}} \sup _{v_{1}, v_{1} \in Y}^{v_{1}+v_{2}=y}
\end{aligned}\left\{L\left(u_{1}, v_{1}\right)+K\left(u_{2}, v_{2}\right)\right\},
$$

The epilhypo-multiplication of $L: X \times Y \rightarrow \bar{R}$ by $\lambda>0$ is defined by the relation $(\underset{e \mid h}{\lambda * L})(x, y)=\lambda L\left(\lambda^{-1} x, \lambda^{-1} y\right)$

Theorem 2.1 [14]: Let $L, K: X \times Y \rightarrow \bar{R}$ be convex-concave functions and $\lambda>0$ then $L \underset{e l h}{+} K$ and $\lambda \underset{e \mid h}{*} L$ are convex-concave functions.
Theorem 2.2 [14]: Let $L, K: X \times Y \rightarrow \bar{R}$ be convex-concave functions. Then

$$
\begin{aligned}
& F_{L_{e \mid h} K}\left(x, y^{*}\right)=\left[F_{L}\left(., y^{*}\right)_{e}+F_{K}\left(., y^{*}\right)\right](x) \\
& G_{L_{e \mid h} K}\left(x^{*}, y\right)=\left[G_{L}\left(x^{*}, .\right)^{h}+G_{K}\left(x^{*}, .\right)\right](y)
\end{aligned}
$$

where:
$F_{L_{e \mid h}{ }^{K}}, F_{L}, F_{K}$ the parent convex functions for $L+K, L, K$ respectively.
$G_{L_{e \mid h} K}, G_{L}, G_{K}$ the parent concave functions for $L+K, L, K$ respectively.
Definition2.7. (The converges in a sense of Mosco's epi \backslash hypo graphical)
Let X, Y be Banach reflexive spaces and let the set
$\left\{K_{n}, K: \mathrm{X} \times Y \rightarrow \bar{R}, n \in N\right\}$ be a sequence of closed andconvex - concave functions. The upper limit (Limsup) of the sequence $\left(K_{n}\right)_{n \in N}$ in a sense of Mosco's epi \backslash hypo graphical is defined by the relation:

$$
\left(e_{s} / h_{w}-l s K_{n}\right)(x, y)=\sup _{y_{n} \xrightarrow[n]{w} y i_{n} \xrightarrow[n]{i n f_{s}} x} \limsup _{n} K_{n}\left(x_{n}, y_{n}\right)
$$

and denoted by $e_{s} / h_{w}-l s K_{n}$. Also, the liminf of the sequence $\left(K_{n}\right)_{n \in N}$ in a sense of Mosco's epi \backslash hypo graphical is defined by the relation:

$$
\left(h_{s} / e_{w}-l i K_{n}\right)(x, y)=\inf _{x_{n} \xrightarrow[n]{w} x} \sup _{y_{n} \xrightarrow{s} \underset{n}{ }} \liminf _{n} K_{n}\left(x_{n}, y_{n}\right), \forall(x, y) \in X \times Y .
$$

Where $(w) s$ refers to the weak topology on $X \times Y$.
We say that the sequence $\left(K_{n}\right)_{n \in N}$ converges to K in a sense of Mosco's epi \backslash hypo graphical, denoted by

$$
\begin{aligned}
& K_{n} \xrightarrow{M-e l h} K \text { or } K=M-e / h-\lim _{n} K_{n} \text {, if the following holds true: } \\
& e_{s} / h_{w}-l s K_{n} \leq K \leq h_{s} / e_{w}-l i K_{n}
\end{aligned}
$$

Note that when the functions $\left(K_{n}\right)_{n \in N}$ do not depend on the variable Y, the definition of the convergence in a sense of Mosco's epi \backslash hypo graphical is identical to that of Mosco's epi \backslash hypo graphical with respect to the first variable. Also, when the functions $\left(K_{n}\right)_{n \in N}$ do not depend on the variable X, the definition of the convergence in a sense of Mosco's epi \backslash hypo graphical is identical to that of Mosco's epi \backslash hypo graphical with respect to the second variable. See [5] for more details.
It should be noted that if $\left(K_{n}\right)_{n \in N}$ is a sequence of convex - concave and closed functions, then $e_{s} / h_{w}-l s K^{n}(., y)$ is convex and semi continuous from below with respect to X and $h_{s} / e_{w}-\operatorname{li} K^{n}(x,$.$) is concave and semi continuous from above with respect to Y$.
We can give an equivalent definition to the previous one as the following:
Definition2.8[5]. We say that the sequence $\left(K_{n}\right)_{n \in N}$ converges to K in a sense of Mosco's epi \backslash hypo graphical if the following two conditions hold true:
i) $\forall(x, y) \in X \times Y, \forall y_{n} \xrightarrow[n]{w} y, \exists x_{n} \xrightarrow[n]{s} x \quad / \quad \limsup K_{n}\left(x_{n}, y_{n}\right) \leq K(x, y)$
ii) $\forall(x, y) \in X \times Y, \forall x_{n} \xrightarrow[n]{w} x, \exists y_{n} \xrightarrow[n]{s} y \quad / \quad \liminf _{n} K_{n}\left(x_{n}, y_{n}\right) \geq K(x, y)$

Theorem 2.3[5].Let X, Y be Banach reflexive spaces and let the set
$\left\{F_{n}, F: \mathrm{X} \times Y^{*} \rightarrow \bar{R}, n \in N\right\}$ be a sequence of parent, convex and closed functions depending on convex - concave and closed functions. Then,

$$
i \Longleftrightarrow i i
$$

where, i) $F_{n} \xrightarrow{M} F$, ii) $K_{n} \xrightarrow{M-e / h} K$

Definition2.9(Moreau-Yosida function):

Let $L: X \times Y \rightarrow \bar{R}$ be a convex - concave function. Moreau-Yosida function with the two indices $\lambda>0, \mu>0$ of the function $L \in \bar{R}^{X \times Y}$, is defined by the relation:
$L_{\lambda, \mu}(x, y):=\inf _{x} \sup _{y}\left\{L(u, v)+\frac{1}{2 \lambda}\|x-u\|^{2}-\frac{1}{2 \mu}\|y-v\|^{2} ; u \in X, v \in Y\right\}$. This function is usually denoted by $L_{\lambda, \mu}$. It is well known that $L_{\lambda, \mu}$ is a locally Lipschitz function. In Hilbert spaces, $L_{\lambda, \mu}$ admits a Saddle point denoted by $\left(x_{\lambda, \mu}, y_{\lambda, \mu}\right)$. For more details, see [5].
It was proved by Autoch and Wets that the convergence of Mosco's epi/hypo graphical of a sequence of convexconcave functions is equivalent to the simple convergence of the sequence of related Moreau-Yosida functions .

III. The Main Result:

In this section, we study the Convergence of epi hypo-sum of two sequences of convex - concave functionsby using Mosco's epi \backslash hypo convergence as the following:
Theorem 3.1: Let X, Y be Banach reflexive spaces and let the set
$\left\{L_{n}, K_{n}, K, L: \mathrm{X} \times Y \rightarrow \bar{R}, n \in N\right\}$ be a sequence of convex - concave and closed functionsin which each term of the sequence is equi-coercive on X. If the following holds true:

$$
\begin{aligned}
& L_{n} \xrightarrow{M-e / h} L \\
& K_{n} \xrightarrow{M-e / h} K
\end{aligned}
$$

Then,

$$
L_{n}+K_{n} \xrightarrow{M-e / h} L_{e \mid h}^{+} K .
$$

Proof. Using Theorem 1.1, it is enough to prove that $F_{e \mid h}^{n} \xrightarrow{M} F_{e \mid h}$, where $F_{e \mid h}^{n}, F_{e \mid h}$ are the parent and convex functions of the functions $L_{n}+K_{e \mid h} \quad, \quad L+K$ respectively for all $n \in N$. Hence, we have to prove the following two conditions:

1) $\forall\left(x, y^{*}\right) \in X \times Y^{*}, \forall\left(x_{n}, y_{n}^{*}\right) \xrightarrow{w}\left(x, y^{*}\right) \quad ; \liminf _{n \rightarrow \infty} F_{e \mid h}^{n}\left(x_{n}, y_{n}^{*}\right) \geq F_{e \mid h}\left(x, y^{*}\right)$
2) $\forall\left(x, y^{*}\right) \in X \times Y^{*}, \exists\left(x_{n}, y_{n}^{*}\right) \xrightarrow{s}\left(x, y^{*}\right) \quad ; \limsup _{n \rightarrow \infty} F_{e \mid h}^{n}\left(x_{n}, y_{n}^{*}\right) \leq F_{e \mid h}\left(x, y^{*}\right)$

According to Theorem 2.2, we have:

$$
\begin{aligned}
F_{e \mid h}^{n}\left(x_{n}, y_{n}^{*}\right) & =\left[F_{L_{n}}\left(., y_{n}^{*}\right)_{e}+F_{K_{n}}\left(., y_{n}^{*}\right)\right]\left(x_{n}\right) \\
F_{e \mid h}\left(x, y^{*}\right) & =\left[F_{L}\left(., y^{*}\right)_{e} F_{K}\left(., y^{*}\right)\right](x)
\end{aligned}
$$

Where, $F_{L_{n}}, F_{K_{n}}, F_{L}, F_{K}$ are the parent convex functions of the functions L_{n}, K_{n}, L, K respectively for all $n \in N$.
We prove the first condition:
Let $\left(x_{n}, y_{n}^{*}\right) \xrightarrow[n \rightarrow \infty]{w}\left(x, y^{*}\right)$ and let $\varepsilon_{n} \xrightarrow[n \rightarrow \infty]{ } 0$. Then, by definition of epi-graphical summation, there exist two sequences $\left(v_{n}\right)_{n \in N},\left(u_{n}\right)_{n \in N}$ in X where $u_{n}+v_{n}=x_{n}$ such that

$$
\begin{aligned}
& {\left[F_{L_{n}}\left(., y_{n}^{*}\right)_{e}+F_{K_{n}}\left(., y_{n}^{*}\right)\right]\left(x_{n}\right) \geq F_{L_{n}}\left(u_{n}, y_{n}^{*}\right)+F_{K_{n}}\left(v_{n}, y_{n}^{*}\right)-\varepsilon_{n}} \\
& \quad \liminf _{n \rightarrow \infty} F_{e \mid h}^{n}\left(x_{n}, y_{n}^{*}\right)=\underset{n \rightarrow \infty}{\liminf }\left[F_{L_{n}}\left(., y_{n}^{*}\right)_{e}+F_{K_{n}}\left(., y_{n}^{*}\right)\right]\left(x_{n}\right)
\end{aligned}
$$

This implies that

$$
\geq \liminf _{n \rightarrow \infty} F_{L_{n}}\left(u_{n}, y_{n}^{*}\right)+\liminf F_{K_{n}}\left(v_{n}, y_{n}^{*}\right)
$$

Since $\left(L_{n}\right)_{n \in N}$ is a sequence of equi-coercive functions on X, it follows that $F_{L_{n}}$ is also equi-coercive functions on X for all $n \in N$.
Using definition 1.14, we find that there exists a function $\theta: R^{+} \rightarrow[0,+\infty[$ satisfying the relation $\lim _{t \rightarrow \infty} \theta(t)=+\infty$ such that $F_{L_{n}}\left(u_{n}, y_{n}^{*}\right) \geq \theta\left(\left\|u_{n}\right\|\right)$ for all y_{n}^{*} and for all $n \in N$. Thus, the sequence $\left(u_{n}\right)_{n \in N}$ is bounded (otherwise would imply that liminf $F_{L_{n}}\left(u_{n}, y_{n}^{*}\right)=+\infty$). The same argument can be applied to show that the sequence $\left(v_{n}\right)_{n \in N}$ is bounded. So, there exists a subsequence $\left(n_{k}\right)_{k \in N}$ such that

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} F_{L_{n}}\left(u_{n}, y_{n}^{*}\right)=\lim _{k \rightarrow \infty} F_{L_{n_{k}}}\left(u_{n_{k}}, y_{n_{k}}^{*}\right) \\
& \liminf _{n \rightarrow \infty} F_{K_{n}}\left(v_{n}, y_{n}^{*}\right)=\lim _{k \rightarrow \infty} F_{K_{n_{k}}}\left(v_{n_{k}}, y_{n_{k}}^{*}\right)
\end{aligned}
$$

On the other hand, since $\left(u_{n_{k}}\right)_{k \in N}$ and $\left(v_{n_{k}}\right)_{k \in N}$ are bounded, we can find two subsequences $\left(n_{k^{\prime}}\right)_{k^{\prime} \in N}$ and $\left(n_{k}\right)_{k \in N}$ such that $v_{n_{k^{\prime}}} \xrightarrow[k^{\prime} \rightarrow \infty]{w} v \quad, \quad u_{n_{k^{\prime}}} \xrightarrow[k^{\prime} \rightarrow \infty]{w} u$. Therefore,
$\lim _{k \rightarrow \infty} F_{L_{n_{k}}}\left(u_{n_{k}}, y_{n_{k}}^{*}\right)=\lim _{k^{\prime} \rightarrow \infty} F_{L_{n_{k^{\prime}}}}\left(u_{n_{k^{\prime}}}, y_{n_{k^{\prime}}}^{*}\right)$
$\lim _{k \rightarrow \infty} F_{K_{n_{k}}}\left(v_{n_{k}}, y_{n_{k}}^{*}\right)=\lim _{k^{\prime} \rightarrow \infty} F_{K_{n_{k^{\prime}}}}\left(v_{n_{k^{\prime}}}, y_{n_{k^{\prime}}}^{*}\right)$
We have $L_{n} \xrightarrow{M-e \mid h} L \quad, K_{n} \xrightarrow{M-e \mid h} K$. According to Theorem 2.3 we find that $F_{L_{n}} \xrightarrow{M} F_{L} \quad, \quad F_{K_{n}} \xrightarrow{M} F_{K}$. So, we have

$$
\begin{align*}
& \lim _{k^{\prime} \rightarrow \infty} F_{L_{n_{k^{\prime}}}}\left(u_{n_{k^{\prime}}}, y_{n_{k^{\prime}}}^{*}\right) \geq F_{L}\left(u, y^{*}\right) \\
& \lim _{k^{\prime} \rightarrow \infty} F_{K_{n_{k^{\prime}}}}\left(v_{n_{k^{\prime}}}, y_{n_{k^{\prime}}}^{*}\right) \geq F_{K}\left(v, y^{*}\right) \tag{3.3}
\end{align*}
$$

Using (3.2) and (3.3) and substituting in (3.1) we obtain the following:

```
\(\liminf _{n \rightarrow \infty} F_{e \mid h}^{n}\left(x_{n}, y_{n}^{*}\right) \geq F_{L}\left(u, y^{*}\right)+F_{K}\left(v, y^{*}\right)\)
    \(\geq \inf _{\substack{u, v X \\ u+v=x}}\left\{F_{L}\left(u, y^{*}\right)+F_{K}\left(v, y^{*}\right)\right\}\)
    \(\geq\left[F_{L}\left(., y^{*}\right)_{e}+F_{K}\left(., y^{*}\right)\right](x)=F_{e \mid h}\left(x, y^{*}\right)\)
```

This proves the first condition. Now, for the second one:
Let $0<\mathcal{E}$. Then there exist \bar{v}, \bar{u} in X in which $\bar{u}+\bar{v}=X$ such that

$$
\begin{equation*}
F_{e \mid h}\left(x, y^{*}\right)+\varepsilon \geq F_{L}\left(\bar{u}, y^{*}\right)+F_{K}\left(\bar{v}, y^{*}\right) \tag{3.4}
\end{equation*}
$$

Since $F_{L_{n}} \xrightarrow{M} F_{L}$, there exists $\left(\bar{u}_{n}, y_{n}^{*}\right) \xrightarrow[n \rightarrow \infty]{s}\left(\bar{u}, y^{*}\right)$ such that
$F_{L}\left(\bar{u}, y^{*}\right) \geq \limsup F_{L_{n}}\left(\bar{u}_{n}, y_{n}^{*}\right)$
Also, since $F_{K_{n}} \xrightarrow{M} F_{K}$, there exists $\left(\bar{v}_{n}, y_{n}^{*}\right) \xrightarrow[n \rightarrow \infty]{s}\left(\bar{v}, y^{*}\right)$ such that

$$
\begin{equation*}
F_{K}\left(\bar{v}, y^{*}\right) \geq \limsup _{n \rightarrow \infty} F_{K_{n}}\left(\bar{v}_{n}, y_{n}^{*}\right) \tag{3.6}
\end{equation*}
$$

Substituting (3.5) and (3.6) in (3.4), we obtain:

$$
\begin{aligned}
F_{e \mid h}\left(x, y^{*}\right)+ & \varepsilon \geq \limsup _{n \rightarrow \infty} F_{L_{n}}\left(\bar{u}_{n}, y_{n}^{*}\right)+\limsup _{n \rightarrow \infty} F_{K_{n}}\left(\bar{v}_{n}, y_{n}^{*}\right) \\
& \geq \limsup _{n \rightarrow \infty}^{*}\left[F_{L_{n}}\left(\bar{u}_{n}, y_{n}^{*}\right)+F_{K_{n}}\left(\bar{v}_{n}, y_{n}^{*}\right)\right] \\
& \geq \limsup _{n \rightarrow \infty}^{*}\left[F_{L_{n}}\left(., y_{n}^{*}\right)_{e} F_{K_{n}}\left(., y_{n}^{*}\right)\right]\left(x_{n}\right) \\
& \geq \limsup _{n \rightarrow \infty} F_{e \mid h}^{n}\left(x_{n}, y_{n}^{*}\right)
\end{aligned}
$$

Since the above inequality holds true for all $0<\varepsilon$, it follows (by letting $0<\varepsilon$ tends to zero) that $F_{e \mid h}\left(x, y^{*}\right) \geq \limsup F_{e \mid h}^{n}\left(x_{n}, y_{n}^{*}\right)$. This proves the second condition and completes the proof of the theorem.
Theorem 3.2: Let $L: X \times Y \rightarrow \bar{R}$ be a convex- concave function, where X, Y are Banach reflexive spaces. Then, the following conditions are equivalent:

$$
\text { i) } \quad L_{n} \xrightarrow{M-e \mid h} L
$$

$$
\begin{gathered}
\forall(x, y) \in X \times Y, \quad \forall \lambda>0, \quad \forall \mu>0 \\
\lim _{n \rightarrow \infty}\left(L_{n}\right)_{\lambda, \mu}(x, y)=L_{\lambda, \mu}(x, y)
\end{gathered}
$$

It should be noted that the relation (3.4) can be written in the following:

$$
L_{\lambda, \mu}(x, y)=\left(L+\left(\frac{1}{e \mid h}\|\cdot\|^{2}-\frac{1}{2 \mu}\|\cdot\|^{2}\right)\right)(x, y)
$$

This means that the function $L_{\lambda, \mu}$ is a sum of the functions $K=\left(\frac{1}{2 \lambda}\|\cdot\|^{2}-\frac{1}{2 \mu}\|\cdot\|^{2}\right)$ and the epi/hypo graphical of the function L.
By applying Theorem 3.1, we obtain a generalization of the previous theorem as the following:
Theorem 3.3:Let X, Y be Banach reflexive spaces and let the set $\left\{L_{n}, L: \mathrm{X} \times Y \rightarrow \bar{R}, n \in N\right\}$ be a sequence of convex - concave, closed and equi-coercive functions on X. If

$$
L_{n} \xrightarrow{M-e \mid h} L \text { for all }(x, y) \text { and for all } \lambda>0, \mu>0 \text {, then }\left(L_{n}\right)_{\lambda, \mu} \xrightarrow{M-e \mid h} L_{\lambda, \mu}
$$

Proof. The proof can be done by putting

$$
K_{n}=K=\left(\frac{1}{2 \lambda}\|\cdot\|^{2}-\frac{1}{2 \mu}\|\cdot\|^{2}\right) \text { in Theorem 3.1. }
$$

References

[1]. Attouch, H. Variational convergence for functions and operators. Pitman, London, 1984, 120-264.
[2]. Attouch, H ; Wets,R. Convergence Theory of saddle functions .Trans. Amaer. Math.Soc. 280, n (1), 1983, 1-41.
[3]. Attouch, H ; Aze, D. ; Wets,R. On continuity properties of the partial Legendre- Fenchel Trasform : Convergence of sequences augmented Lagrangian functions , Moreau- Yoshida approximates and subdiffferential operators . FERMAT Days 85: Mathematics for Optimization, 1986.
[4]. Attouch, H; Wets,R.Epigraphic analysis, analyse non linéaire .Gauthiers- villars, paris, 1989, 74-99.
[5]. Attouch, H; Aze, D. ; Wets,R.: Convergence of convex-concave saddle functions, Ann. H.Poincare, Analyse non linéaire, 5, 1988, 532572.
[6]. Attouch, H; Wets,R. : Quantitative stability of variational systems : the epi-graphical distance, volume 328 , Number 2 , December 1991.
[7]. Bagh, A. On the convergence of min/sup problems in some optimal control problems . Journal of abstract and applied analysis , vol.6, N1,2001, 53-71..
[8]. Jofer, A. ; Wets, R. Variational convergence of bivariate function : Lopsided convergenc. Math. Program. 116 (2009), no. 1-2, Ser B, 275-295.
[9]. Mosco, U. : On the continuity of the Young - Fenchel Transformation. Journ.Math.Anal.Appl.35, 1971, P.318-335.
[10]. Moreau, J.J.Theoreme "inf-sup" C.R.A.S.T. 285, 1964, 2720-2722.
[11]. Phelps.R: Convex functions, Monotone operators and Differentiability. Springer - verlag Berlin H eidelberg 1989.
[12]. Rockafellar , R. ; Wets, R. Variational analysis . 2en, Springer, New York, 2004, 10-212.
[13]. Rockafellar , R, convex Analysis. Princeton University Press, Princeton N. J 1970.
[14]. M.Soueycatt, N. Alkhamir and W. Ali, On \mathcal{E} - saddle points stability of min/max problems, Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (34) No. (1) 2012.

