Generalized a New Class of Harmonic Univalent Functions

NAGALAXMI NAKEERTHA

Abstract

In this present paper, we defined complex valued functions that are univalent of the form $f=h+\bar{g}$ where h and g are analytic in the open unit disk Δ . we obtain several sufficient coefficient conditions for normalized harmonic functions that are starlike of order $((\lambda,\alpha,k)\ 0\leq \lambda<1,0\leq \alpha<1,0\leq k<$

1 there coefficients conditions are also shown to necessary when h has negative and g has postive coefficients.

Key Words: Harmonic function, univalent function sense-preserving; starlike.convex combination

I. INTRODUCTION

A continuous function f = u + iv is a complex-valued harmonic function in a complex domain $\mathfrak C$ if both u and v are real harmonic in $\mathfrak C$. In any simply connected domain $\mathfrak D \in \mathfrak C$ we can write $f = h + \bar g$ where h and g are analytic in $\mathfrak D$. We call h the analytic part and g the co-a $\mathfrak C$ nalytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in $\mathfrak D$ is that in $\mathfrak D$. See Clunie and Sheil-Small [2].

Denote by \mathcal{H} the class of functions $f = h + \bar{g}$ that are harmonic univalent and sense-preserving in the unit disk $\Delta = \{z : |z| < 1\}$ for which

$$h(0) = f(0) = f_z(0) - 1$$
 Then for $f = h + \bar{g} \in \mathcal{H}$ we may express the analytic functions h and g as `` $h(z) = z + \sum_{n=2}^{\infty} a_n z^n$ $g(z) = \sum_{n=1}^{\infty} b_n z^n$ (1)

Note that \mathcal{H} reduces to the class of normalized analytic univalent functions if the co-analytic part of its members is zero. In 1984 Clunie and Sheil-Small [2] investigated the class \mathcal{H} as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on \mathcal{H} and its subclasses. For more references see Duren [3] . w x In this note, we look at two subclasses of \mathcal{H} and provide univalence criteria, coefficient conditions, extreme points, and distortion bounds for functions in these classes.

For $0 \le \alpha < 1$ we let $\mathcal{G}_{\mathcal{H}}(\alpha)$. a denote the subclass of \mathcal{H} consisting of \mathcal{H} harmonic starlike functions of order α . A function f of the form (1) is harmonic starlike of order α , $0 \le \alpha < 1$ for |z| = r < 1 if

$$\frac{\partial}{\partial \theta} (\arg f(r e^{i\theta})) \ge \alpha, |z| = r < 1$$
 (2)

We further denote by $\mathcal{G}_{\mathcal{H}}(\alpha)$.. a the subclass of $\mathcal{G}_{\mathcal{H}}(\alpha)$.. a such that the functions h and g in

$$f = h + \overline{g} \text{ are of the form}$$

$$h(z) = z - \sum_{n=2}^{\infty} |a_n| z^n , \quad g(z) = \sum_{n=1}^{\infty} |b_n| z^n$$
(3)

II. MAIN RESULTS

It was shown by Sheil-Small [4, Theorem 7] that $|a_n| \le (n+1)(2n+1)/6$ and $|b_n| \le (n-1)(2n-1)/6$ if $f = h + \bar{g} \in \mathcal{G}_{\mathcal{H}}^{\ 0}(0)$.

The subclass of $\mathcal{G}_{\mathcal{H}}(\alpha)$, where $\alpha = b_1 = 0$ is denoted by $\mathcal{G}_{\mathcal{H}}^{\ 0}(0)$. These bounds are sharp and thus give necessary coefficient conditions for the class $\mathcal{G}_{\mathcal{H}}^{\ 0}(0)$.

Avci and Zlotkiewicz [1] proved that the coefficient condition is sufficient for functions $f = h + \bar{g}$ to be in $\mathcal{G}_{\mathcal{H}}{}^{0}(0)$. Silverman proved that this coefficient condition is also necessary if $b_1 = 0$ and a_n if a and b in 1 are negative.

We note that both results obtained in are subject to the restriction that $b_1=0$. The argument presented in this paper provides sufficient coefficient conditions for functions $\mathcal{G}_{\mathcal{H}}(\alpha)$ f= h + \bar{g} of the form (1) to be in $\mathcal{G}_{\mathcal{H}}(\alpha)$ where $0 \le \alpha < 1$ and b_1 not necessarily zero. It is shown that these conditions are also necessary when f $\in \mathcal{G}_{\mathcal{H}}(\alpha)$. a.

THEOREM 1.

Let $f=h+\bar{g}$ be given by (1). Furthermore, let $\sum_{n=1}^{\infty}[n^2(\beta+1)-(\beta+\alpha)(\lambda^n-\lambda+1)]|a_n|+\sum_{n=1}^{\infty}[n^2(\beta+1)-(\beta+\alpha)(\lambda^n-\lambda+1)]|b_n|\leq 2-\alpha$. Where $\alpha 1=1$ and $0\leq \lambda < 1$, $0\leq \alpha < 1$, $\beta \geq 0$, then f is harmonic univalent in Δ and $f\in \mathcal{G}_{\mathcal{H}}(\lambda,\alpha,\beta)$

Proof is later

REFERENCES

- [1]. Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Uni". Mariae CurieSklodowska Sect. A
- [2]. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A I Math.
- [3]. P. L. Duren, A survey of harmonic mappings in the plane, Texas Tech. Uni.. Math. Ser. 18 Ž . 1992
- [4]. T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc.
- [5]. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51
- [6]. H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal.