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Abstract This article concerns with the problem 

 
−∆2𝑢 = 𝜇

𝑢

 𝑥 4𝐼𝑛2 𝑅

 𝑥 

+ 𝑓 𝑥, 𝑢 , 𝑥 ∈ 𝛺;

𝑢 = 0 𝑥 ∈ 𝜕𝛺
 

There f has critical growth at both +∞ and −∞ with the same α0, through a Hardy Inequality of 

[4], We prove the existence of a nontrivial solution of above problem by using Mountain Pass 

Theorem. 

Keywords bi-harmonic equation; critical growth; Mountain Pass Theorem 

0 Introduction 

When N >p, the article [1] had discussed the nonlinear harmonic equation 

involving critical potential. But as N = p = 2, the corresponding question hasn’t been 

studied. Then in 1995, in the article [2], D.G.de Figueiredo, Miyagaki and Ruf proved the 

existence of multiply solutions of nonlinear elliptic problem in R2, where f has 

subcritical growth and critical growth. After this article mainly, in 2004, Shen, Yao and 

Chen [3] have studied the existence of nontrivial solutions for quasi-linear elliptic 

equation involving critical potential: 

 

where Ω is a bounded domain in R2, 0 ∈ Ω ⊂ BR(0),BR(0) is a small ball centering origin 

with radius R in R2, and in this article, f has subcritical. Then in 2005, Chen, Shen and 

Yao[4] have studied the existence of nontrivial solutions for nonlinear biharmonic 

equation involving critical potential: 

  (0.1) 

where Ω ⊂ BR(0) ⊂ R4 is a bounded domain including the origin, µ ∈ R, ν is the unit outer 

normal vector, and f has subcritical growth(see[2]). According the article [2], we think 

what will happen if f has critical growth in the problem (0.1). So in this paper, we have 

discussed the existence of nontrivial solutions for nonlinear bi-harmonic equation 
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involving critical potential (0.1), but in here f has critical growth at +∞ (see[2]), it 

means if there exists α0 >0, such that for all α > α0 

 = 0 (0.2) 

and for all α < α0 

 

For easy reference we state new conditions on f that will be assumed bellow: 

 

Now we state the results which will be proved here. By “solution” in the theorems 

below we mean weak solution  

Theorem 0.1 Assume (H1),(H2),(H3),(H1),µ <1 and f has critical growth at both +∞ 

and −∞. Furthermore assume 

 

Then, problem (0.1) has a nontrivial solution. 

In this paper, we define ||u||2 =  ∆𝑢 2 ,  𝑢 𝑝 =    𝑢 𝑝 1/𝑝
𝛺

. 

1 The proof of lemmas 

We know the functional of equation (0.1) is 

 

We assume  𝐻1 ,  𝐻2 and the existence of positive constance𝐶 

                                                             
 

And 𝛼0 > 0,when 𝛼 > 𝛼0, |f(x,t)| ≤ Ceαt 

It follows easily from (H1) and (H2) that 

(1) there is a constant C >0, such that 

∀x ∈ Ω,t ∈ R (1.1) 

(1.2) 
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 (2)given >0, there is 0, such that 

  (1.3) 

 Lemma 1.1(see [4]) Assume (Ω),then 

  (1.4) 

where the constant 1 is optimal. 

Lemma 1.2(see [2]) f(x,un) → f(x,u) in L1(Ω). where {un} is a (PS) sequence. 

Set 

Lemma 1.3 Assume (H1),(H2) and (H3) , if f has critical growth at both +∞ and 

 

−∞ with the same α0, then Φ satisfies (PS)cfor all c ∈ (−∞,8(1 − µ) 𝜋/3𝛼0).  

Proof: Let (Ω) be a Palais-Smale sequence, i.e. 

 

(1.5) 

(1.6) 

     For  

From (1.3) and (1.5), for any𝜖 > 0, we have 

  (1.7) 

We assume v = un in (1.6), can obtain 

  (1.8) 

Substitute (1.8) to (1.7), we have 

 

Set , from Lemma 1.1, we know there is a constant C, such that 

||un||2 ≤ C 

Now we take a subsequence of {un} denoted again by {un}, such that, for some 

, we have 
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From Lemma 1.2, when n → ∞, (1.6) become 

 = 0 (1.9) 

Let v = u in the (1.9), and using (1.3) then 

 

So, Φ(u) ≥ 0. Now we separate the proof into three cases: 

 Case 1 c = 0. 

From Lemma 1.2, using Lebesgue dominated convergence theorem, we can get 

F(x,un) → F(x,u) in L1(Ω). So, from (1.5) and (1.6), set v = un, we obtain 

 so  

then, from (1.8), we have 

 

So,||un|| → ||u|| and then . The proof is finished in this case. 

Case 2 c=0, u=0. In this case, we will show that it cannot happen for a (Ps) 

sequence. First we claim that, for some q >1, we have 

   𝑓(𝑥, 𝑢𝑛) 𝑞𝑑𝑥 ≤ 𝑐𝑜𝑛𝑠𝑡
𝛺

 (1.10) 

From (1.1) ,set a fixed q >1, then 

 

Using Moser-Trudinger Inequality (N=4)(see[5]): for any  

 

where 3 is the volume of unit ball when n = 3, 

|Ω| is the lebesgue measure of Ω. 

Then we can deduce the integral (1.10) is bounded independently of n, if 

 

From (1.5) , Lemma 1.1 ,(H1) and u = 0, we have 
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Then it will be indeed the case for , if we choose q >1 sufficiently 

close to 1 , α sufficiently close to α0 and sufficiently small. 

Let (1.6) subtract (1.9), and assume v = un − u, then we have 

 

We estimate the third integral above using Holder inequality and |un − u|Lq0 → 0, 

then we have 

 

So, through Lemma 1.1, we know ||un|| → 0. But, from (1.5), which implies 

 𝑢𝑛 
2 →

2𝑐

1−4𝜇
≠ 0. It is contradiction. 

 Case 3 c ≠ 0,u ≠ 0. 

Like case 2, we can proof (1.10). Because ||un||2 ≤ C, so it means when αqC2/3 ≤ 

, (1.10) is true. At the same time, we can know . Then the lemma 

is proved. 

In the case 3 of above, we actually can obtain  

Φ 𝑢 = 𝑐 𝑎𝑛𝑑 𝑐 < 8(1 − 𝜇) 
𝜋

3𝛼0
3. 

Lemma 1.4 Assume (H1),(H2),(H4) and (1.1), then existence a >0,ρ >0, such that 

Φ(u) ≥ a, if ||u|| = ρ. 

Proof: From (H4), we know there are λ0 < λ1,δ>0, such that 

 

In other way, from (1.1), to q >2 

F(x,t) ≤ Ceα|t|4/3|t|q |t| > δ 

Putting these two estimates together we obtain 

  (1.11) 

From (1.11), and using Holder inequality, for p >1, we have 
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Now choose ρ >0, as the point where the function 

assumes its maximum. Take a = g(ρ). Then the proof is complete. 

Remarks on the conditions above, we easily to prove there is , such 

that Φ(e) ≤ 0. 

2 The proof of Theorem 0.1 

It follows from the assumptions that Φ satisfies (PS)c for all , see 

lemma 1.3. At the same time, through lemma 1.4 and (H4), we can know that Φ has a 

local minimum at 0. To conclude via the Mountain Pass Theorem it suffices to show that 

there is a = 1, such that max {Φ(tω) : t ≥ 0} < c. For that matter we start by 

introducing the following functions 

 

which indicate that (0)) and ||ωn|| = 1 for all n = 1,2,···. 

We claim that there exists nsuch that 

 

Assume by contradiction that this is not the case. So, for all n, this maximum is 

large or equal to8(1 − 𝜇) 
𝜋

3𝛼0
3. Set tn >0, such that 

  (2.1) 

it is to say, from (2.1) and (H3) 

 

so it means 

  (2.2) 

 At the same time, we know = 0, then 
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  (2.3) 

From (H5), for given 𝜖 > 0, there existence , such that 

 
so 

  (2.4) 

which implies readily that tn is bounded. And moreover (2.2) together with (2.4), 

we can deduce that . 

Then let us estimate (2.3) more precisely. 

 

Passing to the limit in above and assume , then we can obtain 

  (2.5) 

which implies , if we let  see[2]], then it 

is contradiction to (H5). 

So, the theorem is proved. 
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