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I. Introduction  
 Starting from A. Rènyi

1
 numerous mathematicians and computer scientists studied non-standard 

number systems with an algebraic number as base
2,3,4,5,6,7

. There are numerous fine and general results on 

computational properties such number systems. Here we try to show that slightly violating uniformity of base 

and transferring to linear systems
7,8

 we get easy algorithmically realizable number systems. This work was 

inspired by numerous works like referenced above and possibilities to set control isomorphic to overflows in 

such systems in parallel and distributed computing
9,10

. This work financially supported by the Russian 

Federation represented by Ministry of Education and Science (grant id:  RFMEFI61319X0092). 

 

II. Basic definitions and known facts 
Recurrence sequences defined here are a simple generalization of standard definition of linear 

recurrence sequences. The notion of linear numeration systems seems to be very poor studied and the term itself 

seems to be inadequate: exponential systems are a simple case of `linear`. Maybe recurrent systems would be 

more adequate name. 

 

Definition 1 (Recurrence sequences) Infinite sequence is a function 𝑎 from integer numbers  𝑖 ∈ 𝑍 𝐿 < 𝑖 < 𝑈  
where 𝐿 = −∞ or 𝑈 = +∞ or both into (natural, integer, rational, algebraic, complex) numbers. Resp. they are 

called natural, integer and so on. Recurrence sequence such that all members excluding 𝑎𝐿 ,⋯ , 𝑎𝐿+𝑘−1 if 

𝐿 > −∞ or 𝑎𝑈−𝑘+1,⋯ , 𝑎𝑈  if 𝑈 < +∞ satisfy a linear equation  𝑎𝑖+1 = 𝑐1 ∙ 𝑎𝑖 + ⋯+ 𝑐𝑘 ∙ 𝑎𝑖−𝑘+1 . If both 

𝐿 = −∞ and 𝑈 = +∞ then sequence is full, if only 𝐿 = −∞ it is lower and if only  𝑈 = +∞ it is upper. 

Segments of members 𝑎𝐿 ,⋯ , 𝑎𝐿+𝑘−1 in upper sequence and 𝑎𝑈−𝑘+1 ,⋯ , 𝑎𝑈  in lower one are called initial data.  

 

Usually numeration systems use exponential bases and there are some isolated examples of other bases, e.g. 

superexponential, factorial. Here we give a general notion of numeration system with fixed finite number of 

digits. 

 

Definition 2 (Additive numeration systems) Let there is an infinite sequence of non-zero numbers such that 

holds  𝑎𝑖 < 𝑎𝑖+1 . Its members are called bases. Let there is a finite collection of digits D containing 0.A 

number 𝑥 is representable in system  𝑎,𝐷  when there is a sequence of digits 𝑑𝑖I such that 𝑥 =  𝑑𝑖 ∙ 𝑎𝑖
𝑖<𝑢
𝑖>𝑙 . If 

each (real, complex, rational, integer, natural) number is representable in  𝑎,𝐷  then system is full for that class 

of numbers. A system is adequate for (rational, integer, natural) numbers if each such number id representable 

with sequence of digits where only finite number of digits are non-zero. A numeration system is normalized if 

𝑎0 = 1. It has standard digits if they are consecutive integers  – 𝑘,−𝑘 + 1,⋯ .0, 1,⋯ , 𝑙 . 
Below we use term `effective’ to represent results valid in each notion of computability satisfying the demand 

that finite information on the result demands finite information about arguments (Brouwer’s principle).  

 

Example 1. There is an example of ancient additive systems dull foe positive reals and adequate for positive 

rational numbers: aliquote (or Egyptian) one
11

. The sequence of bases is infinite downwards: 

𝑎−𝑖 =
1

𝑖
; 𝑖 ∈  −∞, 0 . 

Digits are  0,1 . 
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Each rational positive number is finitely representable in such system and moreover in each lower 

segment of this system.  This representation can be computed primitive-recursively. Each algebraic positive 

number is represented by primitive-recursive sequence of digits.  There is a primitive recursive functional 

computing for every positive real numbers given by effective sequence of digit in some usual exponential 

system result of arithmetical operations on these numbers represented in the Egyptian system. This is somewhat 

striking because it is well known that arithmetical operations on real system in standard representation are non-

computable w.r..t.  each notion of computability
12

. 

All results for Egyptian representations are generalized for all numbers of corresponding type if we extend 

numbers to  −1,0,1  or make each odd member of the bases sequence negative
12

. 

 

Example 2. First system with unusual digits maybe is system of D.Knuth
13

. As a system with unusual sets of 

digits consider the system of C. Frougny
14

. He proposed the exponential system with base 
𝑝

𝑞
. 𝑝 > 𝑞 and numbers 

 0,
1

𝑞
,⋯ ,

𝑝−1

𝑞
 , All natural numbers are  finitely representable in this system. 

 

Definition 3. (Linear enumeration system)
 7

  Linear enumeration system is a normalized additive system with 

standard digits where its bases are infinite upwards, start with 0 and form a recurrence sequence where all 𝑐𝑖  are 

non-negative natural numbers and initial conditions are 

𝑎−𝑘+1 = ⋯ = 𝑎−1 = 0;  𝑎0 = 1. 

 

These systems were studied very poorly from the practical point of view. Mathematicians interested in 

representation of reals
7,8

 but not every linear system is good for this purpose. 

Example 3. Each exponential system can be viewed as linear one with generator 𝑎𝑖+1 = 𝑐1 ∙ 𝑎𝑖 . Here 𝑐1 is 

usually called simply its base. The famous Fibonacci system
15

 is given by recurrent equality 𝑎𝑖+1 = 1 ∙ 𝑎𝑖 +

1 ∙ 𝑎𝑖−1 and has digits  0,1 . Its direct generalizations n-bonacci
16,17,18

 systems are given by similar generators 

𝑎𝑖+1 = 1 ∙ 𝑎𝑖 + ⋯+ 1 ∙ 𝑎𝑖−𝑛+1.  

Generator 𝑎𝑖+1 = 2 ∙ 𝑎𝑖 − 1 ∙ 𝑎𝑖−1 forms system 𝜑 with bases 1,2,3,4 … Generator 𝑎𝑖+1 = 3 ∙ 𝑎𝑖 + 2 ∙ 𝑎𝑖−1 

forms system 𝛽 with bases 1,3,11,39,150,… Generator 𝑎𝑖+1 = 5 ∙ 𝑎𝑖 − 6 ∙ 𝑎𝑖−1 forms a suequence of bases 

𝛼23: 1, 5, 19, 65⋯ 

 

There is a simple result
7
  on sufficient set of digits for such systems. 

 Proposition 1. Each natural number is representable in a linear system with generating equation  𝑎𝑖+1 = 𝑐1 ∙
𝑎𝑖 + ⋯+ 𝑐𝑘 ∙ 𝑎𝑖−𝑘+1, 𝑐𝑖 > 0 and set of digits  0, 1,⋯ ,𝐶 . Here 𝐶 is the maximum of 𝑐𝑖 . Each integer number is 

representable with set of digits  −𝑙,⋯ ,𝐶 − 𝑙, 𝑙 < 𝐶 . 
 

Proof. A trivial induction using greedy algorithm for search of a representation. 

 

In each non-exponential recurrent numeration system the same number can have different representations. 

 

III. Addition in linear systems 
One of crucial algorithmic questions to decide whether representation could be useful is possibility to 

perform various operations. Here we study problem how simply add numbers in a linear system. 

The main problem to compute sum is to deal with `overflows’: parts of sums of two digits which 

induce additions in some places upper and lower the initial. In standard systems overflows go only up but in 

non-standard they spread in both directions. 

 

Example 4. When we add two 1 in some place of Fibonacci systems then using equality  

2 ∙ 𝑎𝑛 = 𝑎𝑛+1 + 𝑎𝑛−2  
we have a `standard’ overflow going into next position and non-standard one going downwards two positions. In 

n-bonacci systems downward overflow go n positions deeper. 

 

Theorem 1. Let in our generator all 𝑐𝑖 ≥ 𝑐𝑖+1.and are positive, Then we can add two digits having overflows 

going up to 1 position an equal to 1 and down no more than k positions and to be correct digits.  

Proof. Consider  𝐶 + 1 ∙ 𝑎𝑛 . We can deal this overflow by the following transformations using recurrent 

equality: 

 𝐶 + 1 ∙ 𝑎𝑛 = 𝐶 ∙ 𝑎𝑛 + 𝑎𝑛 =  𝑎𝑛+1 + 𝑎𝑛 −  𝑐2 ∙ 𝑎𝑛−1 − 𝑐3 ∙ 𝑎𝑛−2 −  ⋯− 𝑐𝑘 ∙ 𝑎𝑛−𝑘+1 = 

𝑎𝑛+1 +   𝑐1−𝑐2 ∙ 𝑎𝑛−1 +   𝑐2−𝑐3 ∙ 𝑎𝑛−2 + ⋯+   𝑐𝑘−1−𝑐𝑘 ∙ 𝑎𝑛−𝑘+1 + 𝑐𝑘 ∙ 𝑎𝑛−𝑘 . 
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According to monotony of 𝑐𝑖  all delegated downward overflows are small and positive. According to 

terminology used in theory of parallel addition for exponential systems we have local function with memory 1 

and anticipation 𝑘 (𝑖-th `digit’ of the sum is computed using 𝑘 upper results and 1 result below).  

 

Of course these overflows can induce new overflows. Downwards progressing overflows are evaporated in the 

worst case by going into digits with negative positions where according to initial conditions 𝑎𝑖 = 0.Thus we 

have easily automatically generated algorithm of addition. It demands 𝐿 ∙ 𝑛2 elementary additions of digits 

where 𝑛 is number of digits in arguments. A constant 𝐿 can be computed by bilinear form 𝐶 and 𝑘. Because this 

trivial algorithm can be optimized we will not compute a constant for it. This algorithm can be computed as 

partially parallel but stages of pervasive overflows are to be processed consequently. 

 

Now we give two examples what can happen if our conditions are violated. 

 

Example 5.  Consider the system 𝛽 from Example 3 with 𝑎𝑖+1 = 3 ∙ 𝑎𝑖 + 2 ∙ 𝑎𝑖−1. Then we have the following 

rule for addition: 4 ∙ 𝑎𝑛 = 𝑎𝑛+1 + 𝑎𝑛−1 + 2 ∙ 𝑎𝑛−2. For system 𝑎𝑖+1 = 2 ∙ 𝑎𝑖 + 3 ∙ 𝑎𝑖−1 we get 

 4 ∙ 𝑎𝑛 = 𝑎𝑛+1 + 2 ∙ 𝑎𝑛 − 3 ∙ 𝑎𝑛−1 = 𝑎𝑛+1 + 𝑎𝑛−1 + 6 ∙ 𝑎𝑛−2 and overflow is out of digit diapason. 

If we violate demands of positivity then there can be more severe things. For example consider  

𝑎𝑖+1 = 3 ∙ 𝑎𝑖 − 2 ∙ 𝑎𝑖−1. Here we get 4 ∙ 𝑎𝑛 = 𝑎𝑛+1 + 5 ∙ 𝑎𝑛−1 − 2 ∙ 𝑎𝑛−2. 

 

Nevertheless in some cases violating do not lead to severe consequences. Consider system 𝜑 from Example 2. 

Here 

2 ∙ 𝑎𝑛 = 𝑎𝑛+1 +∙ 𝑎𝑛 + 𝑎𝑛−1. This is because of algebraic properties of recurrence sequences
19

. At XIX century 

P. L. Chebyshev et al. investigated them thoroughly and proved the following. Let Ch be so called characteristic 

equation 𝑥𝑘 − 𝑐1 ∙ 𝑥
𝑘−1 − 𝑐2 ∙ 𝑥

𝑘−2 −⋯− 𝑐𝑘 = 0. If its roots 𝛿𝑖  are all different then we have 𝑎𝑛 =
 𝐵𝑖 ∙ 𝛿𝑖

𝑛𝑘
𝑖=1 . Here constants 𝐵𝑖  are solutions of the linear system 

 

𝐵1 + ⋯+ 𝐵𝑘 = 1

𝐵1 ∙ 𝛿1
−𝑖 + ⋯+ 𝐵𝑘 ∙ 𝛿𝑘

−𝑖

 𝑖 = 1⋯𝑘 − 1 

 = 0 

If there are m equal to 𝛿𝑗   roots then the corresponding member of the sum is 𝑃𝑚 (𝑖) ∙ 𝛿𝑗
𝑛  where 𝑃𝑚 (𝑖) is 

polynomial of power m. We can see that characteristic equation for 𝜑 is simply  𝑥 − 1 2 = 0. 

 

For system 𝛽  we have the characteristic equation 𝑥2 − 3 ∙ 𝑥 − 2 = 0 and its members are  

𝑎𝑛 =
1

 11
∙   

3

2
+
 11

2
 

𝑛

−  
3

2
−
 11

2
 

𝑛

  

You can see that this theoretically valuable representation is almost useless for practical computations. It shows 

that recurrent number systems can be in some sense considered as composition of several exponential systems. 

Thus the main related works are on exponential systems with algebraic base. 

 

IV. Connections with related works 
There is a stream of works on number system with an algebraic base. The main problem here is how to 

compute addition.  

The general characteristic of systems where addition can be computed using only a local segment of digits for 

each elementary step is the following
20

. 

A complex number 𝛽,  𝛽 > 1, has the strong representation of zero property if 

0 = 𝑏𝑘 ∙ 𝛽
𝑘 + ⋯+ 𝑏1 ∙ 𝛽 + 𝑏0 + 𝑏−1 ∙ 𝛽

−1 + ⋯+ 𝑏−ℎ ∙ 𝛽
−ℎ  

where 𝑏0 > 2 ∙   𝑏𝑖  𝑖≠0 . Then there is an algorithm for addition in the system with base 𝛽 taking into account 

memory k and anticipation h. 

So slightly violating demand of uniformity of bases we get an easier for practical application number 

representations. 

 

V. Conclusion  
Further problems include optimized algorithms of addition in linear systems and their extension onto real 

numbers.  

 

References  
[1]. Rènyi A. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungary. vol 8, 1957, 477–493 
[2]. Avizienis A. Signed-Digit Numbe Representations for Fast Parallel Arithmetic. IRE Trans. Electronic 1961, 381–400 

[3]. Knuth D. An Imaginary Number System. Communications of the ACM, 1960, vol. 3, pp. 245-247 



Some Issues on Liear Numeration Systems  

DOI: 10.9790/5728-1506044750                                     www.iosrjournals.org                                        50 | Page 

[4]. Frougny Ch., Pavelka M., Pelantová E. and Svobodová M. On-line algorithms for multiplication and division in real and complex 

numeration systems, Discrete Mathematics and Theoretical Computer Science, vol. 21 no. 3 (2019) 

[5]. Frougny Ch., Pelantova E., Svobodova M. Minimal Digit Sets for Parallel Addition in Non-Standard Numeration Systems. Journal 
of Integer Sequences. 2013. Vol. 16, № 13.2.17  

[6]. Parhami B. On the implementation of arithmetic support functions for generalized signed-digit number systems. IEEE Trans. 

Computers 42 (1993), 379–384.  
[7]. Shallit J. Numeration systems, linear recurrences and regular sets. Inform. Comut. 18 (1994), 331-347 

[8]. Frougny Ch., Solomyak B. On representation of integers in linear numeration systems.  Ergodic Theory of Z^d actions, London 

Math. Soc. Lecture Note Ser. 228 (1996) 345–368 
[9]. Nikolai Nepejvoda. Local computations in system theory and VLDB. Program systems: Theory and applications, 2016, 7:4(31), pp. 

145–160. (In Russian). URL: http://psta.psiras.ru/read/psta2016_4_145-160.pdf 

[10]. Nikolai Nepejvoda. Using overflows to control parallel and distributed computations. Program systems: Theory and applications, 
2017, 8:3(34), pp. 87–107. (In Russian). URL: http://psta.psiras.ru/read/psta2017_3_87-107.pdf 

[11]. Creyaufmüller W. Aliquot Sequences, 2016, URL: http://www.aliquot.de/aliquote.htm 

[12]. Nikolai Nepejvoda. Additive representations of numbers: some remarks., 2017, 8:4(35), pp. 101–115. (In Russian). URL: 
http://psta.psiras.ru/read/psta2017_4_101-115.pdf 

[13]. Shvorin A. B. Parallel Addition of Real Numbers in Overlaying Numeration Systems. Program systems: Theory and applications, 

6:2 (2015), pp. 101–117 (in Russian), URL: http://psta.psiras.ru/read/psta2015_2_101-117.pdf 
[14]. Akiyama S., Frougny Ch. and Sakarovitch J. Powers of rationals modulo 1 and rational base number systems, Israël J. Math., 168 

(2008) 53–91 

[15]. L. Pisano. Fibonacci’s Liber Abaci: A Translation into Modern English of the Book of Calculation, Springer, 2002. 
[16]. D. Zh. Hui. The formula of t-step Fibonacci sequence, 2008 (in Chinese, in English), URL: http://bbs.emath.ac.cn/forum.php, 667.4. 

[17]. M. Barr. Mathematical Amusements. The Sketch, 1913, pp. 32. 

[18]. M. Barr. Parameters of beauty. Architecture (NY), 60 (1929), pp. 325.  
[19]. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge, third edition, 2013. 

[20]. Akiyama S., Drungilas  P., Jankauskas  J. Height reducing problem on algebraic integers.  Functiones et Approximatio Commentarii 

Mathematici 47 (1), 105-119, 2012  

Nikolai N. Nepejvoda. "Some Issues on Linear Numeration Systems." IOSR Journal of 

Mathematics (IOSR-JM) 15.6 (2019): 47-50. 

https://dmtcs.episciences.org/paper/view/id/5569
https://dmtcs.episciences.org/paper/view/id/5569
http://psta.psiras.ru/read/psta2016_4_145-160.pdf
http://www.aliquot.de/aliquote.htm

