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Abstract: 
In this paper, a new fifth-stage fourth-order Runge–Kutta formula was derived for solving initial value problems 

(IVPs) in Ordinary Differential Equation, which was implemented and compared with classical Runge-Kutta 

formula through the computation of some tested initial value problemsin other to determine the level of 

performance, consistency and accuracy.We discovered that errors are minimal with our new method.Errors in 

the new method and that of classical Runge-Kutta method were plotted with MATLAB to determine their 

curves.Our new method was tested further on the Kermack-McKendrick SIR model for the course of an epidemic 

in a population which computes the number of Susceptible, Infected, and Recovered people in a population at 

any time. The codes and plots were built in Python. We called this method BO4 method. 
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I. Introduction 
Ordinary differential equations arise frequently in several models of mathematical physics, biological 

Sciences, engineering and applied mathematics. Unfortunately, many cannot be solved exactly. This is why 

numerical treatment is very important and provides a powerful alternative tool for solving the differential 

equations, which are modeled as initial value problems (IVPs) [6]. Runge-Kutta methods provide a unique way 

for solving initial value problems for system of ordinary differential equation of the form: 

𝑦′ = 𝑓 𝑥, 𝑦 ,    𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦 𝑎 = 𝑦0 

 

With a given step length  through the interval  𝑎, 𝑏 , successively producing approximations 𝑦𝑛  to 

𝑦𝑛+1 [9]. 

We deal broadly with the step by step derivation and stability of our new method. Recent work on 

Runge-Kutta methods includes [1], [4] and more recent work are [2] and [7]. More on the general disparity of 

the Runge-Kutta method can be seen in [3] and [5]. 

This paper has the following structure: Section 2 presents derivation of the method. Section 3, presents 

the consistency and convergence of the method. Section 4, presents the stability of the method. Section 5 

presents the implementation in comparison with classical Runge-Kutta method with tested examples, a display 

of solution tables will be provided by way of comparison with some existing methodsand the error analysis of 

the method.Finally, section 6 presents the summaryand conclusion. 

 

II. Derivation of BO4 Method 
In this section we will introduce the basic tools required for the derivation of fifth- stage fourth- order Runge-

Kutta method. Consider the general initial value problem in ordinary differential equations of the form; 

 

𝑦′ 𝑥 = 𝑓 𝑥, 𝑦(𝑥) ,    𝑦 𝑥0 = 𝑦0                                                … (2.1) 
The main aim in this section is to obtain approximate solution of y(x), the approach of the fifth- stage fourth- 

order Runge-Kutta method is proceed to evaluate 𝑦𝑛+1   as an approximation to 𝑦(𝑥𝑛+1) = 𝑦(𝑥𝑛 + ), an 

important special case “without the loss of generality” if the function f does not depend on x but y, by 

setting 𝑥 ′ = 1 then equation (2.1) reduces to so called “autonomous” and written in the form 

𝑦′ 𝑥 = 𝑓 𝑦 𝑥  , 𝑦 𝑥0 = 𝑦0 … (2.2) 
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The proposed explicit Runge-Kutta method of order four with fifth- stages, denoted by 

𝑘1, . . . , 𝑘5 for one step, according to [7], the solution of equation (2.2) can be derive from the general Runge-

Kutta formula given by; 

𝑦𝑛+1 − 𝑦𝑛 =  Φ 𝑥𝑛 , 𝑦𝑛 ,                                                          … (2.3) 

Φ 𝑥𝑛 , 𝑦𝑛 ,  =  𝑏𝑖𝑘𝑖

𝑅

𝑖=1

for  𝑖 = 1,2, … ,5                            … (2.4) 

𝑘1 = 𝑓 𝑥𝑛 , 𝑦𝑛 = 𝑓                                                                        … (2.5) 

𝑘𝑖 = 𝑓  𝑥𝑛 +  𝑐𝑖 , 𝑦𝑛 +   𝑎𝑖𝑗 𝑘𝑗

𝑖−1

𝑗 =1

 for𝑖 = 2,3, … ,5      … (2.6) 

𝑐𝑖 =  𝑎𝑖𝑗

𝑖−1

𝑗 =1

       , 𝑖 = 2,3, … ,5                                                      … (2.7) 

Where the coefficients 𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑖  (𝑐𝑖 ∈  0,1 )are the constants,  is the step size. 

From equation (2.6) we have:      

𝑘2 = 𝑓(𝑥𝑛 +  𝑐2, 𝑦𝑛 +  (𝑎21𝑘1))        

𝑘3 = 𝑓(𝑥𝑛 +  𝑐3, 𝑦𝑛 +  (𝑎31𝑘1 + 𝑎32𝑘2))        

𝑘4 = 𝑓(𝑥𝑛 +  𝑐4, 𝑦𝑛 +  (𝑎41𝑘1 + 𝑎42𝑘2 + 𝑎43𝑘3))      

𝑘5 = 𝑓(𝑥𝑛 +  𝑐5, 𝑦𝑛 +  (𝑎51𝑘1 + 𝑎52𝑘2 + 𝑎53𝑘3 + 𝑎54𝑘4))     

For the purpose of linearity, the above parameters will be modified as follows: 

𝑎21 = 𝑎1 , 𝑎31 = 𝑎2 , 𝑎32 = 𝑎3, 𝑎41 = 𝑎4 , 𝑎42 = 𝑎5 , 
𝑎43 = 𝑎6, 𝑎51 = 𝑎7 , 𝑎52 = 𝑎8 , 𝑎53 = 𝑎9, 𝑎54 = 𝑎10 , 

Substituting we have: 

𝑘2 = 𝑓 𝑥𝑛 + 𝑐2 , 𝑦𝑛 +  𝑎1𝑘1                                                                                                           …  2.8  

𝑘3 = 𝑓 𝑥𝑛 + 𝑐3 , 𝑦𝑛 + (𝑎2𝑘1 + 𝑎3𝑘2)                                                                                            … (2.9)  

𝑘4 = 𝑓 𝑥𝑛 + 𝑐4 , 𝑦𝑛 + (𝑎4𝑘1 + 𝑎5𝑘2 + +𝑎6𝑘3)                                                                          … (2.10) 

𝑘5 = 𝑓 𝑥𝑛 + 𝑐5 , 𝑦𝑛 + (𝑎7𝑘1 + 𝑎8𝑘2 + 𝑎9𝑘3 + +𝑎10𝑘4)                                                          … (2.11) 

 

 𝑏𝑖
5
𝑖=1 = 1 which the final result depend on the derivatives, the approach of R-K method is expanding 𝑘𝑖′𝑠in 

Taylor’s series expansion, after some algebraic simplification this expansion is equated to the exact solution 

𝑦(𝑥0 +  ) that is given by the Taylor’s series: 

 

𝑦 𝑥0 +  = 𝑦 𝑥0 + 𝑦(1) 𝑥0 +
1

2!
2𝑦(2) 𝑥0 +

1

3!
3𝑦(3) 𝑥0 +

1

4!
4𝑦(4) 𝑥0 + 𝑂 5                     … (2.12) 

 

The first step is to calculate the successive derivatives of 𝑦(1), 𝑦(2), …up to fourth order for equation (2.2) as 

follows: 

 

𝑦(1) = 𝑓 𝑥, 𝑦 = 𝑓 = 𝑘1 

𝑦(2) = 𝑓𝑓𝑦=𝑘1𝑓𝑦  

𝑦(3) = 𝑓𝑓𝑦
2 + 𝑓2𝑓𝑦𝑦   = 𝑘1𝑓𝑦

2 + 𝑘1
2𝑓𝑦𝑦  

𝑦(4) = 𝑓𝑓𝑦
3+4𝑓2𝑓𝑦𝑓𝑦𝑦 + 𝑓3𝑓𝑦𝑦𝑦    = 𝑘1𝑓𝑦

3 + 4𝑘1
2𝑓𝑦𝑓𝑦𝑦 + 𝑘1

3𝑓𝑦𝑦𝑦  

 

Where 𝑓𝑦  represent the partial derivation of 𝑓 with respect to𝑦. substituting 𝑦(1), 𝑦(2), 𝑦(3), 𝑦(4) into equation (2 

.12) we have the Fourth order Taylor’s expansion as: 

𝑦𝑛+1 − 𝑦𝑛 = 𝑘1 +
1

2
2𝑘1𝑓𝑦 +

1

6
3 𝑘1𝑓𝑦

2 + 𝑘1
2𝑓𝑦𝑦  +

1

24
4 𝑘1𝑓𝑦

3 + 4𝑘1
2𝑓𝑦𝑓𝑦𝑦 + 𝑘1

3𝑓𝑦𝑦𝑦                      … (2.13) 

 

 

Equation (2.13) will be use to compare with Taylor expansions of𝑘𝑖𝑠. 

 

For easy computation and convenience, we set 

𝑐3 =  𝑎2 + 𝑎3 ,    𝑐4 =  𝑎4 + 𝑎5 + 𝑎6 ,   𝑐5 =  𝑎7 + 𝑎8 + 𝑎9 + 𝑎10 
 

Taking the Taylor series expansion of equation (2.8), to (2.11) about the point (𝑦𝑛 ), i.e., neglecting all the 

derivatives of 𝑥 and leaving those of 𝑦alone, we have: 
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𝑘2 =  
1

𝑖!
 𝑎1𝑘1

𝑑

𝑑𝑦
 

𝑖

𝑓(𝑦)

∞

𝑖=0

                                                                                  … (2.14𝑎) 

𝑘3 =  
1

𝑖!
  𝑎2𝑘1 + 𝑎3𝑘2 

𝑑

𝑑𝑦
 

𝑖

𝑓(𝑦)

∞

𝑖=0

                                                               … (2.14𝑏) 

𝑘4 =  
1

𝑖!
  𝑎4𝑘1 + 𝑎5𝑘2 + 𝑎6𝑘3 

𝑑

𝑑𝑦
 

𝑖

𝑓(𝑦)

∞

𝑖=0

                                               … (2.14𝑐) 

𝑘5 =  
1

𝑖!
  𝑎7𝑘1 + 𝑎8𝑘2 + 𝑎9𝑘3 + 𝑎10𝑘4 

𝑑

𝑑𝑦
 

𝑖

𝑓(𝑦)

∞

𝑖=0

                                … (2.14𝑑) 

 

Expanding equation (2.14a) to (2.14d) with Maple we have: 

𝑘2 = 𝑘1 + 𝑎1𝑘1𝑓𝑦 +
1

2
2𝑎1

2𝑘1
2𝑓𝑦𝑦 +

1

6
3𝑎1

3𝑘1
3𝑓𝑦𝑦𝑦  

𝑘3 = 𝑘1 + 𝑘1𝑐3𝑓𝑦 +
1

2
2𝑘1

2𝑐3
2𝑓𝑦𝑦 + 2𝑎3𝑎1𝑘1𝑓𝑦

2 +  
1

2
3𝑎3𝑎1𝑘1

2 𝑎1 + 2𝑐3 𝑓𝑦𝑦 𝑓𝑦 +
1

6
3𝑘1

3𝑐3
3𝑓𝑦𝑦𝑦  

𝑘4 = 𝑘1 + 𝑘1𝑐4𝑓𝑦 + 2𝑘1 𝑎1𝑎5 + 𝑎6𝑐3 𝑓𝑦
2 +

1

2
2𝑘1

2𝑐4
2𝑓𝑦𝑦 + 3𝑎6𝑎3𝑎1𝑘1𝑓𝑦

2 +  
1

2
3𝑘1

2(𝑎1
2𝑎5 + 2𝑎1𝑎5𝑐4

+ 𝑎6𝑐3
2 + 2𝑎6𝑐3𝑐4)𝑓𝑦𝑦 𝑓𝑦 +

1

6
3𝑘1

3𝑐4
3𝑓𝑦𝑦𝑦  

𝑘5 = 𝑘1 + 𝑘1𝑐5𝑓𝑦 + 2𝑘1 𝑎1𝑎8 + 𝑎9𝑐3 + 𝑎10𝑐4 𝑓𝑦
2 +

1

2
2𝑘1

2𝑐5
2𝑓𝑦𝑦 + 3𝑘1(𝑎1𝑎3𝑎9 + 𝑎1𝑎5𝑎10 + 𝑎6𝑎10𝑐3)𝑓𝑦

3

+  
1

2
3𝑘1

2(𝑎1
2𝑎8 + 2𝑎1𝑎8𝑐5 + 𝑎9𝑐3

2 + 2𝑎9𝑐3𝑐5 + 𝑎10𝑐4
2 + 2𝑎10𝑐4𝑐5)𝑓𝑦𝑦 𝑓𝑦 +

1

6
3𝑘1

3𝑐5
3𝑓𝑦𝑦𝑦  

 

Substituting all  𝑘1, . . . , 𝑘5 into equation (2.4) and simplifying we have: 

 

Φ 𝑦𝑛 ,  = 𝑏1𝑘1 + 𝑏2𝑘2 + 𝑏3𝑘3 + 𝑏4𝑘4 + 𝑏5𝑘5

= 𝑘1 𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑏5 + 𝑘1 𝑎1𝑏2 + 𝑏3𝑐3 + 𝑏4𝑐4 + 𝑏5𝑐5 𝑓𝑦

+ 2𝑘1 𝑎1𝑎3𝑏3 + 𝑎1𝑎5𝑏4 + 𝑎1𝑎8𝑏5 + 𝑎6𝑏4𝑐3 + 𝑎9𝑏5𝑐3 + 𝑎10𝑏5𝑐4 𝑓𝑦
2

+
1

2
2𝑘1

2 𝑎1
2𝑏2 + 𝑏3𝑐3

2 + 𝑏4𝑐4
2 + 𝑏5𝑐5

2 𝑓𝑦𝑦

+ 3𝑘1 𝑎1𝑎3𝑎6𝑏4 + 𝑎1𝑎3𝑎9𝑏5 + 𝑎1𝑎5𝑎10𝑏5 + 𝑎6𝑎10𝑏5𝑐3 𝑓𝑦
3

+
1

2
3𝑘1

2 𝑎1
2𝑎3𝑏3 + 𝑎1

2𝑎5𝑏4 + 𝑎1
2𝑎8𝑏5 + 2𝑎1𝑎3𝑏3𝑐3 + 2𝑎1𝑎5𝑏4𝑐4 +  2𝑎1𝑎8𝑏5𝑐5 + 𝑎6𝑏4𝑐3

2

+  2𝑎6𝑏4𝑐3𝑐4 + 𝑎9𝑏5𝑐3
2 + 2𝑎9𝑏5𝑐3𝑐5 + 𝑎10𝑏5𝑐4

2 + 2𝑎10𝑏5𝑐4𝑐5 𝑓𝑦𝑦 𝑓𝑦

+
1

6
3𝑘1

3 𝑎1
3𝑏2 + 𝑏3𝑐3

3 + 𝑏4𝑐4
3 + 𝑏5𝑐5

3 𝑓𝑦𝑦𝑦  

Substitutinginto equation (2.3) we have 

 

𝑦𝑛+1 − 𝑦𝑛 = 𝑘1 𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑏5 + 2𝑘1 𝑎1𝑏2 + 𝑏3𝑐3 + 𝑏4𝑐4 + 𝑏5𝑐5 𝑓𝑦

+ 3𝑘1 𝑎1𝑎3𝑏3 + 𝑎1𝑎5𝑏4 + 𝑎1𝑎8𝑏5 + 𝑎6𝑏4𝑐3 + 𝑎9𝑏5𝑐3 + 𝑎10𝑏5𝑐4 𝑓𝑦
2

+
1

2
3𝑘1

2 𝑎1
2𝑏2 + 𝑏3𝑐3

2 + 𝑏4𝑐4
2 + 𝑏5𝑐5

2 𝑓𝑦𝑦

+ 4𝑘1 𝑎1𝑎3𝑎6𝑏4 + 𝑎1𝑎3𝑎9𝑏5 + 𝑎1𝑎5𝑎10𝑏5 + 𝑎6𝑎10𝑏5𝑐3 𝑓𝑦
3

+
1

2
4𝑘1

2 𝑎1
2𝑎3𝑏3 + 𝑎1

2𝑎5𝑏4 + 𝑎1
2𝑎8𝑏5 + 2𝑎1𝑎3𝑏3𝑐3 + 2𝑎1𝑎5𝑏4𝑐4 +  2𝑎1𝑎8𝑏5𝑐5 + 𝑎6𝑏4𝑐3

2

+  2𝑎6𝑏4𝑐3𝑐4 + 𝑎9𝑏5𝑐3
2 + 2𝑎9𝑏5𝑐3𝑐5 + 𝑎10𝑏5𝑐4

2 + 2𝑎10𝑏5𝑐4𝑐5 𝑓𝑦𝑦 𝑓𝑦

+
1

6
4𝑘1

3 𝑎1
3𝑏2 + 𝑏3𝑐3

3 + 𝑏4𝑐4
3 + 𝑏5𝑐5

3 𝑓𝑦𝑦𝑦  

Comparing with equation (2.13) by matching the coefficients of,  𝑖for (i = 1, 2, 3, 4) we have the following 

equations: 

 

𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑏5 = 1                                                                           … (2.15𝑎) 

𝑎1𝑏2 + 𝑏3𝑐3 + 𝑏4𝑐4 + 𝑏5𝑐5 =
1

2
                                                                     … (2.15𝑏) 
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𝑎1𝑎3𝑏3 + 𝑎1𝑎5𝑏4 + 𝑎1𝑎8𝑏5 + 𝑎6𝑏4𝑐3 + 𝑎9𝑏5𝑐3 + 𝑎10𝑏5𝑐4 =
1

6
            … (2.15𝑐) 

𝑎1
2𝑏2 + 𝑏3𝑐3

2 + 𝑏4𝑐4
2 + 𝑏5𝑐5

2 =
1

3
                                                                    … (2.15𝑑) 

𝑎1𝑎3𝑎6𝑏4 + 𝑎1𝑎3𝑎9𝑏5 + 𝑎1𝑎5𝑎10𝑏5 + 𝑎6𝑎10𝑏5𝑐3 =
1

24
                          … (2.15𝑒) 

𝑎1
2𝑎3𝑏3 + 𝑎1

2𝑎5𝑏4 + 𝑎1
2𝑎8𝑏5 + 2𝑎1𝑎3𝑏3𝑐3 + 2𝑎1𝑎5𝑏4𝑐4 + 2𝑎1𝑎8𝑏5𝑐5 + 𝑎6𝑏4𝑐3

2 +  2𝑎6𝑏4𝑐3𝑐4 +  𝑎9𝑏5𝑐3
2

+ 2𝑎9𝑏5𝑐3𝑐5 + 𝑎10𝑏5𝑐4
2 + 2𝑎10𝑏5𝑐4𝑐5 =

1

3
… (2.15𝑓) 

𝑎1
3𝑏2 + 𝑏3𝑐3

3 + 𝑏4𝑐4
3 + 𝑏5𝑐5

3 =
1

4
 … (2.15𝑔) 

Collecting four out of the 7 equations (i.e. 2.15a, 2.15b,2.15d and 2. 15g), for easy computation and 

convenience, we set: 

 

𝑏4 = 0 

𝑐1 = 0 

𝑐2 = 𝑎1 =
1

4
 

𝑐3 =  𝑎2 + 𝑎3 =
1

2
… (2.16) 

𝑐4 =  𝑎4 + 𝑎5 + 𝑎6 =
3

4
 

𝑐5 =  𝑎7 + 𝑎8 + 𝑎9 + 𝑎10 = 1 

 

Solving the equations we have; 

 

𝑏1 =
1

6
,       𝑏2 = 0,      𝑏3 =

2

3
, 𝑏4 = 0, 𝑏5 =

1

6
 

By substituting 𝑏1 , 𝑏2 , 𝑏3, 𝑏4 , 𝑏5, 𝑐3 , 𝑐4, 𝑐5and𝑎1into the remaining equations ( i.e. 2.15c, 2.15e and 2.15f), we 

observed that they are three equations with six unknown, this implies that we have three“free” parameters to 

assign value in other to solve the equations. Hence, setting  

𝑎3 =
1

4
, 𝑎5 =

1

2
, 𝑎9 =

3

4
 

Solving the equations with maple 18 we have: 

𝑎6 = −
15

8
, 𝑎8 =

9

4
, 𝑎10 = −

1

4
 Now to obtain our    𝑎2 , 𝑎4, 𝑎𝑛𝑑𝑎7, we substitute into equation (2.16) we have: 

𝑎2 =
1

4
, 𝑎4 =

17

8
, 𝑎7 = −

7

4
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Substituting all these values into equation (2.3) we have: 

𝑦𝑛+1 − 𝑦𝑛 =


6
 𝑘1 + 4𝑘3 + 𝑘5 … (2.17) 

Where 

 

𝑘1 = 𝑓(𝑦𝑛) 

𝑘2 = 𝑓(𝑦𝑛 +
1

4
 𝑘1) 

𝑘3 = 𝑓  𝑦𝑛 +   
1

4
 𝑘1 + 𝑘2                                                                                          … (2.18) 

𝑘4 = 𝑓  𝑦𝑛 +   
1

8
 17𝑘1 + 4𝑘2 − 15𝑘3    

𝑘5 = 𝑓  𝑦𝑛 +   
1

4
 −7𝑘1 + 9𝑘2 + 3𝑘3 − 𝑘4    

 

 
 

III. Consistency and Convergency of BO4 Method 
From equation (2.17) with 𝑘𝑖′𝑠 in equation (2.8) to (2.11).The equation (2.17) and equation (2.8) to (2.11)is 

consistence and convergence to a known function if  

𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 , 
i.e𝛷 𝑥, 𝑦, 0 = 𝑓 𝑥, 𝑦 .This implies that we are substituting all 𝑘𝑖′𝑠 into Equation (2.17) where𝑎𝑖′𝑠are given in 

our derivation. 

𝑇𝑛 ( 5) = 𝑦𝑛+1 − 𝑦𝑛

=


6
 𝑓(𝑦𝑛 ) + 4  𝑓  𝑦𝑛 +   𝑎2  𝑓 𝑦𝑛 + 𝑎3  𝑓 𝑦𝑛 + 𝑎1 𝑓 𝑦𝑛       

+  𝑓  𝑦𝑛 +   𝑎7𝑓 𝑦𝑛 + 𝑎8 𝑓 𝑦𝑛 + 𝑎1 𝑓(𝑦𝑛)     

+ 𝑎9  𝑓  𝑦𝑛 +   𝑎2𝑓 𝑦𝑛 + 𝑎3  𝑓 𝑦𝑛 + 𝑎1 𝑓 𝑦𝑛      

+ 𝑎10  𝑓  𝑦𝑛 +   𝑎4𝑓(𝑦𝑛 ) + 𝑎5  𝑓 𝑦𝑛 + 𝑎1 𝑓 𝑦𝑛      

+ 𝑎6  𝑓  𝑦𝑛 +   𝑎2𝑓(𝑦𝑛 ) + 𝑎3  𝑓 𝑦𝑛 + 𝑎1 𝑓 𝑦𝑛        

 

Dividing all through by h and taking the limit ofboth sides as     → 0we have ; 



On The Derivation And Implementation Of A Fifth-Stage Fourth-Order Runge–Kutta Formula .. 

DOI: 10.9790/5728-1604042939                                       www.iosrjournals.org                                      34 | Page 

𝑙𝑖𝑚
 →0

𝑇𝑛 ( 5) = 𝑙𝑖𝑚
 →0

 
𝑦𝑛+1 − 𝑦𝑛


 =

1

6
[𝑓(𝑦𝑛 ) + 3𝑓(𝑦𝑛) + 4𝑓(𝑦𝑛 ) − 3𝑓(𝑦𝑛) + 𝑓(𝑦𝑛 )] 

 

𝑙𝑖𝑚
 →0

𝑇𝑛 ( 5) = 𝑙𝑖𝑚
 →0

 
𝑦𝑛+1 − 𝑦𝑛


 =

1

6
[6𝑓(𝑦𝑛 )] 

 
𝑦′(𝑦𝑛 ) = 𝑓(𝑦𝑛 ) 

 

Hence, the method is consistent and convergences [10]. 

 

IV. Stability Region of BO4 Method 
In this section we discuss the stability region for the BO4 method of 4

th
order. The stability largely depends on 

the initial value problem (IVP). It should be noted that condition  
𝑦𝑛+1

𝑦𝑛
 ∠1  must be satisfied in order to 

determine the stability region of the new 4
th

 order Runge-Kutta method formula in the complex plane [11]. With 

the help of stability polynomials, the stability regions for the BO4 method can be obtained. 

To get the area of region, the differential equation   𝑦′ = 𝜆𝑦 can be use as a test of the equation, substituting into 

equation (2.18) we have: 

𝑘1 = 𝑦′ = 𝜆𝑦𝑛  

𝑘2 = 𝜆𝑦𝑛  1 +
1

4
 𝜆 

 

𝑘3 = 𝜆𝑦𝑛  1 +
1

2
 𝜆 +

1

16
 2𝜆2 

 

𝑘4 = 𝜆𝑦𝑛  1 +
3

4
 𝜆 −

13

16
 2𝜆2 −

15

128
 3𝜆3 

 

𝑘5 = 𝜆𝑦𝑛  1 +  𝜆 +
3

4
 2𝜆2 +

1

4
 3𝜆3 +

15

512
 4𝜆4 

  

Substituting all 𝑘1, 𝑘2, 𝑘3 , 𝑘4 , 𝑘5into equation (2.17), simplifying the expression and letting 
 

𝜇 = 𝜆. Also dividing both side by 𝑦𝑛we have: 
𝑦𝑛+1

𝑦𝑛

=  1 + 𝜇 +
1

2
𝜇2 +

1

6
𝜇3 +

1

24
𝜇4 … (4.1) 

Using MATLAB packge , we obtaine the following results for the stability region for the BO4 method as : 

 

𝜇1 =  -0.2706 + 2.5048i 
𝜇2 =  -0.2706 - 2.5048i 
𝜇3 =  -1.7294 + 0.8890i 
𝜇4 =  -1.7294 - 0.8890i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Region of Absolute Stability of BO4 Method 
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V. Implementation of BO4 Method 
We selectedsome tested initial value problems from the corresponding cited publications and solved them by 

using BO4 method in comparison with classical Runge-Kutta method. The numerical solutions to these Initial 

Value Problems were generated by a well thought out MATLABpackage 

 

Problem 1. 𝑦′ = 𝑦;        𝑦 0 = 1,     0 ≤ 𝑥 ≤ 1 With theoretical solution 𝑦(𝑥)  =  𝑒𝑥 , h = 0.1[12] 

Problem 2.𝑦′ = −𝑦;      𝑦 0 = 1,   0 ≤ 𝑥 ≤ 1  With theoretical solution𝑦(𝑥)  = 𝑒−𝑥 , h = 0.1[13] 

Problem 3.𝑦′ = 𝑦 + 1;  𝑦 0 = 1,    0 ≤ 𝑥 ≤ 1 With theoretical solution 𝑦(𝑥)  =  −1 + 2𝑒𝑥 ,  =  0.1[13] 

Problem 4.The Kermack-McKendrick SIR model for the course of an epidemic in a population is given by the 

system of ODEs 

𝑦1
′ = −𝑐𝑦1𝑦2 , 

𝑦2
′ = 𝑐𝑦1𝑦2 − 𝑑𝑦2 

𝑦3
′ = 𝑑𝑦2 

Where𝑦1 represents susceptible, 𝑦2 represents infectives in circulation, and 𝑦3 represents infectives removed by 

isolation, death or recovery and immunity. The parameters 𝑐 and 𝑑 represent the infection rate and the removal 

rate, respectively. [14] 

 

Table 1: Numerical Result for Problem 1

     BO4 METHOD CLASSICAL RUNGE-KUTTA METHOD 

XN TSOL YN ERROR YN ERROR 

0.1 1.105170918076 1.105170882161 3.5914189400E-08 1.105170833333 8.4742314499E-08 

0.2 1.221402758160 1.221402678778 7.9382633800E-08 1.221402570851 1.8730947549E-07 

0.3 1.349858807576 1.349858675979 1.3159706524E-07 1.349858497063 3.1051346561E-07 

0.4 1.491824697641 1.491824503725 1.9391632944E-07 1.491824240081 4.5756058475E-07 

0.5 1.648721270700 1.648721002812 2.6788835550E-07 1.648720638597 6.3210329015E-07 

0.6 1.822118800391 1.822118445116 3.5527489772E-07 1.822117962092 8.3829857589E-07 

0.7 2.013752707470 2.013752249391 4.5807939175E-07 2.013751626597 1.0808736999E-06 

0.8 2.225540928492 2.225540349914 5.7857830127E-07 2.225539563292 1.3652001520E-06 

0.9 2.459603111157 2.459602391801 7.1935638957E-07 2.459601413780 1.6973768786E-06 

1 2.718281828459 2.718280945113 8.8334638759E-07 2.718279744135 2.0843238793E-06 

      The result in problem 1 indicates that the new method performed very well when compared with the 

ClassicalRunge-Kutta method as seen from the error columns. This is expected from the fact that the new 

method has order five, while that of classical method is order four. 

 

Table 2: Numerical Result for Problem 2

     BO4 METHOD CLASSICAL RUNGE-KUTTA METHOD 

XN TSOL YN ERROR YN ERROR 

0.1 0.90483741804 0.904837451172 3.3135915456E-08 0.904837500000 8.1964040444E-08 

0.2 0.81873075308 0.818730813043 5.9965233445E-08 0.818730901406 1.4832826811E-07 

0.3 0.74081822068 0.740818302070 8.1388182083E-08 0.740818422001 2.0131945988E-07 

0.4 0.67032004604 0.670320144226 9.8190765074E-08 0.670320288917 2.4288185130E-07 

0.5 0.60653065971 0.606530770771 1.1105834996E-07 0.606530934423 2.7471074648E-07 

0.6 0.54881163609 0.548811756682 1.2058770293E-07 0.548811934376 2.9828228854E-07 

0.7 0.49658530379 0.496585431089 1.2729764576E-07 0.496585618671 3.1487981944E-07 

0.8 0.44932896412 0.449329095756 1.3163848595E-07 0.449329289734 3.2561720653E-07 

0.9 0.40656965974 0.406569793741 1.3400035864E-07 0.406569991200 3.3145947648E-07 

1 0.36787944117 0.367879575892 1.3472060090E-07 0.367879774412 3.3324105608E-07 

 

Again, the result in problem 2 also indicates that the new method performed well when compared with the 

Classical Runge-Kuttamethod as seen from the error columns. This is also expected from the fact that the new 

method is of higher order. 
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Table 3: Numerical Result for Problem 3

     BO4 METHOD CLASSICAL RUNGE-KUTTA METHOD 

XN TSOL YN ERROR YN ERROR 

0.1 1.210341836151 1.210341764323 7.1828378800E-08 1.210341666667 1.6948462878E-07 

0.2 1.442805516320 1.442805357555 1.5876526760E-07 1.442805141701 3.7461895075E-07 

0.3 1.699717615152 1.699717351958 2.6319413071E-07 1.699716994125 6.2102693077E-07 

0.4 1.983649395283 1.983649007450 3.8783265888E-07 1.983648480161 9.1512116907E-07 

0.5 2.297442541400 2.297442005624 5.3577671100E-07 2.297441277194 1.2642065799E-06 

0.6 2.644237600781 2.644236890231 7.1054979545E-07 2.644235924184 1.6765971513E-06 

0.7 3.027505414941 3.027504498782 9.1615878350E-07 3.027503253194 2.1617473993E-06 

0.8 3.451081856985 3.451080699828 1.1571566021E-06 3.451079126585 2.7304003036E-06 

0.9 3.919206222314 3.919204783601 1.4387127791E-06 3.919202827560 3.3947537563E-06 

1 4.436563656918 4.436561890225 1.7666927752E-06 4.436559488270 4.1686477577E-06 

 

Finally, the above resultfrom problem 3 shows that the new method is consistent and converges faster and gives 

a favorable result when compared with that of Classical Runge-Kutta method. Hence the rate and time of 

convergence is very encouraging. 

 

VI. Result of Problem  
The BO4 Method was tested further on the Kermack-McKendrick SIR model which computes the 

number of Susceptible, Infected, and Recovered people in a population at any time.The code was built in 

Python.William Kermack and Anderson McKendrick searched for a mathematical answer as to when the 

epidemic would terminate and observed that, in general whenever the population of susceptible individuals falls 

below a threshold value, which depends on several parameters, the epidemic terminates [15].Weused the 

parameter values 𝑐 = 1 and 𝑑 = 5, and initial values 𝑦1 0 = 95, 𝑦2 0 = 5 and 𝑦3 0 = 0 and integrated from 

𝑡 = 0 to 𝑡 = 1. Thus, we plot each solution component on the same graph as a function of time 𝑡. As expected 

with an epidemic, we see the susceptible people are contracting the disease faster than the infected people are 

recovering. This we observed in the figure below through the steepness of 𝑦1 (susceptibles) against 𝑦3 

(removed/recovered). The number of infected individuals  𝑦2  initially increased to a threshold and then begins 

to decrease down to zero as a result the progressive lack of people to infect either due to death or recovery of the 

infected people. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: SIR Model using the BO4 Method 
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VII. Error Analysis of Classical Runge-Kutta Methodand BO4 Method 
Below are the figures that show the error analysis of Classical Runge-Kutta method and BO4 method for 

Problem 1, Problem 2 and Problem 3. This was done with the aid of MATLAB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3. Error analysis of Problem 1 

 

From Figure 3 above, theBO4method performs better in terms of accuracy than classical Runge-Kutta method 

for Problem 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure4. Error analysis of Problem 2 

 

The BO4 method clearly shows superiority over classical Runge-Kuttamethod from the above graph, it can be 

shown that the BO4 method competes favorably with other existing methods in terms of accuracy for Problem 

2. 
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Figure 5. Error Analysis of Problem 3. 

 

Finally, from figure 5 above, it can be shown that the BO4 method competes favorably with other existing 

methods in terms of accuracy for Problem 3 

 

VIII. Conclusion 
In this paper, we derived and implemented the Fifth-Stage Fourth-Order Runge-Kutta formula.  

Numerical results illustrate that the BO4 method (new method) is more efficient in solving ordinary differential 

equations via minimal errors that occurred. We also found out that the computer time required was smaller when 

using BO4 method than classical Runge-Kutta method. This BO4 method maintain a high degree of accuracy in 

handling first order initial value problems and maybe extended to second order initial value problems with the 

hope of getting good results. Furthermore, the numerical result shows that the BO4 method is appropriate for the 

solution of non-stiff initial value problems in ordinary differential equation.  Finally, we observed that the BO4 

formula can be extended to solving the SIR model for the course of an epidemic in any population with the hope 

of getting a reliable mathematical solution. 
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