On I and $I^{\mathcal{K}}$ -convergence in n-normed linear Spaces

Pabitra Debnath¹ and Mantu Saha²

¹ Department of Mathematics, St. Xavier's College (Autonomous), Kolkata-700016, West Bengal, India. ² Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India. Corresponding author: Pabitra Debnath

Abstract: In this paper, we introduce the concept of I-convergence, $I^{\mathcal{K}}$ - convergence, I-cluster points and I-limit points in a n-normed linear space and thereby we prove some of its basic properties of I-convergence and $I^{\mathcal{K}}$ -convergence on such spaces.

Date of Submission: 29-08-2018	Date of acceptance: 13-09-2018

I. Introduction

The notion of statistical convergence was introduced first by Fast ([3]). Subsequently Kostyrko et al.([10]) extended this idea to the concept of I-convergence of sequences in a metric space with the notion of an ideal of the set of positive integers. Infact the notion of I-convergence is a generalization of statistical convergence and it also provides a general outline to study the properties in respect of various types of convergence.Taking into consideration of such notion of I-convergence much work had been done in different forms of convergences via I-cluster points, I-limit superior, I-limit inferior(see [1],[2],[6],[11])in different topological structured spaces. Based on the concept of 2-metric spaces and 2-normed linear space introduced by S.Gähler (see [12]-[13]) a study on n-norm theory led by Gunawan and Mashadi (see [4]) gave into the development of a n-normed space which is a generalization of 2-normed space. Further the investigations on ideal convergence and $I^{\mathcal{K}}$ - convergence of a sequence in a 2-normed linear space was done by M.Gürdal (see [7]) and Madjid Eshaghi Gordji et al (see [9]) respectively. Also the work on ideal convergence of a sequence in n-normed spaces could also be found in Gürdal and Sahiner (see [8]). In a natural way, one may invite these concepts of convergence for its general study on such n-normed linear spaces and thereby we have been able to prove here some of its properties on convergence of a sequences. Through out the paper \mathbb{N} denotes the set of positive integers.

II. Preliminaries

Definition 2.1 [4]. Let X be the linear space. For $n \in \mathbb{N}$, let $(\|.,..,\|)$ be a non-negative real valued function on $X \times X \times ... \times X = X^n$ satisfying the following conditions:

(i) $|| x_1, x_2, \dots, x_n || = 0$ if and only if $x_1, x_2, \dots, x_n \in X$ are linearly dependent.

(ii) $\| x_1, x_2, \dots, x_n \|$ is invariant under any permutation of $x_1, x_2, \dots, x_n \in X$.

(iii) $\| x_1, x_2, \dots, \alpha x_n \| = |\alpha| \| x_1, x_2, \dots, x_n \|$, where $\alpha \in \mathbb{R}, x_1, x_2, \dots, x_n \in X$.

 $(\text{iv}) \parallel x_1, x_2, \dots, x_{n-1}, y + z \parallel \leq \parallel x_1, x_2, \dots, x_{n-1}, y \parallel + \parallel x_1, x_2, \dots, x_{n-1}, z \parallel, \text{ for all } y, z, x_1, x_2, \dots, x_{n-1} \in X$

Then $\|.,..,\|$ is called a n-norm on X and the corresponding pair $(X, \|.,..,\|)$ is called a n-normed linear space.

Example 2.2 [4]. The space $X = \mathbb{R}^n$ is equipped with the following n-norm:

$$\| x_1, x_2, \dots, x_n \| = |\det \begin{pmatrix} x_{11} x_{12} \dots \dots x_{1n} \\ x_{21} x_{22} \dots \dots x_{2n} \\ \dots \dots \dots \dots \\ \dots \dots \dots \dots \\ x_{n1} x_{n2} \dots \dots x_{nn} \end{pmatrix}|$$

where $x_i = (x_{i1}, x_{i2}, ..., x_{in})$, for each i = 1, 2, ..., n.

Definition 2.3[4]. A sequence (x_n) in a n-normed linear space $(X, \|., ..., \|)$ is said to be a Cauchy if $\lim_{k,m\to\infty} \|z_1, z_2, ..., z_{n-1}, x_k - x_m\| = 0$, for all $z_1, z_2, ..., z_{n-1}$ in X.

Definition 2.4[4]. A sequence (x_n) in a n-normed linear space $(X, \|, \dots, \|)$ is said to be convergent if there is a point x in X such that $\lim_{k \to \infty} || z_1, z_2, \dots, z_{n-1}, x_k - x || = 0$, for all z_1, z_2, \dots, z_{n-1} in X. If (x_n) converges to x, we write $x_n \to x$ as $n \to \infty$.

Definition 2.5 [4]. A n-normed linear space in which every Cauchy sequence in X is convergent to an element of X is called a n-Banach space.

Definition 2.6 [9]. A nonempty family $I \subseteq \mathcal{P}(Y)$ of subset of a nonempty set Y is said to be an ideal in Y if: (i) $\phi \in I$

(ii) $A, B \in I$ implies $A \cup B \in I$

(iii) $A \in I, B \subseteq A$ implies $B \in I$.

I is called a proper ideal if $Y \notin I$ and I is not a proper ideal if $I = \mathcal{P}(Y)$. The ideal of all finite subsets of a given set Y is called Fin.

Definition 2.7. An ideal $I \subseteq \mathcal{P}(Y)$ is said to be non-trivial if $I \neq \phi$ and $Y \notin I$.

Definition 2.8 [9]. A non-trivial ideal I in Y is said to be admissible if $\{x\} \in I$ for each $x \in Y$.

Definition 2.9 [9]. A nonempty family $\mathcal{F} \subseteq \mathcal{P}(Y)$ of subset of a nonempty set Y is said to be a filter in Y if: (i) $\phi \in \mathcal{F}$

(ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$

(iii) $A \in \mathcal{F}, A \subseteq B$ implies $B \in \mathcal{F}$

If I is non-trivial ideal in Y, Y $\neq \phi$, then the class $F(I) = \{M \subset Y : (\exists A \in I) M = Y - A\}$ is a filter on Y, called the filter associated with Y.

Definition 2.10[3]. Let E be a subset of natural numbers N and $j \in N$. The quotient

 $d_i(E) = card(E \cap \{1, \dots, j\})/j$ is called the jth partial density of E where d_i is a probability measure on $\mathcal{P}(N)$ with support $\{1, ..., j\}$. The limit $d(E) = \lim_{i \to \infty} d_i(E)$ is called the natural density of $E \subseteq \mathbb{N}$ (if exists). Clearly, finite subsets have natural density zero and $d(E^c) = 1 - d(E)$ where $E^c = \mathbb{N} - E$, i.e. the complement of E.

Definition 2.11. A sequence (x_n) of elements in a n-normed linear space X is said to be statistically convergent to $x \in X$ if for each $\varepsilon > 0$ and for non zero z_1, z_2, \dots, z_{n-1} in X the set $A(\varepsilon) = \{n \in \mathbb{N} : \| z_1, z_2, \dots, z_{n-1}, x_n - x \| \ge \varepsilon\}$ has natural density zero. In other words for each $\varepsilon > 0$, $\lim_{n \to \infty} \frac{1}{n} \operatorname{card}(\{n \ge k : \| z_1, z_2, \dots, z_{n-1}, x_k - x \| \ge \varepsilon\}) = 0$

Definition 2.12[8]. Let $I \subseteq \mathcal{P}(\mathbb{N})$ be a nontrivial ideal in \mathbb{N} . The sequence (x_n) of X is said to be I-convergent to $x \in X$ if for each $\varepsilon > 0$ and non zero z_1, z_2, \dots, z_{n-1} in X, the set

$$A(\varepsilon) = \{k \in \mathbb{N} \colon \| z_1, z_2, \dots, z_{n-1}, x_k - x \| \ge \varepsilon\} \in I$$

If
$$(x_n)$$
 is I-convergent to $x \in X$ then we write $I - \lim_{k \to \infty} ||z_1, z_2, \dots, z_{n-1}, x_k - x|| = 0$; or

 $I - \lim_{k \to \infty} ||z_1, z_2, \dots, z_{n-1}, x_k|| = ||z_1, z_2, \dots, z_{n-1}, x||$. The number $x \in X$ is called the I-limit of the sequence (\mathbf{x}_n) .

Further we can see some examples of ideals and its corresponding I-convergence [see 14]. It is immediate that the following holds.

(I) Let I_f be the family of all finite subsets of \mathbb{N} . Then I_f is an admissible ideal in \mathbb{N} and I_f -convergence of a sequence in a n-normed linear space X coincides with its usual convergence in X.

(II) Put $I_d = \{A \subset \mathbb{N}: d(A) = 0\}$. Then I_d is an admissible ideal in \mathbb{N} and I_d -convergence of a sequence in a n-normed linear space coincides with its statistical convergence in X.

Remark 2.13[8]. If I is an admissible ideal in n-normed linear space $(X, \|., ..., \|)$ then the convergence of a sequence in X implies its I-convergence in X.

We are now in a position to note that which of the following holds for the convergence of a sequence in X implies its I-convergence in X.

(A) Every constant sequence (x, x, ..., x, ...,) converges to x in a n-normed linear space.

(B) The limit of any convergent sequence in a n-normed linear space X is uniquely determined.

(C) If a sequence (x_n) in X has a limit x in X, then each of its subsequence has the same limit.

(D) If each subsequence of the sequence (x_n) in X has a subsequence which converges to x in X, then (x_n) converges to x in X.

Proposition 2.14 [8]. Suppose that X is a n-normed linear space having at least two points. Let $I \subset \mathcal{P}(Y)$ be an admissible ideal, then

(i) The I -convergence in X satisfies (A),(B) and (D).

(ii) If I contains an infinite set, then I-convergence in X does not satisfy (C)

Example 2.15 [8].Let I = I_d.Define a sequence (x_n) in a n-normed linear space $(X, \|., ..., \|)$ by $x_n = \begin{cases} (0,0,\ldots,n) & \text{if } n = i^2, i \in \mathbb{N} \\ (0,0,\ldots,0) & \text{otherwise} \end{cases}$

Let $x = (0,0,\ldots,0) \in X$. Then $I - \lim_{k \to \infty} || z_1, z_2, \ldots, z_{n-1}, x_k || = || z_1, z_2, \ldots, z_{n-1}, x ||$. But the sequence (x_n) is not convergent to x.

We now conclude the fact that I-limit operation for the sequence in n-normed linear space $(X, \|., ..., \|)$ is linear with respect to summation and scalar multiplication.

Theorem 2.16[8]. Let I be an admissible ideal in a n-normed linear space X. For each $z_1, z_2, \ldots, z_{n-1}$ in X, if $I - \lim_{k \to \infty} || z_1, z_2, \ldots, z_{n-1}, x_k - x || = 0$ and $I - \lim_{k \to \infty} || z_1, z_2, \ldots, z_{n-1}, y_k - y || = 0$ then (i) $I - \lim_{k \to \infty} || z_1, z_2, \ldots, z_{n-1}, (x_k + y_k) - (x + y) || = 0$ and (ii) $I - \lim_{k \to \infty} || z_1, z_2, \ldots, z_{n-1}, c(x_k - x) || = 0$ for all $c \in \mathbb{R}$

III. Main Results

Note that there is a strong connection between statistical cluster points and ordinary limit points of a given sequence. We will prove that analouge fact is also satisfied for I-cluster points and I-limit points for a given sequences in a n-normed linear space X.

Definition 3.1. Let $I \subset \mathcal{P}(X)$ be an admissible ideal in X and $x = (x_n)$ be a sequence in X. Then

(i) A number $\xi \in X$ is said to be an I-limit point of x if there is a set $M = \{m_1 < m_2 < \dots m_{k-1}\} \subset N$ such that $M \notin I$ and $\lim_{k \to \infty} || z_1, z_2, \dots, z_{n-1}, x_{m_k} - \xi || = 0$ for each non zero z_1, z_2, \dots, z_{n-1} in X. The set of all I-limit point of x is denoted by $I(\Lambda_r^n)$.

(ii) A number $\xi \in X$ is said to be an I cluster points of x if for each $\varepsilon > 0$ the set $\{n \in \mathbb{N} : \| z_1, z_2, \dots, z_{n-1}, x_n - \xi \| < \varepsilon\} \notin I$ for each non zero z_1, z_2, \dots, z_{n-1} in X. The set of all I-cluster points of x is denoted by $I(\Gamma_x^n)$.

Theorem 3.2. Let $I \subset \mathcal{P}(X)$ be an admissible ideal in X. Then for each sequence $x = (x_n)$ in a n-normed linear space X we have $I(\Lambda_x^n) \subset I(\Gamma_x^n)$ and the set $I(\Gamma_x^n)$ is a closed set.

Proof. Let $\xi \in I(\Lambda_x^n)$. Then there exist a set $M = \{m_1 < m_2 < \cdots\} \notin I$ such that $\lim_{k \to \infty} || z_1, z_2, \dots, z_{n-1}, x_{m_k} - \xi || = 0$ for each non zero z_1, z_2, \dots, z_{n-1} in X. Thus for each $\delta > 0$ there exist $k_0 \in \mathbb{N}$ such that for $k > k_0$ and each nonzero z_1, z_2, \dots, z_{n-1} in X, we have by (3.1)

$$\{ n \in \mathbb{N} \colon \| \ z_1, z_2, ..., z_{n-1}, x_n - \xi \| < \delta \} \supset M \setminus \{ m_1, m_2, ..., m_{k_0} \}$$
 and so $\{ n \in \mathbb{N} \colon \| \ z_1, z_2, ..., z_{n-1}, x_n - \xi \| < \delta \} \notin I.$ Therefore $\xi \in I(\Gamma_x^n)$.

Let $y \in \overline{I(\Gamma_x^n)}$. For $\varepsilon > 0$. So there exists a $\xi_0 \in X$ such that $\xi_0 \in I(\Gamma_x^n) \cap B_u(y, \varepsilon)$. Choose $\delta > 0$ such that $B_u(\xi_0, \delta) \subset B_u(y, \varepsilon)$. Therefore we have

 $\{n \in \mathbb{N} \colon \| z_1, z_2, \dots, z_{n-1}, x_n - y \| < \epsilon \} \supset \{n \in \mathbb{N} \colon \| z_1, z_2, \dots, z_{n-1}, x_n - \xi_0 \| < \delta \}$ Hence $\{n \in \mathbb{N} \colon \| z_1, z_2, \dots, z_{n-1}, x_n - y \| < \epsilon \} \notin I$ which in turn implies that $y \in I(\Gamma_x^n)$.

Definition 3.3. Let $I \subset \mathcal{P}(X)$ be an admissible ideal in X and let $x = (x_n)$ be a sequence in n-normed linear space $(X, \|., ..., .\|)$. If $K = \{k_1 < k_2 < ...\} \in I$, then the subsequence $x_K = (x_{k_n})$ is called I-thin subsequence of the sequence x and if $K = \{k_1 < k_2 < ...\} \notin I$, then the subsequence $x_K = (x_{k_n})$ is called I-non- thin subsequence of the sequence x.

Theorem 3.4. Let $I \subseteq \mathcal{P}(X)$ be an admissible ideal in a n-normed linear space $(X, \|, \dots, \|)$ and $x = (x_n)$ and $y = (y_n)$ are sequence in X such that $M = \{n \in \mathbb{N} : x_n \neq y_n\} \in I$. Then $I(\Lambda_x^n) = I(\Lambda_y^n)$ and $I(\Gamma_x^n) = I(\Gamma_y^n)$. Proof. Let $M = \{n \in \mathbb{N} : x_n \neq y_n\} \in I$. If $\xi \in I(\Lambda_x^n)$. Then there is a set $K = \{m_1 < m_2 < ...\} \notin I$ such that $I - \lim_{k \to \infty} \| z_1, z_2, \dots, z_{n-1}, x_{m_k} - \xi \| = 0$ for each non zero z_1, z_2, \dots, z_{n-1} in X. Since $K_1 = \{n \in \mathbb{N} : n \in K, x_n \neq y_n\} \subset M \in I$, then $K_2 = \{n \in \mathbb{N} : n \in K, x_n = y_n\} \notin I$; because if $K_2 \in I$, then $K = K_1 \cup K_2 \in I$, but $K \notin I$. Hence the sequence $y_{K_2} = (y_{m_n})$ is a I-non- thin subsequence of $y = (y_n)$ and y_{K_2} converges to $\xi \in X$ i.e. $\xi \in I(\Lambda_y^n)$. Now if $\xi \in I(\Gamma_x^n)$, then $K_3 = \{n \in \mathbb{N} : n \in K_3, x_n = y_n\} \notin I$. Therefore $K_4 \subset \{n \in \mathbb{N} : \| z_1, z_2, \dots, z_{n-1}, y_n - \xi \| \le \varepsilon\}$ for each $\varepsilon > 0$ and nonzero z_1, z_2, \dots, z_{n-1} in X. Thus it follows that for each $\varepsilon > 0$ and non zero z_1, z_2, \dots, z_{n-1} in X the set $\{n \in \mathbb{N} : |z_1, z_2, \dots, z_{n-1}, y_n - \xi \| \le \varepsilon\} \notin I$. i.e. $\xi \in I(\Gamma_y^n)$. This completes the proof.

The concepts of I and I*-convergence are also introduced in different topological space (see [11],[13]). We can extend these concepts to the notion of the I^k -convergence for sequences in a n-normed linear space. In a analogue way we can introduce the definition of I and I*-convergence for a sequences in a n-normed linear space.

Definition 3.5. Let $(X, \|., ..., \|)$ be a n-normed linear space and I be an ideal on a set A. The function $f: A \to X$ is said to be I-convergent to $x \in X$ if for all nonzero $z_1, z_2, ..., z_{n-1}$ in X and for all $\varepsilon > 0$ we have

$$A(\varepsilon) = \{a \in A \colon \| f(a) - x, z_1, z_2, \dots, z_{n-1} \| \ge \varepsilon\} \in I.$$

We write it as $I - \lim f = x$.

Remark 3.6. If $A = \mathbb{N}$, we obtain the usual definition I-convergence of the sequence (x_n) to x in a n-normed linear spaced X.

Lemma 3.7.Let X, Y be two n-normed linear spaces and let A be a non empty set and I, I_1 and I_2 be ideals on A. Then

(i) If I is not a proper ideal, then every function $f: A \to X$ is I-convergent to each point of X. (ii) If $I_1 \subset I_2$, then for every function $f: A \to X$, we have $I_1 - \lim f = x \Rightarrow I_2 - \lim f = x$.

Proof. (i)Let x be a arbitrary element of X, then for all $\varepsilon > 0$ and for each non zero $z_1, z_2, \ldots, z_{n-1}$ in X, we have $A(\varepsilon) = \{a \in A : \| f(a) - x, z_1, z_2, \ldots, z_{n-1} \| \ge \varepsilon\} \in \mathcal{P}(A) = I$ (ii) Let $I_1 \subset I_2$ and $I_1 - \lim f = x$. Then we have for all $\varepsilon > 0$ and for all $z_1, z_2, \ldots, z_{n-1}$ in X the set $A(\varepsilon) = \{a \in A : \| f(a) - x, z_1, z_2, \ldots, z_{n-1} \| \ge \varepsilon\} \in I_1 \subset I_2$. Hence $I_2 - \lim f = x$

Definition 3.8. $(X, \|., ..., \|)$ be a n-normed linear space and I be an ideal on N. The sequence (x_n) in X is said to be I^* - convergent to a point $x \in X$, if there exists a set $M \in \mathcal{F}(I)$ such that $x_n \to x$ as $n \to \infty$ with respect to norm in M. We write it as $I^* - \lim \Re x_n = x$. We now introduce the definition of $I^{\mathcal{K}}$ -convergence. Now we replace the ideal Fin by an arbitrary ideal on the set A.

Definition 3.9.Let $(X, \|., ..., .\|)$ be a n-normed linear space and let \mathcal{K} and I be ideals on \mathbb{N} . The sequence (x_n) in X is said to be $I^{\mathcal{K}}$ -convergence to a point $x \in X$, if there exists a set $M \in \mathcal{F}(I)$ and a sequence (y_n) such that

 $y_n = \begin{cases} x_n & \text{ if } n \in M \\ x & \text{ if } n \notin M \end{cases} \text{ satisfying } \mathcal{K}\text{-lim}y_n = x. \text{ We write it as } I^{\mathcal{K}}\text{-lim}x_n = x.$

Remark 3.10.The definition of $I^{\mathcal{K}}$ -convergence can be reformulated in the form of decomposition. A sequence (x_n) is $I^{\mathcal{K}}$ -convergence if and only if $(x_n) = (y_n) + (z_n)$ where (y_n) is \mathcal{K} -convergent and (z_n) is a sequence of non-zero elements on a set from I.

Example 3.11. We now exhibit some examples of ideals and their $l^{\mathcal{K}}$ -convergence

(i) Let $I_0 = \mathcal{K}_0 = \{\phi\}$. I_0 is the minimal ideal in \mathbb{N} . A sequence (x_n) is $I^{\mathcal{K}}$ -convergent if and only if it is constant

(ii) Let $\phi \neq M \subset \mathbb{N}, M \neq \mathbb{N}$. Take $\mathcal{K} = \mathcal{P}(M)$ i.e \mathcal{K} is a proper ideal in \mathbb{N} . Let $I = \{\phi\}$. A sequence (x_n) is $I^{\mathcal{K}}$ -convergent if and only if it is constant on $\mathbb{N}\setminus M$.

(iii) Let \mathcal{K} be a admissible ideal in \mathbb{N} and I be an arbitrary ideal. A sequence (x_n) is $I^{\mathcal{K}}$ -convergent to a point $x \in X$ if there exists a set $M \in \mathcal{F}(I)$ and the sequence (y_n) given by Definition is such that the convergence of (y_n) is its usual convergence.

Theorem 3.12. The limit of any $I^{\mathcal{X}}$ -convergent sequence in n-normed linear space X is unique.

Proof. Suppose that (x_n) be a $I^{\mathcal{K}}$ -convergent sequence in a n-normed linear space X. Let $I^{\mathcal{K}} - \lim(x_n) = l_1$, $I^{\mathcal{K}} - \lim(x_n) = l_2$ and $l_1 \neq l_2$. Hence there exists $z_1, z_2, \ldots, z_{n-1}$ in X, such that $z_1, z_2, \ldots, z_{n-1}$ and $l_1 - l_2$ are linearly independent. Take $\varepsilon > 0$ such that

$$|| z_1, z_2, \dots, z_{n-1}, l_1 - l_2 || = 2\epsilon.$$

Since $I^{\mathcal{K}} - \lim(x_n) = l_1$, by Definition 3.9 there exists a set $M_1 \in \mathcal{F}(I)$ such that the sequence (p_n) given by $p_n = \begin{cases} x_n & \text{if } n \in M_1 \\ l_1 & \text{if } n \notin M_1 \end{cases}$

satisfies \mathcal{K} -limp_n = l₁.

Since $I^{\mathcal{K}} - \lim(x_n) = l_2$, therefore there exist $M_2 \in \mathcal{F}(I)$ such that the sequence (q_n) given by $q_n = \begin{cases} x_n & \text{if } n \in M_2 \\ l_2 & \text{if } n \notin M_2 \end{cases}$

satisfies \mathcal{K} -lim $q_n = l_2$.

 $\begin{array}{l} \text{Therefore for all } \epsilon > 0 \ \text{ and } z_1, z_2, \dots, z_{n-1} \ \text{ in } X. \ \text{We have} \\ \{m \in \mathbb{N} \colon \| \ z_1, z_2, \dots, z_{n-1}, p_m - l_1 \ \| \geq \epsilon\} \in \mathcal{K} \end{array}$

and $\{m \in \mathbb{N} : \| z_1, z_2, \dots, z_{n-1}, q_m - l_2 \| \ge \varepsilon\} \in \mathcal{K}.$

Take $M = M_1 \cap M_2$. We have,

$$\begin{split} &2\epsilon = \| \; z_1, z_2, \dots, z_{n-1}, l_1 - x_m + x_m - l_2 \; \| \\ &\leq \| \; z_1, z_2, \dots, z_{n-1}, l_1 - x_m \; \| + \| \; z_1, z_2, \dots, z_{n-1}, x_m - l_2 \; \| \\ &\leq \| \; z_1, z_2, \dots, z_{n-1}, l_1 - p_m \; \| + \| \; z_1, z_2, \dots, z_{n-1}, q_m - l_2 \; \| \end{split}$$

Therefore $\{m \in M : || z_1, z_2, \dots, z_{n-1}, q_m - l_2 || < \varepsilon\} \subseteq \{m \in M : || z_1, z_2, \dots, z_{n-1}, p_m - l_2 || \ge \varepsilon\} \in \mathcal{K}$, which is a contradiction to the fact that $I \neq \phi$.

We now show that $I^{\mathcal{K}}$ -limit operation for the sequences in a n-normed linear space $(X, \|., ..., \|)$ is linear with respect to summation and scalar multiplication.

Theorem 3.13. Let (x_n) and (y_n) be sequences in n-normed linear space $(X, \|., ..., \|)$ and $I^{\mathcal{K}} - \lim(x_n) = l_1, I^{\mathcal{K}} - \lim(x_n) = l_2$, then (i) $I^{\mathcal{K}} - \lim(x_n + y_n) = l_1 + l_2$ (ii) $I^{\mathcal{K}} - \lim(\alpha_n) = \alpha l_1$.

Proof. (i) Let $I^{\mathcal{K}} - \lim(x_n) = l_1$. By definition there exist $M_1 \in \mathcal{F}(I)$ such that the sequence (p_n) given by $p_n = \begin{cases} x_n & \text{if } n \in M_1 \\ l_1 & \text{if } n \notin M_1 \end{cases}$ satisfies \mathcal{K} -lim $p_n = l_1$. Since $I^{\mathcal{K}} - \lim(x_n) = l_2$, there exist $M_2 \in \mathcal{F}(I)$ such that the sequence (q_n) given by $q_n = \begin{cases} x_n & \text{if } n \in M_2 \\ l_2 & \text{if } n \notin M_2 \end{cases}$ satisfies $\mathcal{K} - \lim q_n = l_2$. Take $M = M_1 \cap M_2 \in \mathcal{F}(I)$ and we define a sequence $r_n = \begin{cases} x_n + y_n & \text{if } n \in M \\ l_1 + l_2 & \text{if } n \notin M. \end{cases}$ and we see that $\mathcal{K} = \lim(p_1 + q_2) = \mathcal{K} = \lim(p_1 + q_2) = \mathcal{K}$

and we see that $\mathcal{K} - \lim(p_n + q_n) = \mathcal{K} - \lim p_n + \mathcal{K} - \lim q_n = l_1 + l_2$ (ii) Proof is straightforward and left out. **Lemma 3.14.** Let \mathcal{K} and I be ideals on a set \mathbb{N} . Let (x_n) be sequences in a n-normed linear space $(X, \|., .., .\|)$ such that $\mathcal{K} - \lim(x_n) = l$. Then $I^{\mathcal{K}} - \lim(x_n) = l$.

Lemma 3.15. Let $\mathcal{K}, \mathcal{K}_1, \mathcal{K}_2, I, I_1$ and I_2 be ideals in a set \mathbb{N} such that $I_1 \subset I_2$ and $\mathcal{K}_1 \subset \mathcal{K}_2$. Let (\mathbf{x}_n) be a sequences in a n-normed linear space $(X, \|., \dots, \|)$ then we have (i) $I_1^{\mathcal{H}} - \lim x_n = I \Rightarrow I_2^{\mathcal{H}} - \lim x_n = I$

(ii)
$$I^{\mathcal{K}_1} - \lim_{n \to \infty} I \Rightarrow I^{\mathcal{K}_2} - \lim$$

Proof. (i) Suppose $I_1^{\mathcal{K}} - \lim x_n = 1$, By definition there exist $M \in \mathcal{F}(I)$ such that the sequence (p_n) given by

$$p_n = \begin{cases} x_n & \text{ifn} \in M \\ l & \text{ifn} \notin M \end{cases}$$

satisfies \mathcal{K} -limp_n = l.

Now for each $\varepsilon > 0$ and non zero z_1, z_2, \dots, z_{n-1} in X, we have

$$\{n \in \mathbb{N} : \parallel z_1, z_2, \dots, z_{n-1}, p_n - l \parallel \geq \epsilon\} \in \mathcal{K}$$

Since $I_1 \subset I_2$ we have $M \in \mathcal{F}(I_1) \subset \mathcal{F}(I_2)$. Therefore $I_2^{\mathcal{H}} - \lim x_n = 1$

(ii) Suppose $I^{\mathcal{K}_1} - \lim x_n = l$, By definition there exist $M \in \mathcal{F}(I)$ such that the sequence (p_n) given by

$$p_n = \begin{cases} x_n & \text{if } n \in M \\ l & \text{if } n \notin M. \end{cases}$$

satisfies \mathcal{K} -limp_n = l.

For each $\varepsilon > 0$ and z_1, z_2, \dots, z_{n-1} in X. we have

$$\{n \in \mathbb{N} \colon \| z_1, z_2, \dots, z_{n-1}, p_n - l \| \ge \varepsilon\} \in \mathcal{K}_1 \subset \mathcal{K}_2$$

Therefore $I^{\mathcal{K}_2} - \lim_n x_n = 1$

In the followingt theorem, we show the relationship between the I-convergence and $I^{\mathcal{K}}$ -convergence.

Theorem 3.16. Let \mathcal{K} and I be ideals on a set \mathbb{N} .

Let (x_n) be sequences in n-normed linear space $(X, \|., ..., .\|)$. (i) If $I^{\mathcal{K}} - \lim(x_n) = 1$ implies $I - \lim(x_n) = 1$ for some $l \in X$, which has one neighborhood different from X, then $\mathcal{K} \subseteq I$ (ii) If $\mathcal{K} \subseteq I$ then $I^{\mathcal{K}} - \lim(x_n) = 1$ implies $I - \lim(x_n) = 1$

Proof. (i) Suppose that \mathcal{K} is not a subset of I. Then there exists a set $V \in \mathcal{K}$ such that $V \notin I$. Let $l \in X$ has a neighborhood $U \subset X$ such that $U \neq X$ and $y \in X \setminus U$. We define a sequence (t_n) on X such that

$$\mathbf{t}_{\mathbf{n}} = \begin{cases} \mathbf{y} & \text{if } \mathbf{n} \in \mathbf{V} \\ \mathbf{l} & \text{if } \mathbf{n} \notin \mathbf{V}. \end{cases}$$

satisfying $\mathcal{K} - \lim(x_n) = l$. Thus by Lemma 3.14, we get $I^K - \lim(x_n) = l$. Hence $\{n \in \mathbb{N} : || \ z_1, z_2, \dots, z_{n-1}, t_n - l || \ge \epsilon\} = V \notin I$. Hence the sequence (x_n) is not I- convergent to l

(ii) Let (x_n) be sequences in a n-normed linear space $(X, \|., ..., \|)$ and $l \in X$. Let $\mathcal{K} \subseteq I$ and $I^K - \lim(x_n) = l$. By definition of $I^{\mathcal{K}}$ -convergence, there exist $M \in \mathcal{F}(I)$ such that the sequence (p_n) given by $(x_n \quad \text{ifn} \in M$

$$p_n = \begin{cases} x_n & \text{If } n \in M \\ 1 & \text{if } n \in M \end{cases}$$

satisfying $\mathcal{K} - \lim(x_n) = l$. Now for all $\varepsilon > 0$ and z_1, z_2, \dots, z_{n-1} in X, we have

 $A(\epsilon) = \{n \in \mathbb{N} : \| \ z_1, z_2, \dots, z_{n-1}, p_n - l \ \| \ge \epsilon\} = \{n \in \mathbb{N} : \| \ z_1, z_2, \dots, z_{n-1}, x_n - l \ \| \ge \epsilon\}$

Hence $A(\epsilon) \cap M \in \mathcal{K} \subseteq I$ and $\{n \in \mathbb{N} : || z_1, z_2, \dots, z_{n-1}, x_n - l || \ge \epsilon\} \subseteq (X \setminus M) \cup (A(\epsilon) \cap M) \in I$

Therefore $I - \lim_{n \to \infty} x_n = I$

DOI: 10.9790/5728-1404043844

References

- [1]. B.K Lahiri and P. Das, I and I* convergence in topologycal spacess, Math. Bohem, **130**(2005), 153-160.
- [2]. B.K Lahiri and P.Das, Further remark on I-limit superior and I-limit inferior, Math. Commun. 8 (2003),151-156.
- [3]. H. Fast, Sur la convergence statistique, Colloq.Math, **2**(1951) 241-244.
- [4]. H.Gunawan and Mashadi, On n-norm space, Int.J.Math.Math.Sci., (2001),631-639.
- [5]. J. Činčura, T. Šalăt, M.Sleziak and V.Toma, Set of statistical cluster pointss and I-cluster points, Real Anal. Exchange, bf 30(2004/2005), 565-580.
- [6]. K.Demirci, I-limit superior and limit inferior, Math.Commun. **6**(2001) 165-172.
- [7]. M.Gürdal, On ideal convergent sequences in 2-Normed Spaces ,Thai.J.Math., 4(1), (2006),85 91
- [8]. M.Gürdal and A.Sahiner, Ideal convergence in n-normed spaces and some sequence spaces via n-norm, Journal of Foundamental Science 4(2008),233-244.
- [9]. Madjid Eshaghi Gordji,Saeed Sarabadan and Fatemeh Amouei Arani, I^{*X*}-convergence in 2-normed Space,Functional Analysis, Approximation and Computation., Math. 4:1, (2012) 1-7.
- [10]. P.Kostyrko, T.Salat and W.Wilczyncki, I-convergence, Real Anal. Exchange, 26(2001)666-669.
- [11]. P.Kostyrko, M.Macaj, T.Salat and M.Sleziak, I-convergence and external I-limit points, Math.Slovaca, 55(2005)443-464.
- [12]. S.Gähler, 2-metric Raume and ihre topologische strucktur, Math.Nachr., **26**(1963), 115-14.
- [13]. S.Gähler, Uber die unifromisieberkeit 2-metrischer Raume, Math.Nachr. 28(1965), 235 244.

Pabitra Debnath "On I and I^K-convergence in n-normed linear Spaces " "(IOSR-JM) 14.4 (2018): 38-44.