Estimates in the Operator Norm

K.Gunasekaran And R.Kavitha
Ramanujan Research Centre, PG and Research Department of Mathematics,
Government Arts College (Autonomous), Kumbakonam – 612 002, Tamil Nadu, India.
Corresponding Author: K.Gunasekaran

Abstract: In this paper, we will obtain estimates of the distance between the q-k-eigenvalues of two q-k-normal matrices A and B in terms of $\|A - B\|$. Apart from the optimal matching distances, $s(L, M)$ and $h(L, M)$, Note that $s(L, M)$ is the smallest number δ such that every element of L is within a distance δ of some element of M; and $h(L, M)$ is the smallest number δ for which this as well as the symmetric assertion with L and M interchanged, is true.

We will use the notation $\sigma(A)$ for both the subset of the quaternion plane that consists of all the q-k-eigenvalues on $n \times n$ matrix A, and for the unordered n-tuple whose entries are the q-k-eigenvalues of A counted with multiplicity. Since we will be taking of the distances $s(\sigma(A), \sigma(B)), h(\sigma(A), \sigma(B))$, and $d(\sigma(A), \sigma(B))$, it will be clear which of the two objects is being represented by $\sigma(A)$.

I. Introduction

In this paper, we will obtain estimates of the distance between the q-k-eigenvalues of two q-k-normal matrices A and B in terms of $\|A - B\|$. Apart from the optimal matching distances $s(L, M)$ and $h(L, M)$. Note that $s(L, M)$ is the smallest number δ such that every element of L is within a distance δ of some element of M; and $h(L, M)$ is the smallest number δ for which this as well as the symmetric assertion with L and M interchanged, is true.

We will use the notation $\sigma(A)$ for both the subset of the quaternion plane that consists of all the q-k-eigenvalues on $n \times n$ matrix A, and for the unordered n-tuple whose entries are the q-k-eigenvalues of A counted with multiplicity. Since we will be taking of the distances $s(\sigma(A), \sigma(B)), h(\sigma(A), \sigma(B))$, and $d(\sigma(A), \sigma(B))$, it will be clear which of the two objects is being represented by $\sigma(A)$.

II. Definitions And Some Theorems

Definition 2.1:
If L, M are closed subsets of a quaternion space H_n, let
$s(L, M) = \sup_{\lambda \in L} \text{dist}(\lambda, M) = \sup_{\lambda \in L} \inf_{\mu \in M} |\lambda - \mu|$

Definition 2.2:
The Hausdorff distance between L and M is defined as
$h(L, M) = \max(s(L, M), s(M, L))$

Definition 2.3:
The $d(\sigma(A), \sigma(B))$ is defined as $d(\sigma(A), \sigma(B)) \leq \|A - B\|$ if either A and B are both q-k-Hermitian or one is q-k-Hermitian and other q-k-Skew-Hermitian.

Theorem 2.4:
Let A be q-k-normal and B an arbitrary matrix of same order of A. Then
$s(\sigma(B), \sigma(A)) \leq \|A - B\|$
Proof:
Let $\delta = \|A - B\|$. For proving the theorem, we have to show that if β is any q-k-eigenvalues of B, then β is within a distance δ of some q-k-eigenvalue α_j of A.

By applying a translation, we assume that $\beta = 0$. If none of the α_j is within a distance δ of this, then A^{-1} exists.

Since A is q-k-normal.
Therefore, \(\|A^{-1}\| = \max_{1 \leq j \leq n} \left| \alpha_j \right| < \frac{1}{\delta} \).

Hence, \(\|A^{-1}(B - A)\| \leq \|A^{-1}\| \|B - A\| < \frac{1}{\delta} \delta = 1 \).

Since \(B = A(I + A^{-1}(B - A)) \), this shows that \(B \) is invertible. Then but \(B \) could not have a zero q-k-eigenvalue. Hence proved.

Corollary 2.5:

If \(A \) and \(B \) are \(n \times n \) q-k-normal matrices then \(h(\sigma(A), \sigma(B)) \leq \|A - B\| \).

Proof:

Since \(A \) and \(B \) are q-k-normal matrices of order \(n \times n \).

Let \(\sigma(A) \) and \(\sigma(B) \) be set of all q-k-eigenvalues of \(A \) and \(B \) respectively.

\[
s(\sigma(A), \sigma(B)) \leq \|A - B\| \tag{1}
\]

and \(h(\sigma(A), \sigma(B)) = \max(s(\sigma(A), \sigma(B)), s(\sigma(B), \sigma(A))) \).

From these two, one can conclude that \(h(\sigma(A), \sigma(B)) \leq \|A - B\| \).

Remark 2.6:

For \(n = 2 \), the corollary 2.5 will lead to \(d(\sigma(A), \sigma(B)) \leq \|A - B\| \).

Theorem 2.7:

For any two q-k-unitary matrices \(d(\sigma(A), \sigma(B)) \leq \|A - B\| \).

Proof:

The proof will use the marriage theorem and above. Let \(\{\lambda_1, \lambda_2, ..., \lambda_n\} \) and \(\{\mu_1, \mu_2, ..., \mu_n\} \) be the q-k-eigenvalues of \(A \) and \(B \) respectively.

Let \(\Lambda \) be any subset of \(\{\lambda_1, \lambda_2, ..., \lambda_n\} \).

Let \(\mu(\Lambda) = \left\{ \mu_j : \left| \mu_j - \lambda_j \right| \leq \delta \text{ and } \lambda_j \in \Lambda \right\} \).

By the marriage theorem, the assertion would be proved if we show that \(|\mu(\Lambda)| \geq |\Lambda| \).

Let \(I(\Lambda) \) be the set at all points on the unit ball \(T \) that are within distance of some point of \(\Lambda \). Then \(\mu(\Lambda) \) contains exactly those \(\mu_j \) that lie in \(I(\Lambda) \).

Let \(I(\Lambda) \) be written as a disjoint union of arcs \(I_1, ..., I_r \). For each \(k; k < r \), let \(J_k \) be the arc contained in \(I_k \) all whose points at least distance from the boundary of \(I_k \) then \(I_k = (J_k)_k \).

We have \(\sum_{k=1}^r m_A(J_k) \leq \sum_{k=1}^r m_B(I_k) = m_B(I(\Lambda)) \)

But all the elements of \(\Lambda \) are in some \(J_k \).

\(\Rightarrow |\Lambda| \leq |\mu(\Lambda)| \)

Similarly for, \(\mu \) is a subset of \(\{\mu_1, \mu_2, ..., \mu_n\} \).

\[
|\mu| \leq |\Lambda(\mu)| \leq |\Lambda| - |\mu| \leq |\Lambda - \mu| \leq |\Lambda(\mu) - \mu(\Lambda)|
\]
That is, \[d(A, B) \leq \max_{1 \leq j \leq n} |\lambda_j - \mu_{\sigma(j)}| \] (2)

Hence proved.

Remark 2.8:

There is one difference between theorem 2.7 and most of our earlier results of this type. Now nothing is said about the order in which the q-k-eigenvalues of \(A \) and \(B \) are arranged for the optimal matching. No canonical order can be prescribed in general.

Theorem 2.9:

Let \(A \) and \(B \) be q-k-normal matrices with q-k-eigenvalues \(\{\lambda_1, \lambda_2, ..., \lambda_n\} \) and \(\{\mu_1, \mu_2, ..., \mu_n\} \) respectively. Then there exists a permutation \(\sigma \) such that

\[\|A - B\| \leq \sqrt{2} \max_{1 \leq j \leq n} |\lambda_j - \mu_{\sigma(j)}| \] (2)

Proof:

Since \(A \) and \(B \) are q-k-normal matrices. So \(A \otimes I \) and \(I \otimes B \) are both q-k-normal and commute with each other. Hence \(A \otimes I - I \otimes B \) is q-k-normal. The q-k-eigenvalues of this matrix are all the differences \(\lambda_j - \mu_j; 1 \leq i, j \leq n \)

Hence \(\|A \otimes I - I \otimes B\| = \max_{i, j} |\lambda_i - \mu_j| \)

Since q-k-eigenvalues of \(B \) are q-k-eigenvalues of \(B^T \).

So \(\|A \otimes I - I \otimes B^T\| = \max_{i, j} |\lambda_i - \mu_j| \)

\[\Rightarrow \|A - B\| = \|A \otimes I - I \otimes B^T\| \leq \sqrt{2} \|A \otimes I - I \otimes B\| \]

This is equivalent to (2)

Therefore, \(\|A - B\| \leq \sqrt{2} \max_{1 \leq j \leq n} |\lambda_j - \mu_{\sigma(j)}| \)

Hence proved.

Remark 2.10:

This is, in fact, true for all \(A, B \) and is proved below.

Theorem 2.11:

For all quaternion matrices \(A, B \) \(\|A - B\| \leq 2 \|A \otimes I - I \otimes B^T\| \) (3)

Proof:

We have to prove that for all \(x, y \) in \(H_n \)

\[\|x, (A - B)y\| \leq \sqrt{2} \|A \otimes I - I \otimes B^T\| \|x\| \|y\| \]

Now, \[\|x, (A - B)y\| = \|x^*y - x^*By\| \]

\[= \|x^*Ay - x^*By\| \]

\[= |tr(Ayx^* - yx^*B)| \]

\[\leq \|Ayx^* - yx^*B\| \]

This matrix \(Ayx^* - yx^*B \) has rank atmost 2. So, \(\|Ayx^* - yx^*B\| \leq \sqrt{2} \|Ayx^* - yx^*B\|_2 \).
Let \overline{x} be the vector whose components are the conjugates of the components of x. Then with respect to the standard basis $e_i \otimes e_j$ of $H_n \otimes H_n$, (i, j)-coordinate of the vector $(A \otimes I) (y \otimes \overline{x})$ is $\sum_k a_{ik}y_k \overline{x}_j$.

This is also (i, j)-entry of the matrix $Ay\overline{x}^*$. In the same way, the (i, j)-entry of yx^*B is the (i, j)-coordinate of the vector $(I \otimes B^T) (y \otimes \overline{x})$.

Thus we have,

$$\|Ay\overline{x}^* - yx^*B\|_2 \leq \left\| (A \otimes I - I \otimes B^T) (y \otimes \overline{x}) \right\|_2$$

$$\leq \left\| A \otimes I - I \otimes B^T \right\|_2 \left\| y \otimes \overline{x} \right\|_2$$

$$= \left\| A \otimes I - I \otimes B^T \right\|_2 \|x\| \|\overline{x}\|$$

Hence proved.

References