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I. Introduction 
The fixed point theory itself is a beautiful mixture of analysis, topology and geometry. Over the last 

few decades the theory of fixed points has appeared as a very powerful and important tool in the study of 

nonlinear phenomena. In particular, fixed point techniques have been applied in a variety of diverse fields as 

biology, chemistry, economics, engineering, game theory and physics. It is also possible to analyses   several 

concrete problems from science and technology, where one is concerned with a system of differential, integral 

and functional equations. 

The first results regarding fixed point theory given by the Polish mathematician, Banach [13] in 1922. 

He proved a theorem which ensures; under appropriate conditions the existence and uniqueness of a fixed point. 

This result is known as „Banach contraction principle‟.  

After few years many researchers gave different contraction type mappings. In 1969 Kannan [51] gave 

a new idea for the contractive type mapping .Chatarjee [16] in 1972 gave a new geometrically concept for 

contraction type mapping, which has given a new direction to the study of the fixed point theory, There have 

been lots of generalizations of metric space. One such generalization is Menger space in which, used 

distribution functions instead of nonnegative real numbers as value of metric.  

A Menger space is a space in which the concept of distance is considered to be a probabilistic, rather 

than deterministic. For detail discussion of Menger spaces and their applications we refer to Schweizer and 

Sklar [91]. The theory of Menger space is fundamental importance in probabilistic functional analysis.   

The present work reported in this thesis has been organized in to seven chapters and covered a wide 

area of metric space like, complete metric space, cone ball metric space, fuzzy metric space, 2- metric space, 

Menger space, Intuitionistic fuzzy metric space, and  proved some fixed point and common fixed point theorems 

in this directions . 

There are lots of generalizations of metric spaces, 2-metric spaces is one of them. The concept of 2-

metric space is a natural generalization of the metric space. Initially, it has been investigated by Gahler [30] and 

has been developed broadly by Gahler [30, 31] and more. After this number of fixed point theorems have been 

proved for 2-metric spaces. Our aim of this chapter is to find some more common fixed point theorems 

satisfying rational type contractive mappings, which are generalization of various known results. 

To prove of our results, we need some definitions which are as follows; 

 

II. Preliminaries : 
Definition 2.1: A sequence {xn  } is said to be a Cauchy sequence in 2-metric space X, if for each  a ∈ X, 

lim
m,n→∞

d(xn , x, a) = 0 

Definition 2.2: A sequence {xn  } in 2-metric space X is convergent to an element  x ∈ X, if for each  a ∈ X, 
lim
n→∞

d(xn , x, a) = 0 

 
Definition 2.3: A complete 2-metric space is one in which every Cauchy sequence in X converges to an 
element of  X. 
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Definition 2.4: Let A and S be mappings from a metric space (X, d) in to itself, A and S are said to be weakly 
compatible if they commute at their coincidence point. i. e. , Ax =  Sx for some x ∈ X, then ASx =  Sax. 
Definition 2.5: Two self maps f and g of a metric space (X, d) are called compatible if 

lim
n→∞

d(fgxn , gfxn) = 0 

whenever {xn  } is a sequence in X such that  
lim
n→∞

fxn = lim
n→∞

 gxn = t 

for some  t in X. 
Definition 2.6: Two self maps f and g of a metric space (X, d) are called non compatible if  there exists at 
least one sequence  {xn  } such that  

lim
n→∞

fxn = lim
n→∞

 gxn = t 

 
 for some t in X but  

lim
n→∞

d(fgxn , gfxn) 

 
is either non zero or nonexistent. 
Definition2.7:  Maps f and g are said to be commuting if  fgx =  gfx for all  x ∈ X 
Definition2.8: Let f and g be two self maps on a set X,  if  fx =  gx for some x in X then x is called 
coincidence point of  f and g. 
Throughout this chapter X is stand for complete 2-metric space. 
3.Main theorem  
 

III. Common Fixed Point Theorem for Four Self Mapping 
Theorem 3.1: Let S, T be any two self mappings of a 2- metric space  X satisfying the condition 

   d Su, Tv, a ≤ α1  
d2 u,Sw ,a +d2 u,v,a 

1+d u,Sw ,a +d u,v,a 
 

      +α2  
d2 v,Tt ,a +d2 Sw ,Tt ,a 

1+d v,Tt ,a +d Sw ,Tt ,a 
 

 

                +α3 d v, Sw, a . d u, Tt, a  +α4 d sw, Tt, a   
     +α5 d u, v, a                   3.1(i)

 

for all u, v, w, t ∈ X where α1, α2, α3, α4, α5  are non negative reals such that  2α1 + 2α2 + α3 + α4 + α5 < 1, 
then  S, T have a unique common fixed point. 
Proof: Let x0 be an arbitrary element of  X and we construct a sequence {xn }  defined as follows 
 Sxn−1 = xn , Txn = xn+1 ,  Sxn+1 = xn+2, Txn+2 = xn+3 

 

and  TSxn−1 = xn+1, STxn = xn+2,  TSxn+1 = xn+3, STxn+2 = xn+4  
where  n = 1, 2, 3, … 
Now putting  u = Ty, v = Sx, w = x and t = y in 5.2.1(i)then we have 

  d STy, TSx, a ≤ α1  
d2 Ty ,Sx ,a +d2 Ty ,Sx ,a 

1+d Ty ,Sx ,a +d Ty ,Sx ,a 
 

      +α2  
d2 Sx ,Ty ,a +d2 Sx ,Ty ,a 

1+d Sx ,Ty ,a +d Sx ,Ty ,a 
  

                   +α3 d Sx, Sx, a . d Ty, Ty, a  +α4 d Sx, Ty, a   

      +α5 d Ty, Sx, a   
  d STy, TSx, a ≤ 2α1d Sx, Ty, a   
     +2α2d Sx, Ty, a  +α4d Sx, Ty, a .       
 +α5d Sx, Ty, a .        3.1(ii) 
Now putting  x = xn−1  and  y = xn   in  5.2.1(ii)then we have 
  d STxn , TSxn−1, a ≤ 2α1d Sxn−1, Txn , a   
      +2α2d Sxn−1, Txn , a +α4 d xn+2 , xn+1, a  
     +α5d Sxn−1 , Txn , a  
 d xn+2, xn+1 , a ≤ 2α1d xn , xn+1, a  
        +2α2d xn , xn+1, a +α4d xn , xn+1 , a      
     +α5d xn , xn+1, a       3.1(iii) 
from  2.1(iii)we conclude that  d xn−1, xn , a  decreases with  n. 
i.e.,  d xn−1, xn , a → d x0, x1, a   when n → ∞  
If possible let  d x0, x1 , a > 0 and taking limit  n → ∞  on  3.1(iii) then we have 
 d x0, x1 , a ≤ 2α1d x0, x1, a + 2α2d x0, x1, a + α4d x0 , x1, a +α5d x0, x1 , a  
 = (2α1 + 2α2 + α4 + α5)d x0, x1 , a  
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 < 𝑑 x0 , x1, a   
Since  2α1 + 2α2 + α3 + α4 + α5 < 1. Which is not possible hence  
  d x0, x1, a = 0 . 
Next we shall show that {xn}  is Cauchy sequence. 
Now 
 d xm , xn , a ≤ d xm , xm+1, a + d xm+1, xn+1, a + d xn+1, xn , a d xn+1, xn , a  
   d xm , xn , a ≤ d xm , xm+1, a  
 +d xn , xn+1 , a + d Sxn , Txm , a        3.1(iv) 
On putting  u = xn , v = xm , w = xm−1, t = xn−1 in  3.1(i) then we have 

                   d Sxn , Txm , a ≤ α1  
d2 xn ,Sxm −1 ,a +d2 xn ,xm ,a 

1+d xn ,Sxm −1 ,a +d xn ,xm ,a 
  

 

  +α2  
d2 xm ,Txn−1 ,a +d2 Sxm −1 ,Txn−1 ,a 

1+d xm ,Txn−1 ,a +d Sxm −1 ,Txn−1 ,a 
      

    +α3  d xm , Sxm−1 , a . d xn , Txn−1, a   +α4 d xn , xm , a   
    + α5 d xn , xm , a   

 

= α1  
d2 xn ,xm ,a +d2 xn ,xm ,a 

1+d xn ,xm ,a +d xn ,xm ,a 
    

 +α2  
d xm ,xn ,a +d xm ,xn ,a 

1+d2 xm ,xn ,a +d2 xm ,xn ,a 
   

 +α3  d xm , xm , a . d xn , xn , a + α4 d xn , xm , a   α5 d xn , xm , a   
     = 2α1d xn , xm , a + 2α2d xn , xm , a + α4d xn , xm , a + α5d xn , xm , a           
     d Sxn , Txm , a ≤ (2α1 + 2α2 + α4 + α5)d xn , xm , a                            3.1(v) 
  from 3.1(iv) and  3.1(v)we have 
  d xm , xn , a ≤ d xm , xm+1, a + d xn , xn+1 , a   
     +(2α1 + 2α2 + α4 + α5)d xn , xm , a  
Letting m, n → ∞ then d xn , xm , a → 0, as  2α1 + 2α2 + α4 + α5 < 1 
Hence {xn} is a Cauchy sequence. 
Now we prove z is a common fixed point of  S, T. 
On putting  u = z, v = xn−1, w = z and  t = xn−2  in  3.1(i) we have 

   d Sz, Txn−1 , a ≤ α1  
d2 z,Sz ,a +d2 z,xn−1 ,a 

1+d z,Sz ,a +d z,xn−1 ,a 
  

                                              +α2  
d2 xn−1 ,Txn−2 ,a +d2 Sz ,Txn−2 ,a 

1+d xn−1 ,Txn−2 ,a +d Sz ,Txn−2 ,a 
  

+α3  d xn−1 , Sz, a . d z, Txn−2, a  +α4d(Sz, Txn−2, a) 
+α5 d z, xn−1, a    

   d Sz, xn , a ≤ α1  
d2 z,Sz ,a +d2 z,xn−1 ,a 

1+d z,Sz ,a +d z,xn−1 ,a 
 

                                                 +α2  
d2 xn−1 ,xn−1 ,a +d2 Sz ,xn−1 ,a 

1+d xn−1 ,xn−1 ,a +d Sz ,xn−1 ,a 
  

+α3  d xn−1 , Sz, a . d z, xn−1, a  +α4 d sz, xn−1, a  . +α5 d z, xn−1, a  . 
Letting  n → ∞ then we have 

    d Sz, z, a ≤ α1  
d2 z,Sz ,a +d2 z,z,a 

1+d z,Sz ,a +d z,z,a 
  

       +α2  
d2 z,z,a +d2 Sz ,z,a 

1+d z,z,a +d Sz ,z,a 
  

     +α3  d z, Sz, a . d z, z, a + α4 d sz, z, a  + α5 d z, z, a   
 ⇒ d Sz, z, a ≤  α1 + α2 d Sz, z, a . 
⇒ d Sz, z, a < 𝑑 Sz, z, a  Since 2α1 + 2α2 + α3 + α4 + α5 < 1. 
Which gives  d Sz, z, a = 0 ⇒ Sz = z.  
Thus z is a fixed point of  S. 
Similarly we can show that  z is a fixed point of  T. 
Hence z is a common fixed point of  S, T. 
We are taking one another point  q which is not equal to z such that 
 Sq = q = Tq. 
On putting  u = z, v = q, w = q, t = z in  3.1(i)then we have 

   d Sz, Tq, a ≤ α1  
d2 z,Sq ,a +d2 z,q,a 

1+d z,Sq ,a +d z,q,a 
   

                                                  +α2  
d2 q,Tz ,a +d2 Sq ,Tz ,a 

1+d q,Tz ,a +d Sq ,Tz ,a 
   

                                                  +α3  d q, Sq, a . d z, Tz, a + α5 d sq, Tz, a   
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 +α4 d z, q, a   

          d z, q, a ≤ α1  
d2 z,q,a +d2 z,q,a 

1+d z,q,a +d z,q,a 
   

                                                     +α2  
d2 q,z,a +d2 q,z,a 

1+d q,z,a +d q,z,a 
   

     +α3  d q, q, a . d z, z, a + α4 d q, z, a   
    +α5 d z, q, a    
  d z, q, a ≤ (2α1 + 2α2 + α4 + α5)d z, q, a   
    d z, q, a < 𝑑 z, q, a   
Since  2α1 + 2α2 + α3 + α4 < 1. 
Which gives  d z, q, a = 0 ⇒ z = q. 
Hence z is unique. This completes the proof of the theorem. 
Corollary 3.2: Let  S, T, R be any three self mappings of a 2- metric space X satisfying the condition 

    d SRu, TRv, a ≤ α1  
d2 u,SRw ,a +d2 u,TRt ,a +d2 u,SRw ,a 

1+d u,SRw ,a +d u,TRt ,a +d u,SRw ,a 
   

                                                  +α2  
d2 v,SRw ,a +d2 u,TRt ,a +d2 v,TRt ,a 

1+d v,SRw ,a +d u,TRt ,a +d v,TRt ,a 
   

                                                 +α3  d v, SRw, a d u, TRt, a  
                                                   +α4 d SRw, TRt, a   
 +α5 d u, v, a  .                                  
for u, v, w, t ∈ X where α1, α2, α3, α4, α5 are non negative reals such that α1 + α2 + α3 + α4 + α5 < 1  then  
SR, TR have a unique common fixed point. 
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