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Abstract: Corona virus disease or COVID-19 is an infectious disease whose etiological agent has been identified 

as a novel corona virus known as Severe Acute Respiratory Syndrome Corona virus 2 (SARS CoV 2). Symptoms of 

the disease include fever, fatigue, loss of smell and taste, dry cough and breathing difficulties in severe cases. The 

disease is mainly transmitted through discharge from the nose or mouth when an infectious person coughs or 

sneezes. In this paper, we used a 5-compartmental model incorporating isolation of positive cases to investigate 

the effect of mass testing and contact tracing on the transmission of COVID-19. The stability analysis of the model 

showed that the disease-free equilibrium was asymptotically stable when the basic reproduction number is less 

than unity. Further we performed the sensitivity analysis of the model. The purpose of the sensitivity analysis was 

to compare the impact of the mass testing to that of contact tracing with the aim of advising the disease control 

practitioners on the best strategy to stop community transmission in time of limited resources. The results of this 

analysis showed that mass testing with case isolation had greater impact on community transmission as compared 

to contact tracing. These results were validated by the use of the numerical simulation of the model. As the number 

of cases continue to surge and the health facilities get overwhelmed therefore, the health control practitioners 

need to adopt a control strategy that has the greatest impact on community transmission. The results obtained in 

this manuscript showed that mass testing followed by case isolation reduced the value of the basic reproduction 

number much more than contact tracing and is therefore a better strategy in combating community transmission 

of the disease. 
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List of Symbols and Notations. 

𝛽 Disease transmission rate 

𝜎 Progression rate from exposed to infectious compartments 

𝜔 Proportion of individuals isolated through contact tracing 

𝛼 Proportion of individuals isolated through mass testing 

𝛾1 Recovery rate of infectious population 

𝛾2 Recovery rate of Isolated individuals 

𝜇 Per capita natural mortality rate 

d Per capita Disease mortality rate 

r Birth rate 

𝑅0 Basic Reproduction Number 

K Next Generation Matrix 

S Proportion of susceptible population 

E Proportion of Exposed population 

I Proportion of Infectious population 

T Proportion of Isolated population 

R Proportion of Recovered population. 

 

I. Introduction 
On December 31

st
 2019, health authorities in China notified World Health Organization (WHO) about a 

cluster of a viral Pneumonia of unknown etiology in Wuhan, Hubei province in China [11]. An investigation was 

launched and the etiological agent was identified as a novel coronavirus which was named Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS CoV 2) and the disease it caused was named Corona Virus Disease 

2019 (COVID-19) [5]. On 30
th

 January 2020, WHO declared the outbreak as a public health emergency of 

international concern (PHEIC) [12] and advised countries to prepare for containment measures. On 11
th

 March 
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2020 the outbreak was named a global pandemic after Italy, Japan, South Korea and Iran reported a surge in the 

cases of COVID-19 [13]. The disease quickly spread to many countries around the world and as of 20
th
 July 2020, 

there were more than 14,741,000 confirmed COVID-19 positive cases and more than 610,000 deaths associated 

with the disease in 213 countries and territories around the world and two international conveyances [14]. As a 

preventive measure, countries around the world have canceled major events, closed schools and universities and 

advised people to work from home whenever possible. These measures are broadly referred to as social distancing 

and are aimed at slowing down the transmission of the disease [1]. A number of research papers have been 

published for COVID-19 epidemic. [15] used a 5-compartmental model that incorporated the virus in the 

environment. Their model showed that the basic reproduction number comprised of three parts of which the 

transmission from the exposed to susceptible population played the major role in the disease transmission. The 

analysis of the model showed that the disease-free equilibrium was globally asymptotically stable when the basic 

reproduction number was less than one while endemic equilibrium was stable when the basic reproduction 

number was greater than one. The authors used the data of the reported cases in Wuhan from 23rd January 2020 to 

10th February 2020 to estimate the parameters of the model. Simulation results showed that the epidemic would 

peak and then the infection level would decrease and approach an endemic state in the long run. [7] used an 

8-compartmental model to investigate the transmission dynamics of the disease. They further performed 

sensitivity analysis to investigate the contribution of the model parameters to the transmission of COVID-19. The 

analysis of their model showed that all model parameters contributed to the transmission of the disease. [9] used a 

deterministic model incorporating clinical progression of the disease, the individual epidemiological status and 

intervention measures. The authors found that the control reproductive number could be as high as 6.47, and that 

intervention strategies such as intensive contact tracing followed by quarantine and isolation could effectively 

reduce the control reproduction number and the risk of transmission of the disease. The study by [8] used a 

10-compartmental model incorporating asymptomatic carriers and waning of immunity after recovery. They used 

the model to assess the effect of lock-down on the transmission of COVID-19 in India. Their model results 

showed that lock-down could slow down the spread of the disease and delay the peak but the total number of cases 

in the long run would remain the same. This could however give time for the government to prepare effective 

policies and set-up medical facilities in preparation for the surge in the number of infections. The authors further 

proposed a lock-down strategy which would be implemented periodically for seven days and then the economy 

re-opened for five days to allow the economy to recover before another lock-down is imposed. They noted that 

locking down the economy would keep the transmission rate low, but keeping the economy shut for a long time 

would lead the economic depression which would increase the rate of unemployment. [1] used a modified SEIR 

model incorporating social distancing parameter to estimate transmission of COVID-19. The social distancing 

parameter was allowed to vary from 0 (total lock-down) to 1 (homogeneous mixing of the population). The results 

of the model analysis showed that social distancing had the potential to reduce the transmission from the 

polynomial to linear form. In this paper, we use a SEIR model that incorporates isolation of positive cases to 

investigate the effect of mass testing and contact tracing to the transmission of COVID-19. 

 

II. Mathematical Formulation 
In this paper, we model the transmission of novel SARS corona virus 2 using five compartments of 

susceptible (S), Exposed (E), Infectious(I), Isolated (T) and recovered (R) individuals. All individuals in the 

population are initially susceptible to the disease until an infectious individual is introduced into the population at 

a time 𝑡0. The transmission of the disease occurs when a susceptible individual interacts with an infectious 

individual. The force of infection (𝜆) which is the rate at which new infections are generated is given by the law of 

mass action. The law says that for a population in which individuals mix homogeneously, the rate of interaction 

between two subsets is directly proportional to the products of the number of individuals in each subset concerned 

[6]. Thus 

𝜆 = 𝛽𝑆𝐼 

where 𝛽 = 𝑐 ⋅  𝑝(𝑖) and c is the contact rate while 𝑝(𝑖) is the probability of transmission in any given contact. 

We assume that the recovery rate which is the inverse of the infectious period is a constant.  

We further assume that there are no vertical transmission and therefore all births enter the susceptible class (S). 

The flow chart for the model is shown in figure 1 below. 
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Figure 1:COVID-19 Transmission Model with both Contact Tracing and Mass Testing 

 

In this model an individual is initially susceptible to the disease and upon interacting with an infectious 

individual the susceptible individual contracts the disease and enters the class E of exposed individuals. The 

individuals in this class have contracted the disease but their viral load is low and are not transmitting it to other 

individuals. As the viral load increases, the exposed individuals will start shedding the virus and enter the 

infectious class/compartment (I). 

Upon finding an infectious individual in the population, the disease surveillance team activates contact 

tracing to trace all possible contacts that could have resulted to transmission of the disease and isolate them if 

found positive for COVID-19. Through contact tracing which is followed by testing, the exposed individuals are 

isolated from the rest of the population at a rate 𝜔. The isolated individuals enter the compartment T. Individuals 

in this compartment do not interact with the rest of the population and therefore do not pose any risk of disease 

transmission to the rest of the population. However, because it is not possible to trace all contacts to a particular 

positive case, some exposed individuals remain in the population and progress to the infectious compartment I 

after a mean incubation period of 
1

𝜎
 days. A large number of these individuals are asymptomatic and do not show 

any sign of the disease, however a small number develop symptoms and visit the health facility where they are 

tested and isolated upon testing positive for COVID-19. In addition, the disease surveillance team conducts mass 

testing to identify the positive cases in the population and isolates them at a rate 𝛼. The model assumes that 

individuals recovering from the disease acquire life long immunity from further infections. This generates the 

class R of recovered individuals. 

The Mathematical model for the system is given by 
𝑑𝑆

𝑑𝑡
= 𝑟 − 𝜇𝑆 − 𝛽𝑆𝐼 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − (𝜇 + 𝜎)𝐸 

𝑑𝐼

𝑑𝑡
=  1 − 𝜔 𝜎𝐸 − (𝜇 + 𝑑 + 𝛾1 + 𝛼)𝐼    (1) 

𝑑𝑇

𝑑𝑡
= 𝜔𝜎𝐸 + 𝛼𝐼 −  (𝜇 + 𝑑 + 𝛾2)𝑇 

𝑑𝑅

𝑑𝑡
= 𝛾1𝐼 + 𝛾2  𝑇 − 𝜇𝑅 

 

 

2.1  Equilibrium Analysis 

A point 𝑥 = 𝑥𝑒  is said to be an equilibrium point of a non-autonomous system  
𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥) 

whenever 𝑥(𝑡) is a state vector if and only if the state vector is unchanging at that point i.e 
𝑑

𝑑𝑡
𝑥(𝑡) = 0 and 

therefore the equilibrium point of the system will satisfy the equation 𝑓(𝑡, 𝑥𝑒) = 0 

For the system 1 above, the equilibrium points are obtained by solving the equations  

𝑟 − 𝜇𝑆 − 𝛽𝑆𝐼 = 0 

𝛽𝑆𝐼 − (𝜇 + 𝜎)𝐸 = 0      (2) 

 (1 − 𝜔)𝜎𝐸 − (𝜇 + 𝑑 + 𝛾1 + 𝛼)𝐼 = 0    (3) 

𝜔𝜎𝐸 + 𝛼𝐼 − (𝜇 + 𝑑 + 𝛾2)𝑇 = 0 

𝛾1𝐼 + 𝛾2𝑇 − 𝜇𝑅 = 0 
 From equation 3 we have  

𝐸 =
𝜇+𝑑+𝛾1+𝛼

(1−𝜔)𝜎
       (4) 

S E 

I d

R 



T

r

d

(1-   )
1

2
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 Substituting equation 4 into equation 2 and simplifying, we get  

 𝛽𝑆 −
(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼)

(1 − 𝜔)𝜎
 𝐼 = 0 

 Thus either 𝐼 = 0 or  

𝑆 =
(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼)

(1 − 𝜔)𝛽𝜎
 

 The system therefore has two equilibrium points 

i)  The Disease Free equilibrium (DFE) given by 

(𝑆0, 𝐸0 , 𝐼0, 𝑇0, 𝑅0) =  
𝑟

𝜇
, 0,0,0,0  

ii)  The Endemic Equilibrium Point (EEP) given by (𝑆∗, 𝐸∗, 𝐼∗, 𝑇∗, 𝑅∗) 

 where  

𝑆∗ =
(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼)

(1 − 𝜔)𝛽𝜎
 

𝐸∗ =
(1 − 𝜔)𝛽𝑟𝜎 − (𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼)

(1 − 𝜔)(𝜇 + 𝜎)𝛽𝜎
 

𝐼∗ =
(1 − 𝜔)𝜎

(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼)
−

𝜇

𝛽
 

𝑇∗ =
𝜔𝜎𝐸∗ − 𝛼𝐼∗

𝜇 + 𝑑 + 𝛾2

 

𝑅∗ =
𝛾1𝐼

∗ + 𝛾2𝑇
∗

𝜇
 

 
2.1.1  Basic Reproduction Number 

The basic reproduction number denoted by (𝑅0) is defined as the average number of secondary cases 

resulting from an index case in a completely susceptible population[10]. The value of 𝑅0 is usually useful to 

provide insights in the design of the control methods for emerging epidemics. Generally when 𝑅0 > 1 then on 

average each positive case will generate more than one other case during the period of infectiousness and this 

implies that the pathogen will invade the population. If on the other hand 𝑅0 < 1 then on average each case will 

on average generate less than one other case during it’s period of infectiousness. This would imply that the number 

of infected individuals in the population will decay as a function of time and therefore the epidemic would not 

occur. To find the basic reproduction number, we shall employ the method described in [2] where 𝑅0 is defined 

as the spectral radius of the next generation matrix. The next generation matrix is constructed by first identifying 

those equations in the system that describe the generation of new infections and the changes in state. This system 

of equations is referred to as the infected sub-system. The infected sub-system is then linearlised over the disease 

free equilibrium. The right hand side of the resulting system is then split into the transmission matrix (T) and the 

transition matrix V. Where T in a non-negative matrix and V is a non-singular M-Matrix. The next generation 

matrix (K) is then defined as 𝐾 = 𝑇𝑉−1 and 𝑅0 = 𝜌(𝐾) [2]. 

Consider the system 1 above, then the infected sub-system is given by  

𝑋1 = 𝛽𝑆𝐼 − (𝜇 + 𝜎)𝐸 

𝑋2 = (1 − 𝜔)𝜎𝐸 − (𝜇 + 𝑑 + 𝛾1 + 𝛼)𝐼 

From which 

𝐷𝑋 =  
−(𝜇 + 𝜎) 𝛽𝑆
(1 − 𝜔)𝜎 −(𝜇 + 𝑑 + 𝛼 + 𝛾1)

  

 At DFE, 𝑆 =
𝑟

𝜇
, substituting this value, we get the Jacobian matrix (J)  

𝐽 =  
−(𝜇 + 𝜎)

𝛽𝑟

𝜇
(1 − 𝜔)𝜎 −(𝜇 + 𝑑 + 𝛼 + 𝛾1)

  

= 𝑇 − 𝑉 

 where 𝑇 =  
0

𝛽𝑟

𝜇

(1 − 𝜔)𝜎 0
  

 and 𝑉 =  
𝜇 + 𝜎 0
0 𝜇 + 𝑑 + 𝛼 + 𝛾1

  

The next generation matrix (K) becomes 
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𝐾 = 𝑇𝑉−1 =

 

 
 

0
𝛽𝑟

𝜇(𝜇 + 𝑑 + 𝛼 + 𝛾1)
(1 − 𝜔)𝜎

𝜇 + 𝜎
0

 

 
 

 

From which  

𝑅0 = 𝜌(𝐾) =  
𝛽𝑟𝜎(1−𝜔)

𝜇(𝜇+𝜎)(𝜇+𝑑+𝛼+𝛾1)
     (5) 

 
2.2  Stability Analysis 

The analysis of the stability of equilibrium points seeks to answer three fundamental questions 

i) Does a constant solution of the system exist and if so what happens to the trajectories of the solution near 

this constant solution i.e. do the trajectories point towards the constant solution or away from it?  

ii)  What happens to the solution of the system as time approaches infinity?  

iii)  Do the solutions of the system oscillate or not?  

We say that the equilibrium point is stable if the trajectories of the solution near the equilibrium point points 

towards the equilibrium point else the equilibrium point is unstable.  

 

2.2.1  Stability Analysis for the Disease Free Equilibrium 

To determine the stability of the disease free equilibrium, we first find the Jacobian matrix of the 

system(1). The Jacobian matrix is then linearlized at the disease free equilibrium. The linearlized system has a 

solution of the form 𝑋(𝑡) = exp(𝜆𝑡). where 𝑋(𝑡) is the state vector and 𝜆 is the Eigen value of the Jacobian 

matrix. Thus if the spectral radius of the Jacobian matrix is less than zero then 𝑋(𝑡)will be a monotonically 

decreasing function and will approach zero as t approaches infinity hence the Disease Free Equilibrium will be 

asymptotically stable. 

The Jacobian matrix of the system (1) is given by  

𝐽 =

 

 
 

−𝛽𝐼 − 𝜇 0 −𝛽𝑆 0 0
𝛽𝐼 −(𝜇 + 𝜎) 𝛽𝑆 0 0

0 (1 − 𝜔)𝜎 −(𝜇 + 𝑑 + 𝛾1 + 𝛼) 0 0
0 𝜔𝜎 𝛼 −(𝜇 + 𝑑 + 𝛾2) 0
0 0 𝛾1 𝛾2 −𝜇 

 
 

 

 At DFE, 𝐼 = 0 and 𝑆 =
𝑟

𝜇
. Substituting back, we get  

𝐽𝐷𝐹𝐸 =

 

 
 
 
 
 

−𝜇 0 −
𝛽𝑟

𝜇
0 0

0 −(𝜇 + 𝜎)
𝛽𝑟

𝜇
0 0

0 (1 − 𝜔)𝜎 −(𝜇 + 𝑑 + 𝛾1 + 𝛼) 0 0
0 𝜔𝜎 𝛼 −(𝜇 + 𝑑 + 𝛾2) 0
0 0 𝛾1 𝛾2 −𝜇 

 
 
 
 
 

 

 The characteristic equation becomes  

 

 
−𝜇 − 𝜆 0 −

𝛽𝑟

𝜇
0 0

0 −(𝜇 + 𝜎) − 𝜆
𝛽𝑟

𝜇
0 0

0 (1 − 𝜔)𝜎 −(𝜇 + 𝑑 + 𝛾1 + 𝛼) − 𝜆 0 0
0 𝜔𝜎 𝛼 −(𝜇 + 𝑑 + 𝛾2) − 𝜆 0
0 0 𝛾1 𝛾2 −𝜇 − 𝜆

 

 

= 0 

 Thus we get the Eigen values 

𝜆1,2 = −𝜇,   
𝜆3 = − 𝜇 + 𝑑 + 𝛾2  

𝜆4 =

−Θ −  Θ2 − 4  (𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼) −
𝛽𝑟𝜎(1−𝜔)

𝜇
 

2
 

and 
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𝜆5 =

−Θ +  Θ2 − 4  (𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼) −
𝛽𝑟𝜎(1−𝜔)

𝜇
 

2
 

Where Θ = 2𝜇 + 𝜎 + 𝑑 + 𝛾1 + 𝛼 

we note that 𝑅𝑒{𝜆1,2,3,4} < 0, thus for stability of the DFE, then 𝑅𝑒{𝜆5} < 0 or 

(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼) −
𝛽𝑟𝜎(1 − 𝜔)

𝜇
> 0 

from which 
𝛽𝑟𝜎(1 − 𝜔)

𝜇(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛼 + 𝛾1)
< 1 

From the foregoing analysis, we note that the disease free equilibrium is asymptotically stable if and only if the 

basic reproduction number is less than unity.  

 

2.3  Sensitivity Analysis 

In order to determine the optimal control strategy, the knowledge of the relative importance of the 

different factors responsible for the disease transmission is important. Normally the disease transmission is related 

to the basic reproduction number (𝑅0) such that a large value of 𝑅0 is an indicator of the disease which is difficult 

to control. The purpose of the sensitivity analysis is to determine the parameters that have the greatest impact on 

𝑅0. Sensitivity of the parameters affecting the basic reproduction number is measured by two factors;  

i)  The sensitivity index which is defined as the rate of change of 𝑅0 with respect to the parameter of interest. 

A positive sensitivity index will indicate that 𝑅0 increases with the increasing value of the parameter 

considered while a negative value will indicate that 𝑅0 decreases as the parameter value increases [3].  

ii)  The Elasticity index which is defined as the relative change of the basic reproduction number with respect 

to the parameter of interest. The elasticity index of 𝑅0 with respect to the parameter 𝜏 is denoted by Υ𝜏
𝑅0  

and defined by [3] 

Υ𝜏
𝑅0 =

𝜏

𝑅0

𝜕𝑅0

𝜕𝜏
 

The magnitude of the elasticity index is a measure of the impact of the parameter being considered to the basic 

reproduction number. A large value of the parameter therefore is an indicator of a parameter that has a greater 

impact on the basic reproduction number and which should be targeted when designing the disease control 

strategy.  

 In this research work we compare the impact of isolation through contact tracing and mass testing i.e. the 

parameters 𝜔 and 𝛼 respectively by computing the elasticity indices with respect to these two parameters. 

Differentiating 𝑅0 (equation 5) with respect to 𝜔 we get 

𝜕𝑅0

𝜕𝜔
= −

1

2
 

𝛽𝑟𝜎

𝜇(1 − 𝜔)(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼)
 

Thus increasing the parameter 𝜔 will decrease the basic reproduction number. We now find the elasticity index 

with respect to 𝜔 

Υ𝜔
𝑅0 =

𝜔

𝑅0

𝜕𝑅0

𝜕𝜔
 

=
𝜔

𝑅0

×  −
1

2
 

𝛽𝑟𝜎

𝜇(1 − 𝜔)(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼)
  

= −
𝜔

2(1 − 𝜔)
 

 and  Υ𝜔
𝑅0  =

𝜔

2(1−𝜔)
 

Similarly Differentiating 𝑅0 (equation 5) with respect to 𝛼 we get 

𝜕𝑅0

𝜕𝛼
= −

1

2
 

𝛽𝑟𝜎(1 − 𝜔)

𝜇(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼)3
 

While the elasticity index is given by  

Υ𝛼
𝑅0 =

𝛼

𝑅0

𝜕𝑅0

𝜕𝛼
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=
𝛼

𝑅0

×  −
1

2
 

𝛽𝑟𝜎(1 − 𝜔)

𝜇(𝜇 + 𝜎)(𝜇 + 𝑑 + 𝛾1 + 𝛼)3
  

=
−𝛼

2(𝜇 + 𝑑 + 𝛾1 + 𝛼)
 

 and  Υ𝛼
𝑅0  =

𝛼

2(𝜇+𝑑+𝛾1+𝛼)
 

We note that Υ𝛼
𝑅0 < 0 thus 𝑅0 will decrease with increasing value of 𝛼.  

 

III. Results and Discussion 
3.1  Elasticity Indices 

In this section, we present the elasticity indices and the corresponding values of the basic reproduction numbers 

obtained by varying the mass testing and contact tracing parameters. We use the parameter values 𝜇 = 0.01429 

per year [6], 𝑟 = 0.0384  per year [4], 𝑑 = 0.28045  per 1,000, 𝛽 = 0.287 , 𝜎 =
1

5
 and 𝛾1 = 𝛾2 =

1

20
. The 

parameters 𝛽, 𝛾1, 𝛾2 , 𝜎 and d were estimated using the data reported in Kenya between 13
th

March 2020 and 5
th

 

May 2020 [16]. Using these values and assuming no isolation (i.e 𝛼 = 𝜔 = 0), we get 𝑅0 = 3.9145.  

Table 1 gives the values of the elasticity indices and the corresponding values of 𝑅0 for suitably chosen values of 

𝛼 and 𝜔.  

 

𝛼 Υ𝛼
𝑅0  𝑅0  𝜔 Υ𝜔

𝑅0  𝑅0 

0.00 - 3.9145  0.00   -   3.9145  

0.01 −0.0829 3.5754  0.01  −0.0051  3.8949  

0.05 −0.2492 2.7724  0.05  −0.0263  3.8154  

0.08 −0.3069 2.4324  0.08  −0.0435  3.7547  

0.10 −0.3326 2.2649  0.10  −0.0556  3.7136  

0.12 −0.3523 2.1277  0.12  −0.0682  3.6722  

0.15 −0.3744 1.9619  0.15  −0.0882  3.6090  

a) 𝜔 = 0   b)𝛼 = 0   

Table 1: The Elasticity Indices and the corresponding values of 𝑅0 for suitably chosen values of 𝛼 and 𝜔 

 

From the data in table 1(a) and table 1 (b), we observe that before isolation measures are introduced 

𝑅0 = 3.9145. From table 1(a) we note that when mass testing with case isolation is introduced resulting to 

isolation of 1 % (𝛼 = 0.01) of the infectious cases, then the value of 𝑅0 decreased to 3.5754. On increasing the 

value of 𝛼, the value of 𝑅0 continued to decrease and when 𝛼 = 0.15 then the elasticity index was −0.3744 

and the value of 𝑅0 reduced to 1.9619. The data in table 1(b) on the other hand shows that introducing contact 

tracing with case isolation resulting to isolation of 1 % (𝜔 = 0.01) of the positive cases, the value of 𝑅0 

decreased to 3.9849. Further we note that 𝑅0 decreases with increasing 𝜔 and when 𝜔 = 0.15, then the value of 

the elasticity index was −0.0682 and 𝑅0 = 3.6090. By comparing the data in tables 1(a) and 1(b) therefore, we 

note that although contact tracing is a good method of mitigating COVID-19, mass testing with case isolation had 

a greater impact on the value of 𝑅0 and is therefore much more effective in stopping community transmission of 

the virus. During the times of limited resources therefore, the disease surveillance team should put more resources 

on mass testing with the aim of isolating the infectious individuals in the population, rather than focusing more on 

the contact tracing which is likely to get more of the exposed individuals.  

As the number of positive cases increases, the health care facilities tend to become overwhelmed. It is 

therefore prudent that the disease surveillance team choose the most optimal strategy to mitigate the spread of 

COVID-19. The results of this analysis shows that mass testing has a greater impact in stopping community 

transmission than contact tracing and therefore as the health facilities becomes overwhelmed as the cases increase, 

the disease surveillance team should do more of mass testing and aim to isolate only the infectious cases.  

 

3.2  Numerical Results 

In this section we present the results of the numerical simulation of the model. We consider a population 

of 1,000,000 individuals and use the initial conditions 𝐼0 = 100, 𝐸0 = 100, 𝑇0 = 0, 𝑅0 = 0 and 𝑆0 = 999,800. 

Using these values the results of the model are as shown in figure 2. The results of the numerical simulation shows 

that if there is no isolation, then the peak will be attained on the 80
th

 day with more than 400,000 individuals 

contracting the disease.  
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Figure 2: Transmission dynamics for SARS corona virus 2 with no isolation. In this case the peak is attained on 

the 80
th

 day with more than 40% of the population getting infected. 

 

Figure 3(a) shows the results of the model when contact tracing is introduced tracking 5% of the exposed 

individuals with no mass testing. In figure 3(b), mass testing is introduced at a lower rate tracking 5% of the 

infectious cases in the population and with no contact tracing. As can be seen from figure 3(a) and 3(b) mass 

testing combined with case isolation results to much lower infections as compared to contact tracing. 

 

 
(a)  (b) 

Figure  3: Transmission dynamics for SARS corona virus 2 with (a) 𝜔 = 5% and 𝛼 = 0 (b) 𝜔 = 0% and 

𝛼 = 5% 

Figures 4, 5 and 6 shows the results of the model with contact tracing (a) and mass testing (b), from the graphs it is 

observed that mass testing combined with case isolation results to lower infection than contact tracing.  

 
(a)  (b) 

Figure  4: Transmission dynamics for SARS corona virus 2 with (a) 𝜔 = 8% and 𝛼 = 0 (b) 𝜔 = 0% and 
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𝛼 = 8% 

 
(a) (b) 

Figure  5: Transmission dynamics for SARS corona virus 2 with (a) 𝜔 = 10% and 𝛼 = 0 (b) 𝜔 = 0% 

and 𝛼 = 10% 

 

 
(a) (b) 

Figure  6: Transmission dynamics for SARS corona virus 2 with (a) 𝜔 = 12% and 𝛼 = 0 (b) 𝜔 = 0% 

and 𝛼 = 12% 

 

IV. Conclusion 
This research was designed to study and compare the effect of contact tracing and mass testing to 

community transmission of COVID-19 using mathematical modeling. The results of the model analysis showed 

that the model has a unique disease free equilibrium which is asymptotically stable when 𝑅0 < 1 and unstable 

otherwise. We further carried out sensitivity analysis of the model. The results of the sensitivity analysis showed 

that mass testing combined with case isolation is a more effective method in combating community transmission 

as compared to contact tracing. As the number of cases continue to increase and the health facilities get 

overwhelmed therefore, the health control practitioners need to adopt a control strategy that has the greatest 

impact on community transmission. The results obtained in this manuscript showed that mass testing followed by 

case isolation reduced the value of the basic reproduction number much more than contact tracing and is therefore 

a better strategy in combating community transmission of COVID-19. 
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