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Abstract:A real representation of the split quaternion matrix is defined and its properties are studied. The 

differences between three representations are discussed. Then the split quaternionic least squares problem is 

studied in detail from norm, definition to computation, and an algebraic method is obtained for finding solutions 

of the problem in split quaternionic mechanics. Numerical examples show that our method is effective and better 

than that of the paper[Z. Zhang, Z. Jiang, T. Jiang, Algebraic methods for least squares problem in split 

quaternionic mechanics, Applied Mathematics and Computation, 269 (2015), 618-625.] 
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I. INTRODUCTION 

The introduction of the paper should explain the nature of the problem, previous work, purpose, and the 

contribution of the paper. The contents of each section may be provided to understand easily about the paper. 

(10) The quaternion invented by William Rowan Hamilton(1805-1865) has been widely used in quaternionic 

quantum mechanics and many other fileds. In 1849, James Cockle found the split quaternion, which has the 

following form: 
2 2 2

0 1 2 3= , = 1, = =1, =1,q q q i q j q k i j k ijk     

where 0 1 2 3, , ,q q q q  are real and = = , = = , = =ij ji k jk kj i ki ik j    . The set of all split quaternions is a ring, 

denoted by SQ . This ring is an associative, noncommutative four-dimensional Clifford algebra and has zero 

divisors, nilpotent elements and nontrivial idempotents[1]. SQ  is different from the quaternion ring and has 

more complicated algebraic structure. For details, see [1] and the references therein. 

In complexified classical and non-Hermitian quantum mechanics, there are surprising relations 

between quaternionic and split quaternionic mechanics [2]. In the literature over the past decade, the 

complexified mechanical systems with real energies are studied extensively, which can alternatively be viewed 

as certain split quaternionic extensions of the underlying real mechanical systems [3]. This result leads to the 

possibility of employing algebraic techniques of quaternions and split quaternions to deal with some challenging 

open issues in complexified classical quantum mechanics. 

Let R and = i j k  SQ R R R R  denote the real number field and the split quaternion ring, 

respectively. For 0 1 2 3 0 1 2 3= , =a a a i a j a k b b b i b j b k      SQ , the conjugate of a  is defined as 

0 1 2 3=a a a i a j a k    , then 
2 2 2 2

0 1 2 3=aa a a a a   . The module | |a  of a split quaternion a  is defined as 

2 2 2 2

0 1 2 3| |= | | = | |a aa a a a a   . a is said to be a unit split quaternion if its norm is 1.and their multiplication 

is defined as  

0 0 1 1 2 2 3 3 0 1 1 0 2 3 3 2= ( ) ( )ab a b a b a b a b a b a b a b a b i      

0 2 2 0 1 3 3 1 0 3 3 0 1 2 2 1( ) ( ) .a b a b a b a b j a b a b a b a b k         

For any quaternion matrix A , TA  and HA  denote the transpose, and conjugate transpose of A , respectively. 

( : , : )A i j k l  represents the submatrix of A  containing the intersection of rows i  to j  and columns k  to l . nI  

denotes the unit matrix of order n. 

In this paper, we will define a real presentation of the split quaternion matrix and study its properties. 

Also we will discuss the differences between three representations: the real presentation and the complex 

presentation of [4] and our real presentation. As the first application of our real presentation, then we will give 

an alternative of the split quaternion norm, which enable us to define and study the split quaternionic least 

squares(SQLS) problem. An algebraic method is obtained for finding solutions of the SQLS problem in split 
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quaternionic mechanics. As the second application, we will discuss the inverse and its computation of the split 

quaternion matrix. At last, numerical examples show that, for some special problems, our method is effective 

and better than that of the paper[4]. 

This paper is organized as follows. In Section 2, the real representation will be defined and discussed. 

In Section 3, the SQLS problem and the inverse of the split quaternion matrix will be studied. In Section 4, two 

numerical experiments will be provided to demonstrate the efficiency of our algorithm. Finally, some 

concluding remarks will given in Section 5. 

 

II. REAL REPRESENTATION 
In this section, we will give the definition of the real presentation and discuss its properties. 

Let ( = 0,1,2,3).m n

lA lR  The real representation matrix is defined as follows.  

0 2 1 3 2 2

1 3 0 2

.R m n
A A A A

A
A A A A


   

 
  

R@                                                        (2.1) 

The real matrix RA  in (2.1) is uniquely determined by the split quaternion matrix 

0 1 2 3= m nA A Ai A j A k    SQ , and it is said to be a real representation matrix of the split quaternion matrix 

A  . 

By simple computation, we can obtain the following properties.  

Theorem 2.1 Let , , ,m n n sA B C    SQ SQ R . Then  

    ( ) = ,( ) = ,( ) = .R R R R R R R RA B A B A A AC A C    

Remark 1. It is noteworthy that ( ) = ( ) ,H R R TA A  which is a disadvantage of this real presentation and leads to 

the inability to deal with generalized inverse and so on. 

In [4], Z. Zhang defined other real representation matrix in the form 

1 2 3 4

2 1 4 3 4 4

3 4 1 2

4 3 2 1

.r m n

A A A A

A A A A
A

A A A A

A A A A



 
 
  
  
 
 

R@                                           (2.2) 

rA  has more good properties, but larger scale than RA . More importantly, RA  is the general matrix 

and rA  has special structure. In many problems, for example, the following LS question, RA  has more 

advantages than rA . 

For instance, for 0 1 2 3 0 1 2 3= , = n nA A Ai A j A k B B B i B j B k       SQ , 

0 0 1 1 2 2 3 3 0 1 1 0 2 3 3 2= ( ) ( )AB A B A B A B A B A B A B A B A B i      

0 2 2 0 1 3 3 1 0 3 3 0 1 2 2 1( ) ( ) ,A B A B A B A B j A B A B A B A B k         

which contains 16 matrix products and 16 matrix additions. But  

0 2 1 3 0 2 1 3

1 3 0 2 1 3 0 2

=R R
A A A A B B B B

A B
A A A A B B B B

       
  

     
 

11 12 11 12 11 12

21 22 21 22 21 22

= ,
A A B B C C

A A B B C C

    
    
    

@  

11 22 21 12 11 22 21 12= ,
2 2 2 2

C C C C C C C C
AB i j k

   
    

which contains 8 matrix products and 16 matrix additions. 

In [4], for a split quaternion matrix 0 1 2 3 0 1 2 3 0 1= = ( ) ( )A A Ai A j A k A Ai A A i j B B j      @  

with 
m n

sB C , they also defined the following complex representation  

0 1 2 2

1 0

.c m n
B B

A
B B

 
 

 
C@                                                          (2.3) 

CA  has the same size as RA , but it also has special structure and is a complex matrix. In practical problems, the 

calculated amount of rA  and CA  is similar and higher than that of RA . 

 

III. TWO APPLICATIONS 
In general, our real representation can deal with many problems without transpose operation and 

conjugate transpose operation. In this section, as examples, we will study two problems and focus on the least 

squares problem.  
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3.1. The split quaternionic least squares problem 

For dealing with some problems in the theory and numerical computations of split quaternionic 

mechanics, one will meet problems of approximate solutions of split quaternion linear equations AXB E , that 

is appropriate when there is error in the matrix E , i.e. split quaternionic least squares (SQLS) problem. The 

main difficulty in solving this problem is the non-commutative and non-skew-field of the split quaternion and 

the standard mathematical methods(see [5, 6, 7, 8] and their references) of the complex number field cannot 

work. In [4], for the first time, the split quaternionic least squares (SQLS) problem was discussed by means of 

the real representation and the complex representation, which is also main methods for researching the 

quaternionic least squares (QLS) problem[9, 10, 11, 12, 13, 14]. In this subsection, by means of our real 

representation, we study the split quaternionic least squares (SQLS) problem, and derive an algebraic techniques 

for finding solutions of the SQLS problem in split quaternionic mechanics. 

Firstly, we discuss the norm of the split quaternion matrix. By the Frobenius norm of complex 

matrices, we define the following Frobenius norm of the split quaternion matrix 

0 1 2 3= m nA A Ai A j A k    SQ . 

( ) ,R

F FA AP P P P                                                                           (3.1) 

which has the following properties: 

(1) ( ) 0,FA P P and equality holds if and only if = 0A ; 

(2) for ( ) ( ), =| | ;F FA A  R P P P P  

(3) ( ) ( ) ( ) ;F F FA B A B  P P P P P P  

(4) ( ) ( ) ( ) .F F FAB A BP P P P P P  

(5) 
2 2 2 2 2

( ) 0 1 2 3= 2( ).F F F F FA A A A A  P P P P P P P P P P  

But, different from the Frobenius norm of complex matrices, 

(1) for ( ) ( ), =| |F FA A  SQ P P P P ; 

(2) 2

( ) = t ( ) = | | .H

F ijA race A A aP P  

Therefore, it is not a natural generality of Frobenius norm for complex matrices, but it is enough to 

measure the proximity of two split quaternion matrices. 

On the basis of the above norm definition, we can give the definition of the split quaternionic least 

squares (SQLS) problem. Let , ,m n p qA B  SQ SQ  an observation matrix m qE SQ , and find a matrix 
n pX SQ  such that  

( ) = min.FAXB EP P                                                                  (3.2) 

On the same time, we also construct the following real unconstrained least squares problem  

= min,R R R

FA YB EP P                                                              (3.3) 

with unknown real matrix Y . 

In [4], Z. Zhang studied the SQLS problem (3.2) through the real LS problem (3.3), but here Y  has 

special structure. In fact, Z. Zhang turned the SQLS problem into a real constrained least squares problem. 

The following theorem is our main result in this subsection. 

Theorem 3.1. Let , ,m n p qA B  SQ SQ  m qE SQ . Then we have the following results. 

(1). The SQLS problem (3.2) has a solution n pX SQ  if and only if the real LS problem (3.3) has a solution 
2 2n pY R . 

(2). If the real LS problem (3.3) has a solution  

11 12

21 22

= ,( , = 1,2),n p

ij

Y Y
Y withY i j

Y Y

 
 

 
R  

then the solution of the SQLS problem (3.2) can be written as  

11 22 21 12 11 22 21 12= .
2 2 2 2

Y Y Y Y Y Y Y Y
X i j k

   
                                                   (3.4) 

(3).Let 
† †= ( ) ( )R RY A E B , which is the minimum norm solution of the real LS problem (3.3) Then the X  

constructed in (2) is the minimum norm solution of the SQLS problem (3.2).  

Proof. (1). If the SQLS problem (3.2) has a solution n pX SQ , we know that the real matrix RX  is a 

solution of the real LS problem (3.3). On the other hand, if the real LS problem (3.3) has a solution 2 2n pY R , 

then there exit unique matrix set { , = 0,1,2,3}n p

iY iR  such that  



Real representation and its applications in split quaternionic mechanics 

DOI: 10.9790/5728-1403033843                                 www.iosrjournals.org                                            41 | Page 

0 2 1 3

1 3 0 2

= .
Y Y Y Y

Y
Y Y Y Y

   
 

  
 

So 0 1 2 3

n pY Y i Y j Y k    SQ  is a solution of the SQLS problem (3.2). 

(2). The proof of (2) is implicit in the proof of (1). 

(3). From  
2 2 2

( ) = = ,R

F F FX X YP P P P P P  

we know that (3) is also right.  

Based on the above theorem, we obtain the following algorithm.  

Algorithm 3.1  Let , ,m n p qA B  SQ SQ  m qE SQ . Then an algorithm for the solutions of the SQLS 

problem (3.2) is given as follows. 

(1). Construct ,R RA B  and RE  by the definition of realrepresentation (2.1). 

(2). Find the solution Y  of the real LS problem (3.3). 

(3). Construct the solution X  of the SQLS problem (3.2): 

(1: ,1: ) ( 1: 2 , 1: 2 ) ( 1: 2 ,1: ) (1: , 1: 2 )
=

2 2

Y n p Y n n p p Y n n p Y n p p
X i

     
  

(1: ,1: ) ( 1: 2 , 1: 2 ) ( 1: 2 ,1: ) (1: , 1: 2 )
.

2 2

Y n p Y n n p p Y n n p Y n p p
j k

     
   

Remark 2. Compared with Algorithm 4.1 of [4], our algorithm 3.1 has only half its size and can greatly 

reduce the computational space and time complexity. Compared with Algorithm 3.1 of [4], our algorithm 3.1 

has the same size, but less computation because their algorithm runs on complex number field. 

Remark 3. In Algorithm 3.1, we have many methods for the real LS problem (3.3), such as generalized 

inverse methods and various iterative methods. Theorem 3.1 contains a generalized inverse method: 
† †= ( ) ( )R RY A E B .  

 

3.2. Inverse matrix 

In this subsection, we will give the definition of the inverse matrix and discuss its properties and 

computation. 

Naturally, we give the following definition. 

Definition 3.1.Let n nA SQ . If there is a matrix n nB SQ  such that  

= = ,nAB BA I  

we call A  invertible and B  is the inverse matrix of A . 

Theorem 3.2 Let n nA SQ . Then A  is invertible if and only if RA  is invertible.  

Proof. If A  is invertible, then there is B  such that = =AB BA I , which means 2= = =R R R R R

nA B B A I I , that 

is, RA  is invertible. 

On the contrary, If RA  is invertible, then there is 2 2n nB R  such that 2= =R R

nA B BA I . Partitioned B  

into  

11 12

11

21 22

= , ,n n
B B

B with B
B B

 
 

 
R  

then there is a unique set of matrices: 0 1 2, ,B B B  and 3B  satisfying  

0 2 11 1 3 12 1 3 21 0 2 22= , = , = , = .B B B B B B B B B B B B      

Let 0 1 2 3=B B B i B j B k   , we have =RB B  and 2= = ,R R R R

nA B B A I  which means = = nAB BA I , that is, 

A  is invertible.  

Algorithm 3.2  Let n nA SQ . Then an algorithm for the inverse matrix of A  is given as follows. 

(1). Construct RA  by the definition of realrepresentation (2.1). 

(2). Judge the singularity of RA  . 

(3). If RA  is nonsingular, find its inverse matrix Y . 

(3). Construct the inverse matrix 1A  of A : 

1 (1: ,1: ) ( 1: 2 , 1: 2 ) ( 1: 2 ,1: ) (1: , 1: 2 )
=

2 2

Y n p Y n n p p Y n n p Y n p p
A i      

  

  
(1: ,1: ) ( 1: 2 , 1: 2 ) ( 1: 2 ,1: ) (1: , 1: 2 )

.
2 2

Y n p Y n n p p Y n n p Y n p p
j k
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Of course, computing 
1( )RA 
 is essentially solving linear matrix equation 2=R

nA Y I . We have many methods 

for solving it. 

 

IV. NUMERICAL EXAMPLES 
In this section, we give two numerical examples to demonstrate the efficiency of our algorithm. Our 

examples are performed on an Intel Core i5-6500 3.2GHz/4.00GB computer using Matlab 2016a. 

Example 4.1 Given  

2

1 2 1 1

= , = , = .

1 1

j k k i

A i i j E j j k B I

i k i j k

      
   

      
         

 

Find the solution Of SQLS problem (3.2).  

This is an example in [4]. Z.Zhang constructed two 12 8  matrices rA  and rE , found 8 8  matrix Y  

by solving the real matrix equation ( ) = ( )r T r r T rA A Y A E  and then by direct calculation, obtained the unique 

solutio 

2

2

2 2 2 2 2 2 2 2 2 2

2

2

1
= ( , , , )( )

16

T T T

zhang

I

iI
X I iI jI kI Y Q YQ R YR S YS

jI

kI

 
 
    
 
 
 

 

0.5698 0.3184 0.2179 0.8547 0.2849 0.0279 0.1229 0.2793
= ,

0.0978 0.1788 0.0838 0.0810 0.6006 0.0112 0.3436 0.0503

i j k i j k

i j k i j k

       
 

      
 

where 2 2,Q S  and 2R  are defined by [4]. 

By Algorithm 3.1, we obtain that  

0.5810 0.2849 0.3128 0.0279
=

0.2709 0.6006 0.0698 0.0112
wangX i

     
   

    
 

0.3128 0.1229 0.5810 0.2793
,

0.0698 0.3436 0.2709 0.0503
j k

      
    

    
 

which is not exactly the same as zhangX . Because that  

( ) ( )* = 1.9337 * = 1.7877zhang F wang FA X E and A X E P P P P  

we think that, for this example, the result of [4] is doubtful. 

Example 4.2 Given 0 1 2 3 0 1 2 3= = , = , =m n N A A Ai A j A k X X X i X j X k       with 

0 1 2 3 0 1 2=10* ( , ), =100* ( , ), = ( , ), =10* ( , ), = ( ), = ( ), = ( ),A rand m n A rand m n A rand m n A rand m n X eye n X zeros n X ones n

3 = ( )X zeros n . Let 0 1 2 3=E E E i E j E k    with  

0 0 0 1 1 2 2 3 3 1 0 1 1 0 2 3 3 2= , = ,E A X A X A X A X E A X A X A X A X       

2 0 2 2 0 1 3 3 1 3 0 3 3 0 1 2 2 1= , =E A X A X A X A X E A X A X A X A X       

such that = .AX E   

Based on the generalized inverse, we run Algorithm 4.1 of [4] and our algorithm 3.1, respectively. The 

former result is written as 1XX , the latter is written as 2XX . Table 4.1 gives the results of the calculation. 

 

Table 4.1 Comparison between Algorithm 4.1 of [4] and our algorithm 3.1 with generalize inverse. 
 

N 

Algorithm 4.1 of [4] our algorithm 3.1 

CPU time 
( )

( )

1 F

F

XX X

X

P P

P P

 

CPU time 
( )

( )

2 F

F

XX X

X

P P

P P
 

10 0.0036 4.6e-15 0.0020 8.3e-15 
50 0.0089 2.1e-12 0.0044 6.0e-13 

100 0.0321 1.7e-12 0.0111 8.1e-13 

500 5.3247 7.2e-11 0.4849 5.5e-11 
1000 41.974 6.3e-12 5.5684 1.1e-11 

2000 - - 43.100 8.5e-12  

 

In this example, the equation =AX E  is consistent and has an unique solution. For the limit of PC, we 

can not exhibit some examples with large values for N . When = 2000N , Algorithm 4.1 of [4] cannot run in 
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our Computer. From Table 4.1, we see that our algorithm 3.1 is better than Algorithm 4.1 of [4]. 

 

V. CONCLUSIONS 
In this paper, we define a real presentation of the split quaternion matrix, obtain some properties and 

point out discuss the differences between three representations. As application, we study two problems: the split 

quaternionic least squares(SQLS) problem and the inverse matrix. Two algebraic methods are obtained and 

numerical examples show their effectiveness. In general, our real representation can deal with many problems 

without conjugate transpose operation. Because the generalized inverse is important and involve conjugate 

transpose operation, how to deal with this issue is worth our further study 
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