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Abstract This article concerns with the problem

—ANu=yp - =+ f(x,u), x€n;
|x|41n2m
u=20 x € 0N

There fhas critical growth at both +o0 and -oo with the same ap, through a Hardy Inequality of
[4], We prove the existence of a nontrivial solution of above problem by using Mountain Pass
Theorem.
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0 Introduction

When N >p, the article [1] had discussed the nonlinear harmonic equation
involving critical potential. But as N = p = 2, the corresponding question hasn’t been
studied. Then in 1995, in the article [2], D.G.de Figueiredo, Miyagaki and Ruf proved the
existence of multiply solutions of nonlinear elliptic problem in R% where f has
subcritical growth and critical growth. After this article mainly, in 2004, Shen, Yao and
Chen [3] have studied the existence of nontrivial solutions for quasi-linear elliptic
equation involving critical potential:

—Au—pm:/\u, IEQ

=]

u =20, x € 0N

where Q is a bounded domain in R2 0 € Q < Bg(0),Bz(0) is a small ball centering origin
with radius R in R2, and in this article, fhas subcritical. Then in 2005, Chen, Shen and
Yao[4] have studied the existence of nontrivial solutions for nonlinear biharmonic
equation involving critical potential:

A2y — ,uﬁ + flz,u), =€

_ du _ :

u=7%5;=0, x € 08) (0.1)
where () C Bp(0) c R*is a bounded domain including the origin, i € R, v is the unit outer
normal vector, and fhas subcritical growth(see[2]). According the article [2], we think
what will happen if fhas critical growth in the problem (0.1). So in this paper, we have
discussed the existence of nontrivial solutions for nonlinear bi-harmonic equation
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involving critical potential (0.1), but in here f has critical growth at +co (see[2]), it
means if there exists ap >0, such that for all a > ap

)
11m
t—+o0 e at/3 0 (0-2)

and for all a < ap
1)

t—+o0 (3“t2

=+OO

For easy reference we state new conditions on f that will be assumed bellow:
(Hy) f:QxR— Ris continuous, f(x,0) =0

(Hy) dto > 0,3M > 0, such that

0< F(x,t) = / flx,s)ds < M|f(x,t)|

1
(H3) 0< F(z,t) < 3 flz, t)t,Vt e R —{0},Vz € Q
2F(x,t
(Hy) limsup (;’ ) < Ay, uniformly in (x,t)
t—0 t

Now we state the results which will be proved here. By “solution” in the theorems

below we mean weak solution” € H&(Q).
Theorem 0.1 Assume (Hi),(Hz),(H3),(H!),u <1 and fhas critical growth at both +co
and —-oo. Furthermore assume

(Hs)  lim f(x, 1,‘)1567‘““2 >4, 8> 1604 = 1)

ap(l + M)R?
Then, problem (0.1) has a nontrivial solution.

In this paper, we define |[|u||2=/,, |Aul?, [ul, = (flulP)!/?.

1 The proof of lemmas

We know the functional of equation (0.1) is

22
f|Aud,L——/ v fF(L u)dx
o |z|*1n? R/ld,l Q

We assume (H; ), (H,)and the existence of positive constanceC

And ag > O,when a > «ay, |f(xt)] < Cext VxeteR (1.1)
It follows easily from (H1) and (H) that

(1) there is a constant C >0, such that
Fxz,t) > Cenll vt >t (1.2)
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(2)given >0, thereis te >0, such that
F(x,t) <ef(xz,t)t, VreQV|t| >t (1.3)

Lemma 1.1(see [4]) Assume “ € Hg(ﬂ),then

22
[
o |z|*In® R/|z| (1.4)

where the constant 1 is optimal.

Lemma 1.2(see [2]) flxun) = f(xu) in L1(). where {u,} is a (PS) sequence.
Set

Lemma 1.3 Assume (H1),(H2) and (Hs), if f has critical growth at both +co and

—-oo with the same ay, then @ satisfies (PS) for all ¢ € (-0,8(1 - u)/7/3ap).

Proof: Let {tn} C H&(Q) be a Palais-Smale sequence, i.e.

2
(1.5) f | Aty [2da — Ef S — fF(L Un)da — ¢
) [2]'1® R/[a]' 0

(16) [A / UnpU /
upnAvdr — | ———— T, U )vdr = o(1)||v
Lo o R R/I»BI [z, un) Dfvl|
ForVv € H ().

From (1.3) and (1.5), for anye > 0, we have

1 2 .P'J |un|2 /
—||u —a <+ T, Uy )dT
21073 Jo e Ry =€ T
<Ce+e | flz,u,)upde
0 (&t un (1.7)
We assume v = u,in (1.6), can obtain
‘T n '
et ||* — / = | [, un)undz + o(1)||un||
ERTYIIE (1.8)

Substitute (1.8) to (1.7), we have

1 9 ,uf |un\ / |Un|

a JU’TL Y T C +€ ufn +€0 1 u.”_
el =5 | it (heal? = | ooy ) + coDlfuall

_ 1 .
Set® = 1, from Lemma 1.1, we know there is a constant C, such that

llunl[2= €

Now we take a subsequence of {u,} denoted again by {u,}, such that, for some
u € H§ we have
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Uy, — uin HE;u, = win L9(Q),Yq > Lu,(z) = u(z) a.e. in Q

From Lemma 1.2, when n = oo, (1.6) become

AuAvdr — f / flx,u)vde
fsz o |z[*1n? R/l | =0 (1.9)
Let v =u in the (1.9), and using (1.3) then

2 1
20 (u) = Aul*dx — fu—d;t:—Q/F;t,u de > (- —2 fFZLU dx
)= [ 1aupie [ e =2 [ Fade 2 (-2 [ P

So, ®(u) = 0. Now we separate the proof into three cases:

Casel c¢=0.

From Lemma 1.2, using Lebesgue dominated convergence theorem, we can get
F(x,un) = F(xu) in L1(£). So, from (1.5) and (1.6), set v = u,, we obtain

lim (% / flz, up)upde — / F(x,up)dx) =c=10
JQ J

n—o0

.
3 f(:L‘,un)unda::fF(a:,-u.n)d;L‘
So Jo Q

then, from (1.8), we have

1
0 < ®(u) < liminf ®(u,) = Qf [z, up)upde — f F(z,up)dzr =0
Q Q
So,||us|| = ||u|| and then¥n —* © i1 H§ The proofis finished in this case.
Case 2 ¢=0, u=0. In this case, we will show that it cannot happen for a (Ps)
sequence. First we claim that, for some g >1, we have

J If (x,uy)|%dx < const (1.10)
From (1.1) ,set a fixed g >1, then

o |4/3 4/% _u_“ 4/3
/|f(;L',u,L}|"' SC'/C("’”"”l / d;c—C/ | un || ()
Ja JQ Ja

1,4
Using Moser-Trudinger Inequality (N=4)(see[5]): for any" € W, ()

sup el gy < C, vy < 4wl/5

[lul] . 1,4<1/Q
W

e = |ul. Duly, wy =4 . .
Hu””ﬁ‘t [uls + [Duls, ws 7T/3 is the volume of unit ball when n = 3,

where
[€1] is the lebesgue measure of Q.
Then we can deduce the integral (1.10) is bounded independently of n, if

aql|ua|[*? < 4 <4w1/d

From (1.5), Lemma 1.1 ,(H1) and u = 0, we have
HQ B 2(c + €)

nlggo [t 1—p
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N e <8(1-p), /5%
Then it will be indeed the case for ““U if we choose g >1 sufficiently
close to 1, a sufficiently close to ap and sufficiently small.
Let (1.6) subtract (1.9), and assume v = u, - u, then we have

];;A(?LRU)IQOII“LM /(f(r ) — flaz,u))(uy —u)de = o(1)||uy—ul|

We estimate the third integral above using Holder inequality and |u,— u|w— O,
then we have

/gz |(f(z,un) — flz,u))(u, —u)|dz — 0

So, through Lemma 1.1, we know ||u,|| = 0. But, from (1.5), which implies

2 . ..
lu, 112 = ﬁ # 0. Itis contradiction.

Case3 c#0u=0.
Like case 2, we can proof (1.10). Because ||us||2 < C, so it means when aq(C?/3 <

1(AT\1/3 , ; 2
4(?) / , (1.10) is true. At the same time, we can know tn — U 17t H§, Then the lemma
is proved.

In the case 3 of above, we actually can obtain

d(w)=candc<8(1—p) [

Lemma 1.4 Assume (H1),(H2),(H4) and (1.1), then existence a >0,p >0, such that
®(u) 2 q, if ||u]| = p.
Proof: From (Hs), we know there are Ao < A1,6>0, such that

ﬂaﬂgémﬁ,mSé
In other way, from (1.1), to g >2

F(x,t) < Cexdtl4s|t]|a|t] > &
Putting these two estimates together we obtain

1 1 14/3
F(z,t) < =Xot> + Ce® 149 vieR

From (1.11), and using Holder inequality, for p >1, we have

2
@(u)zl/AuF'u[,t;[F(a:.u)
2 Jo 2 Jo lz[*In® R/|x|  Jao

1 1 . ' :
> L= Wl = S [ W= [ et e
2 2 " Jg Ja

1 )\ P l 4/ q D aqp'1/p
> 5= 300 =l = ([ calul 7 [ )
> — —)(1 - ) 4
> 1= )= )l = Cllul
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11— 20)(1 - p)s? — Cis®

Now choose p >0, as the point where the function 9(s) = 3
assumes its maximum. Take a = g(p). Then the proof is complete.

- . . o 2
Remarks on the conditions above, we easily to prove there is® € Hg, [le]| > P, such
that ®(e) < 0.

2 The proof of Theorem 0.1

1 —
It follows from the assumptions that & satisfies (PS).for all 2 %”‘ﬂ see

lemma 1.3. At the same time, through lemma 1.4 and (Hs4), we can know that ® has a
local minimum at 0. To conclude via the Mountain Pass Theorem it suffices to show that
there is aw € Hg ||wll= 1, such that max {®(tw) : t = 0} < c. For that matter we start by

introducing the following functions
(Inn)'/2, 0<|z|< &

wn() = 227 (lnn)ﬂl/2

0, le >R

which indicate that wn(%) € Hg(BR(O)) and ||wn|| =1foralln=1,2,--
We claim that there exists nsuch that

m
mar{P(twy,) :t >0} <8(1 —pn),/—=
(@) 02 0} < 80— p)y [
Assume by contradiction that this is not the case. So, for all n, this maximum is

large or equal to8(1 — p) /;7 Set t,>0, such that
0

mar{®(tw,) : t > 0} = ®(t,wy,) > 8(1 — p) LL;
30 (2.1)

itis to say, from (2 1) and (Ha)

f 2 . It'rw‘-"n‘2
8(1 - J!‘L / |Atwwn‘ S / 1 / F(.’L': t.,,zw”)
Bgr(0 BRr(0) || In? R/|z| Br(0)

1 R r?1n? R
g—t——r(izrr)/ n” R/r
2 2 R/n 821 4lnnin? R/r
1. "o
< 5’»‘% - gffa
1 1
so it means
25 16(1 — p) Tl’%
n = EYE
1—1/4p '\ 303 (2.2)
d(b(tﬂwn)
At the same time, we know dt, =0, then
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2

u
t2—,ut2/ é/ f(x, tpwy ) taw
" o) PP R 2] S

" . 1 .
] f(l‘atnw‘n.)tnwn < (1 - iﬂ)ti
B1(0) (23)

From (Hs), for given € > 0, there existences > $¢, such that
flx,s)s > (58— c)e““‘qz, Vs > s,

so
1 ,
(=t > (5 =q) [ oottt
4 Br(0)
b R/Tt . t2 Inn
> (8 —€)(27?) / r3e®0tns? dr
0
R4 o 21lnn
> (8- e)wzﬁe 0bn 52
_ 1(3 . €)W2R4€lnn(%—’1)
2" o (2.4)
which implies readily that t,is bounded. And moreover (2.2) together with (2.4),
2 3272
we can deduce that'n ~ a0 .
Then let us estimate (2.3) more precisely.
1 . ' 2,
(1=~ > (8¢ €0t
4 Br(0)
. o {_ R/ .
Passing to the limit in above and assume" =~ "Inn , then we can obtain
8(4 — 2 R/n 2Ilnn L an?R/r
80 — > 27 (B — F)[/ JRELE v 5§ M / edgﬁzmv'J(fT']
ag J0 JR/n
‘ 1 1z, .
_ Qﬂz(ﬁ . 6)[]_81 + R/l In Tl/ e 12 In n—4t In ndt]
: 0
L o 4 : 4lnn(t?—t
= -1 (B —e)R*[1 + 4111n/ =) gy
2 Jo (2.5)

; 16(1—p) ) 1 _4lnn(t2— )
which implies” = @0, if we letM = 41nn [y ™™ C=VdtM oorom then it

is contradiction to (Hs).
So, the theorem is proved.
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