A Critical Growth Nonlinear Bi-harmonic Problem in R^{4}

Ahmed Adam Abdelgadir
Department of Mathematics, Taibah-University, College of Science, Yanbu, Saudi Arabia
Email:ahmedguangzhou17@gmail.com

Abstract

This article concerns with the problem $$
\begin{array}{cc} -\Delta^{2} u=\mu \frac{u}{|x|^{4} n^{2} \frac{R}{|x|}}+f(x, u), & x \in \Omega \\ u=0 & x \in \partial \Omega \end{array}
$$

There f has critical growth at both $+\infty$ and $-\infty$ with the same α_{0}, through a Hardy Inequality of [4], We prove the existence of a nontrivial solution of above problem by using Mountain Pass Theorem.

Keywords bi-harmonic equation; critical growth; Mountain Pass Theorem

0 Introduction

When $N>p$, the article [1] had discussed the nonlinear harmonic equation involving critical potential. But as $N=p=2$, the corresponding question hasn't been studied. Then in 1995, in the article [2], D.G.de Figueiredo, Miyagaki and Ruf proved the existence of multiply solutions of nonlinear elliptic problem in R^{2}, where f has subcritical growth and critical growth. After this article mainly, in 2004, Shen, Yao and Chen [3] have studied the existence of nontrivial solutions for quasi-linear elliptic equation involving critical potential:

$$
\begin{cases}-\Delta u-\mu \frac{u}{|x|^{2} \ln ^{2} \frac{R}{|x|}}=\lambda u, & x \in \Omega \\ u=0, & x \in \partial \Omega\end{cases}
$$

where Ω is a bounded domain in $\mathrm{R}^{2}, 0 \in \Omega \subset B_{R}(0), B_{R}(0)$ is a small ball centering origin with radius R in R^{2}, and in this article, f has subcritical. Then in 2005, Chen, Shen and Yao[4] have studied the existence of nontrivial solutions for nonlinear biharmonic equation involving critical potential:

$$
\begin{cases}\Delta^{2} u-\mu \frac{u^{2}}{|x|^{4} \ln ^{2} \frac{R}{|x|}}+f(x, u), & x \in \Omega \tag{0.1}\\ u=\frac{\partial u}{\partial \nu}=0, & x \in \partial \Omega\end{cases}
$$

where $\Omega \subset B_{R}(0) \subset \mathrm{R}^{4}$ is a bounded domain including the origin, $\mu \in \mathrm{R}, v$ is the unit outer normal vector, and f has subcritical growth(see[2]). According the article [2], we think what will happen if f has critical growth in the problem (0.1). So in this paper, we have discussed the existence of nontrivial solutions for nonlinear bi-harmonic equation
involving critical potential (0.1), but in here f has critical growth at $+\infty$ (see[2]), it means if there exists $\alpha_{0}>0$, such that for all $\alpha>\alpha_{0}$

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{|f(x, t)|}{e^{\alpha t^{4 / 3}}}=0 \tag{0.2}
\end{equation*}
$$

and for all $\alpha<\alpha_{0}$

$$
\lim _{t \rightarrow+\infty} \frac{|f(x, t)|}{e^{\alpha t^{2}}}=+\infty
$$

For easy reference we state new conditions on f that will be assumed bellow:

$$
\begin{aligned}
& \left(H_{1}\right) \quad f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R} \text { is continuous, } f(x, 0)=0 \\
& \left(H_{2}\right) \quad \exists t_{0}>0, \exists M>0, \text { such that } \\
& \quad 0<F(x, t)=\int_{0}^{t} f(x, s) d s \leq M|f(x, t)| \\
& \left(H_{3}\right) \quad 0<F(x, t) \leq \frac{1}{2} f(x, t) t, \forall t \in \mathbb{R}-\{0\}, \forall x \in \Omega \\
& \left(H_{4}\right) \quad \lim _{t \rightarrow 0} \sup \frac{2 F(x, t)}{t^{2}}<\lambda_{1}, \text { uniformly in }(x, t)
\end{aligned}
$$

Now we state the results which will be proved here. By "solution" in the theorems below we mean weak solution $u \in H_{0}^{2}(\Omega)$.

Theorem 0.1 Assume $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right),\left(H^{1}\right), \mu<1$ and f has critical growth at both $+\infty$ and $-\infty$. Furthermore assume

$$
\left(H_{5}\right) \quad \lim f(x, t) t e^{-\alpha_{0} t^{2}} \geq \beta, \quad \beta>\frac{16(4-\mu)}{\alpha_{0}(1+M) R^{4}}
$$

Then, problem (0.1) has a nontrivial solution.
In this paper, we define $\|u\|^{2}=\int_{\Omega}|\Delta u|^{2},|u|_{p}=\left(\int|u|^{p}\right)^{1 / p}$.

1 The proof of lemmas

We know the functional of equation (0.1) is

$$
\Phi(u)=\frac{1}{2} \int_{\Omega}|\triangle u|^{2} d x-\frac{\mu}{2} \int_{\Omega} \frac{u^{2}}{|x|^{4} \ln ^{2} R /|x|} d x-\int_{\Omega} F(x, u) d x
$$

We assume $\left(H_{1}\right),\left(H_{2}\right)$ and the existence of positive constance C

And $\alpha_{0}>0$, when $\alpha>\alpha_{0},|f(x, t)| \leq C e^{\alpha t} \quad \forall x \in \Omega, t \in \mathrm{R}$
It follows easily from $\left(H_{1}\right)$ and $\left(H_{2}\right)$ that
(1) there is a constant $C>0$, such that

$$
\begin{equation*}
F(x, t) \geq C e^{\frac{1}{M}|t|}, \quad \forall|t| \geq t_{0} \tag{1.2}
\end{equation*}
$$

(2)given >0, there is $t_{\epsilon}>0$, such that

$$
\begin{equation*}
F(x, t) \leq \epsilon f(x, t) t, \quad \forall x \in \Omega, \forall|t| \geq t_{\epsilon} \tag{1.3}
\end{equation*}
$$

Lemma 1.1(see [4]) Assume $u \in H_{0}^{2}(\Omega)$,then

$$
\begin{equation*}
\int_{\Omega} \frac{u^{2}}{|x|^{4} \ln ^{2} R /|x|} d x \leq \int_{\Omega}|\triangle u|^{2} d x \tag{1.4}
\end{equation*}
$$

where the constant 1 is optimal.
Lemma 1.2 (see [2]) $f\left(x, u_{n}\right) \rightarrow f(x, u)$ in $L^{1}(\Omega)$. where $\left\{u_{n}\right\}$ is a (PS) sequence.
Set
Lemma 1.3 Assume $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$, if f has critical growth at both $+\infty$ and
$-\infty$ with the same α_{0}, then Φ satisfies $(P S)_{c}$ for all $c \in\left(-\infty, 8(1-\mu) \sqrt{\pi / 3 \alpha_{0}}\right)$.
Proof: Let $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ be a Palais-Smale sequence, i.e.

$$
\begin{array}{r}
\frac{1}{2} \int_{\Omega}\left|\triangle u_{n}\right|^{2} d x-\frac{\mu}{2} \int_{\Omega} \frac{u_{n}^{2}}{|x|^{4} \ln ^{2} R /|x|} d x-\int_{\Omega} F\left(x, u_{n}\right) d x \rightarrow c \\
\int_{\Omega} \Delta u_{n} \Delta v d x-\mu \int_{\Omega} \frac{u_{n} v}{|x|^{4} \ln ^{2} R /|x|} d x-\int_{\Omega} f\left(x, u_{n}\right) v d x=o(1)\|v\| \tag{1.6}
\end{array}
$$

For $\forall v \in H_{0}^{2}(\Omega)$.
From (1.3) and (1.5), for any $\epsilon>0$, we have

$$
\begin{align*}
\frac{1}{2}\left\|u_{n}\right\|^{2}-\frac{\mu}{2} \int_{\Omega} \frac{\left|u_{n}\right|^{2}}{|x|^{4} \ln ^{2} R /|x|} & \leq C+\int_{\Omega} F\left(x, u_{n}\right) d x \\
& \leq C_{\epsilon}+\epsilon \int_{\Omega} f\left(x, u_{n}\right) u_{n} d x \tag{1.7}
\end{align*}
$$

We assume $v=u_{n}$ in (1.6), can obtain

$$
\begin{equation*}
\left\|u_{n}\right\|^{2}-\mu \int_{\Omega} \frac{\left|u_{n}\right|^{2}}{|x|^{4} \ln R /|x|} d x=\int_{\Omega} f\left(x, u_{n}\right) u_{n} d x+o(1)\left\|u_{n}\right\| \tag{1.8}
\end{equation*}
$$

Substitute (1.8) to (1.7), we have
$\frac{1}{2} \left\lvert\,\left\|u_{n}\right\|^{2}-\frac{\mu}{2} \int_{\Omega} \frac{\left|u_{n}\right|^{2}}{|x|^{4} \ln ^{2} R /|x|} \leq C_{\epsilon}+\epsilon\left(\left\|u_{n}\right\|^{2}-\mu \int_{\Omega} \frac{\left|u_{n}\right|^{2}}{|x|^{4} \ln R /|x|} d x\right)+\epsilon o(1)\left\|u_{n}\right\|\right.$
$\operatorname{Set}^{\epsilon}=\frac{1}{4}$, from Lemma 1.1, we know there is a constant C , such that

$$
\left\|u_{n}\right\|^{2} \leq C
$$

Now we take a subsequence of $\left\{u_{n}\right\}$ denoted again by $\left\{u_{n}\right\}$, such that, for some $u \in H_{0}^{2}$, we have

$$
u_{n} \rightharpoonup u \text { in } H_{0}^{2} ; u_{n} \rightarrow u \text { in } L^{q}(\Omega), \forall q \geq 1 ; u_{n}(x) \rightarrow u(x) \text { a.e. in } \Omega
$$

From Lemma 1.2, when $n \rightarrow \infty$, (1.6) become

$$
\begin{equation*}
\int_{\Omega} \triangle u \triangle v d x-\mu \int_{\Omega} \frac{u v}{|x|^{4} \ln ^{2} R /|x|} d x-\int_{\Omega} f(x, u) v d x=0 \tag{1.9}
\end{equation*}
$$

Let $v=u$ in the (1.9), and using (1.3) then
$2 \Phi(u)=\int_{\Omega}|\triangle u|^{2} d x-\mu \int_{\Omega} \frac{u^{2}}{|x|^{4} \ln ^{2} R /|x|} d x-2 \int_{\Omega} F(x, u) d x \geq\left(\frac{1}{\epsilon}-2\right) \int_{\Omega} F(x, u) d x$
So, $\Phi(u) \geq 0$. Now we separate the proof into three cases:
Case $1 \quad c=0$.
From Lemma 1.2, using Lebesgue dominated convergence theorem, we can get $F\left(x, u_{n}\right) \rightarrow F(x, u)$ in $L^{1}(\Omega)$. So, from (1.5) and (1.6), set $v=u_{n}$, we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{1}{2} \int_{\Omega} f\left(x, u_{n}\right) u_{n} d x-\int_{\Omega} F\left(x, u_{n}\right) d x\right)=c=0 \\
& \frac{1}{2} \int_{\Omega} f\left(x, u_{n}\right) u_{n} d x=\int_{\Omega} F\left(x, u_{n}\right) d x
\end{aligned}
$$

So
then, from (1.8), we have

$$
0 \leq \Phi(u) \leq \liminf \Phi\left(u_{n}\right)=\frac{1}{2} \int_{\Omega} f\left(x, u_{n}\right) u_{n} d x-\int_{\Omega} F\left(x, u_{n}\right) d x=0
$$

So, $\left\|u_{n}\right\| \rightarrow\|u\|$ and then $u_{n} \rightarrow u$ in H_{0}^{2}. The proof is finished in this case.
Case $2 c=0, u=0$. In this case, we will show that it cannot happen for a (Ps) sequence. First we claim that, for some $q>1$, we have

$$
\begin{equation*}
\int_{\Omega}\left|f\left(x, u_{n}\right)\right|^{q} d x \leq \mathrm{const} \tag{1.10}
\end{equation*}
$$

From (1.1), set a fixed $q>1$, then

$$
\int_{\Omega}\left|f\left(x, u_{n}\right)\right|^{q} \leq C \int_{\Omega} e^{\alpha q\left|u_{n}\right|^{4 / 3}} d x=C \int_{\Omega} e^{\alpha q\left\|u_{n}\right\|^{4 / 3}\left(\frac{u_{n}}{\left\|u_{n}\right\|}\right)^{4 / 3}}
$$

Using Moser-Trudinger Inequality ($\mathrm{N}=4$)(see[5]): for any $u \in W_{0}^{1,4}(\Omega)$

$$
\sup _{\|u\|_{W_{0}^{1,4} \leq 1}} \int_{\Omega} e^{\gamma|u|^{4 / 3}} d x \leq C|\Omega|, \quad \forall \gamma \leq 4 \omega_{3}^{1 / 3}
$$

 $|\Omega|$ is the lebesgue measure of Ω.

Then we can deduce the integral (1.10) is bounded independently of n, if

$$
\alpha q\left\|u_{n}\right\|^{4 / 3} \leq \gamma \leq 4 \omega_{3}^{1 / 3}
$$

From (1.5) , Lemma $1.1,\left(H_{1}\right)$ and $u=0$, we have

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|^{2}=\frac{2(c+\epsilon)}{1-\mu}
$$

Then it will be indeed the case for $c<8(1-\mu) \sqrt{\frac{\pi}{3 \alpha_{0}^{3}}}$, if we choose $q>1$ sufficiently close to $1, \alpha$ sufficiently close to α_{0} and sufficiently small.

Let (1.6) subtract (1.9), and assume $v=u_{n}-u$, then we have
$\int_{\Omega}\left|\triangle\left(u_{n}-u\right)\right|^{2} d x-\mu \int_{\Omega} \frac{\left|u_{n}-u\right|^{2}}{|x|^{4} \ln ^{2} R /|x|} d x-\int_{\Omega}\left(f\left(x, u_{n}\right)-f(x, u)\right)\left(u_{n}-u\right) d x=o(1)\left\|u_{n}-u\right\|$
We estimate the third integral above using Holder inequality and $\left|u_{n}-u\right|_{L a 0} \rightarrow 0$, then we have

$$
\int_{\Omega}\left|\left(f\left(x, u_{n}\right)-f(x, u)\right)\left(u_{n}-u\right)\right| d x \rightarrow 0
$$

So, through Lemma 1.1, we know $\left\|u_{n}\right\| \rightarrow 0$. But, from (1.5), which implies $\left\|u_{n}\right\|^{2} \rightarrow \frac{2 c}{1-4 \mu} \neq 0$. It is contradiction.

Case $3 \quad c \neq 0, u \neq 0$.
Like case 2 , we can proof (1.10). Because $\left\|u_{n}\right\|^{2} \leq C$, so it means when $\alpha q C^{2 / 3} \leq$ $4\left(\frac{4 \pi}{3}\right)^{1 / 3},(1.10)$ is true. At the same time, we can know $u_{n} \rightarrow u$ in H_{0}^{2}. Then the lemma is proved.

In the case 3 of above, we actually can obtain
$\Phi(u)=c$ and $c<8(1-\mu) \sqrt{\frac{\pi}{3 \alpha_{0}^{3}}}$.
Lemma 1.4 Assume $\left(H_{1}\right),\left(H_{2}\right),\left(H_{4}\right)$ and (1.1), then existence $a>0, \rho>0$, such that $\Phi(u) \geq a$, if $\|u\|=\rho$.

Proof: From $\left(H_{4}\right)$, we know there are $\lambda_{0}<\lambda_{1}, \delta>0$, such that

$$
F(x, t) \leq \frac{1}{2} \lambda_{0} t^{2}, \quad|t| \leq \delta
$$

In other way, from (1.1), to $q>2$

$$
F(x, t) \leq C e^{\alpha|t| 4 / 3}|t| q|t|>\delta
$$

Putting these two estimates together we obtain

$$
\begin{equation*}
F(x, t) \leq \frac{1}{2} \lambda_{0} t^{2}+C e^{\alpha|t|^{4 / 3}}|t|^{q} \quad \forall t \in \mathbb{R} \tag{1.11}
\end{equation*}
$$

From (1.11), and using Holder inequality, for $p>1$, we have

$$
\begin{aligned}
\Phi(u) & =\frac{1}{2} \int_{\Omega}|\triangle u|^{2}-\frac{\mu}{2} \int_{\Omega} \frac{u^{2}}{|x|^{4} \ln ^{2} R /|x|}-\int_{\Omega} F(x, u) \\
& \geq \frac{1}{2}(1-\mu)\|u\|^{2}-\frac{1}{2} \lambda_{0} \int_{\Omega} u^{2}-C \int_{\Omega} e^{\alpha|u|^{4 / 3}}|u|^{q} \\
& \geq \frac{1}{2}\left(1-\frac{\lambda_{0}}{\lambda_{1}}\right)(1-\mu)\|u\|^{2}-C\left(\int_{\Omega} e \alpha|u|^{4 / 3}|u|^{q}\right)^{1 / p}\left(\int_{\Omega}|u|^{q p^{\prime}}\right)^{1 / p^{\prime}} \\
& \geq \frac{1}{2}\left(1-\frac{\lambda_{0}}{\lambda_{1}}\right)(1-\mu)\|u\|^{2}-C\|u\|^{q}
\end{aligned}
$$

Now choose $\rho>0$, as the point where the function $g(s)=\frac{1}{2}\left(1-\frac{\lambda_{0}}{\lambda_{1}}\right)(1-\mu) s^{2}-C s^{q}$ assumes its maximum. Take $a=g(\rho)$. Then the proof is complete.

Remarks on the conditions above, we easily to prove there is $e \in H_{0}^{2},\|e\|>\rho$, such that $\Phi(e) \leq 0$.

2 The proof of Theorem 0.1

It follows from the assumptions that Φ satisfies $(P S)_{c}$ for all $c<8(1-\mu) \sqrt{\frac{\pi}{3 \alpha_{0}^{3}}}$, see lemma 1.3. At the same time, through lemma 1.4 and $\left(H_{4}\right)$, we can know that Φ has a local minimum at 0 . To conclude via the Mountain Pass Theorem it suffices to show that there is a $\omega \in H_{0}^{2},\|\omega\|=1$, such that $\max \{\Phi(t \omega): t \geq 0\}<c$. For that matter we start by introducing the following functions

$$
\omega_{n}(x)=\frac{1}{2 \sqrt{2} \pi} \begin{cases}(\ln n)^{1 / 2}, & 0 \leq|x| \leq \frac{R}{n} \\ \frac{\ln \frac{R}{|x|}}{(\ln n)^{1 / 2}}, & \frac{R}{n} \leq|x| \leq R \\ 0, & |x| \geq R\end{cases}
$$

which indicate that $\quad \omega_{n}(x) \in H_{0}^{2}\left(B_{R}(0)\right)$ and $\left\|\omega_{n}\right\|=1$ for all $n=1,2, \cdots$.
We claim that there exists $n s u c h$ that

$$
\max \left\{\Phi\left(t \omega_{n}\right): t \geq 0\right\}<8(1-\mu) \sqrt{\frac{\pi}{3 \alpha_{0}^{3}}}
$$

Assume by contradiction that this is not the case. So, for all n, this maximum is large or equal to $8(1-\mu) \sqrt{\frac{\pi}{3 \alpha_{0}^{3}}}$. Set $t_{n}>0$, such that

$$
\begin{equation*}
\max \left\{\Phi\left(t \omega_{n}\right): t \geq 0\right\}=\Phi\left(t_{n} \omega_{n}\right) \geq 8(1-\mu) \sqrt{\frac{\pi}{3 \alpha_{0}^{3}}} \tag{2.1}
\end{equation*}
$$

it is to say, from (2.1) and $\left(H_{3}\right)$

$$
\begin{aligned}
8(1-\mu) \sqrt{\frac{\pi}{3 \alpha_{0}^{3}}} & \leq \frac{1}{2} \int_{B_{R}(0)}\left|\triangle t_{n} \omega_{n}\right|^{2}-\frac{\mu}{2} \int_{B_{R}(0)} \frac{\left|t_{n} \omega_{n}\right|^{2}}{|x|^{4} \ln ^{2} R /|x|}-\int_{B_{R}(0)} F\left(x, t_{n} \omega_{n}\right) \\
& \leq \frac{1}{2} t_{n}^{2}-\frac{\mu}{2} t_{n}^{2}\left(2 \pi^{2}\right) \int_{R / n}^{R} \frac{r^{3} \ln ^{2} R / r}{8 \pi^{2} r^{4} \ln n \ln ^{2} R / r} \\
& \leq \frac{1}{2} t_{n}^{2}-\frac{\mu}{8} t_{n}^{2} \\
& =\frac{1}{2}\left(1-\frac{1}{4} \mu\right) t_{n}^{2}
\end{aligned}
$$

so it means

$$
\begin{equation*}
t_{n}^{2} \geq \frac{16(1-\mu)}{1-1 / 4 \mu} \sqrt{\frac{\pi}{3 \alpha_{0}^{3}}} \tag{2.2}
\end{equation*}
$$

At the same time, we know $\frac{d \Phi\left(t_{n} \omega_{n}\right)}{d t_{n}}=0$, then

$$
\begin{gather*}
t_{n}^{2}-\mu t_{n}^{2} \int_{B_{R}(0)} \frac{u_{n}^{2}}{|x|^{4} \ln ^{2} R /|x|}=\int_{B_{R}(0)} f\left(x, t_{n} \omega_{n}\right) t_{n} \omega_{n} \\
\int_{B_{R}(0)} f\left(x, t_{n} \omega_{n}\right) t_{n} \omega_{n} \leq\left(1-\frac{1}{4} \mu\right) t_{n}^{2} \tag{2.3}
\end{gather*}
$$

From $\left(H_{5}\right)$, for given $\epsilon>0$, there existence $s>s_{\epsilon}$, such that

$$
f(x, s) s \geq(\beta-\epsilon) e^{\alpha_{0} s^{2}}, \quad \forall s>s_{\epsilon}
$$

so

$$
\begin{align*}
\left(1-\frac{1}{4} \mu\right) t_{n}^{2} & \geq(\beta-\epsilon) \int_{B_{R}(0)} e^{\alpha_{0} t_{n}^{2} \omega_{n}^{2}} \\
& \geq(\beta-\epsilon)\left(2 \pi^{2}\right) \int_{0}^{R / n} r^{3} e^{\alpha_{0} t_{n}^{2} \frac{\ln n}{8 \pi^{2}}} d r \\
& \geq(\beta-\epsilon) \pi^{2} \frac{R^{4}}{2 n^{4}} e^{\alpha_{0} t_{n}^{2} \frac{\ln n}{8 \pi^{2}}} \\
& =\frac{1}{2}(\beta-\epsilon) \pi^{2} R^{4} e^{\ln n\left(\frac{\alpha_{0} t_{n}^{2}}{8 \pi^{2}}-4\right)} \tag{2.4}
\end{align*}
$$

which implies readily that t_{n} is bounded. And moreover (2.2) together with (2.4), we can deduce that $t_{n}^{2} \rightarrow \frac{32 \pi^{2}}{\alpha_{0}}$.

Then let us estimate (2.3) more precisely.

$$
\left(1-\frac{1}{4} \mu\right) t_{n}^{2} \geq(\beta-\epsilon) \int_{B_{R}(0)} e^{\alpha_{0} t_{n}^{2} \omega_{n}^{2}} d x
$$

Passing to the limit in above and assume $t=\frac{\ln R / r}{\ln n}$, then we can obtain

$$
\begin{align*}
\frac{8(4-\mu) \pi^{2}}{\alpha_{0}} & \geq 2 \pi^{2}(\beta-\epsilon)\left[\int_{0}^{R / n} e^{32 \pi^{2} \frac{\ln n}{8 \pi^{2}}} r^{3} d r+\int_{R / n}^{R} e^{32 \pi^{2} \frac{\ln ^{2} R / r}{8 \pi^{2} \ln n}} r^{3} d r\right] \\
& =2 \pi^{2}(\beta-\epsilon)\left[\frac{1}{4} R^{4}+R^{4} \ln n \int_{0}^{1} e^{4 t^{2} \ln n-4 t \ln n} d t\right] \\
& =\frac{1}{2} \pi^{2}(\beta-\epsilon) R^{4}\left[1+4 \ln n \int_{0}^{1} e^{4 \ln n\left(t^{2}-t\right)} d t\right] \tag{2.5}
\end{align*}
$$

which implies $\beta \leq \frac{16(4-\mu)}{\alpha_{0}(1+M) R^{4}}$, if we let $M=4 \ln n \int_{0}^{1} e^{4 \ln n\left(t^{2}-t\right)} d t[M$ see[2]], then it is contradiction to $\left(\mathrm{H}_{5}\right)$.

So, the theorem is proved.

References

[1] Ekeland, I., On the variational principle[J], J. Math. Anal. Appl., 47(1974),324-353
[2] D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in R^{2} with nonlinearities in the critical growth range[J], Cal. Var. and P. D. E., 3(1995), 139-153
[3] Y. T. Shen , Y. X. Yao and Z. H. Chen, On a nonlinear elliptic problem with critical potential in R² [J] , Science in China Ser. A Mathematics., 47(5)(2004), 741-755
[4] Chen Zhihui, Shen Yaotian and Yao Yangxin, Nonlinear biharmonic equations in R^{4} with potential[J],Chinese Annals of Mathematics, Series A, 26A:4(2005), 487-494.
[5] Moser, J., A sharp form of an inequality by N. Trudinger [J], Indiana Univ. Math. J., 20(1971),1077-1092.

