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Abstract: Special differential equations and polynomials are very popular in the field of mathematics and serve 

as important tools in the solution of some engineering problems. Examples of these equations are Legendre, 

Hermite, Laguerre, Bessel, Gegenbaur differential equations. In this paper, we established a new special 

differential equation and its polynomial which we called Legendre subsidiary equation and polynomial. The 

Rodrigue formula, generating function and recurrence relations of the polynomial are given. We also gave the 

orthogonality properties of the polynomials, and our results are entering the literature for the first time. 
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I. Introduction 
The new special differential equation is a second order homogeneous ODE with variable coefficient of the form 

     21 2 1 0x y xy n n y             

 (1.1) 

The general solution of the equation is given as 

       1 2n ny x c A x c H x         

 (1.2) 

Where  nA x
 
represents the polynomials and  nH x  are functions of order n. The equation has  

an ordinary point at 0x  and a regular singular point at 2i
x i e



    . 

This differential equation and the polynomials are related to the well known Legendre equation and polynomials 

which serves as an eye opener to our new special differential equation. 

 

II. Deduction of the Equation 

Let    2 21 1 2
n dz

z x x nxz
dx

       

Differentiating  1n times using Leibnitz formula and simplifying gives 

     
2 1

2

2 1
1 2 1 0

n n n

n n n

d z d z d z
x x n n

dx dx dx

 

 
          

 (2.1) 

On letting 

n

n

d z
y

dx
  (2.1) becomes        (2.2) 
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d y dy
x x n n y
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and this leads to our result. 
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III. Solution of the Differential Equation 
To solve this, we apply Frobenius method of the form of descending power series. 
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Plugging these results into (1.1) and simplifying, we have 
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0 0

1 1 0k r k r

r r

r r

k r k r a x k r n k r n a x
 

  

 

              (3.1) 

Putting 0r   in the second summation and equating to zero, we get 

      0 01 0 1 0 since 0.k n k n a k n k n a           

Hence the indicial root is  or 1k n k n    , and the difference is an integer. 

Replacing r by 2r in the first summation of (3.1) and simplifying, we get the recurrence relation as 
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        (3.2) 

Case 1: If k n ; putting k n  in (3.2) gives 
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If 1 3 2 11, . . . 0nr a a a      , so if 2, 4, 6, ...,2r n , we obtain the following 
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Here we intend to eliminate all the expressions independent of r and therefore we let 
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     (3.3) 

Hence the first solution is therefore   2

1 2
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 and the polynomial becomes 
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     (3.4) 

The polynomial can also be defined in an explicit form as 
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(3.5) 

The first few polynomials are generated as follows 
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Case 2: If  1k n   ; putting  1k n    in (3.2), the recurrence relation becomes 
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Hence the second solution becomes 
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 , the second solution becomes 
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  (3.6)

 

 

  

IV. Generating Function Of 
 nA x

 

The generating function of the polynomial  nA x  is given as 
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          (4.1) 

Proof: 
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This completes the proof. 

 

Corollary; putting x i  in (4.1), we get  
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Equating the coefficient of 
nt we have that  

  n

nA i i           (4.2) 

 

V. Rodriguez Formula For 
 nA x

 

The Rodrigue formula for the polynomial  nA x  is given as 
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Applying Leibnitz formula, we get 
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Putting x i  and using (4.2) gives 
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Hence we have  
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and the proof completes. 

 

VI. Recurrence Relation for the Polynomial  nA x  

The recurrence relations for polynomials  nA x  are given as follows 
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Proof: From the generating function formula, let 
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Differentiating partially w.r.t "t" and simplifying gives
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Equating the coefficient of 
nt  from both sides, we obtain 

           1 11 2 1n n nn A x n xA x nA x      Proved. 
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3. Differentiating the recurrence formula (1) w.r.t. x, we obtain 

      1 11 2 1 2 1n n n nn A n A n xA nA 
        

Applying recurrence formula (2) for nxA , we get 
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VII. Orthogonality of the Polynomial  mA x  

1. Any of two of the polynomials is orthogonal in the interval  ,i i , that is 

     0 .
i

m n
i
A x A x dx if m n


          (7.1) 

Proof: Since andm nA A are solutions of (1.1), then we must have that 
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Multiplying nA  by (i) and mA  by (ii) and subtracting, we get 
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Integrating both sides w.r.t. x along the boundary i x i    to get 
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Proof: Squaring both sides of the generating function, we have 
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Integrating both sides w.r.t. x along the boundary i x i    to get 
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 Equating the coefficient of t
2n 

we get 
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VIII. Further Research 
In our next research work, we intend to present the following 

1. Application of the polynomial 

2. Integral representation of the polynomial 

3. Series of the type    
0

n n

n

f x c A x




  

4. Confluent hypergeometric representation of (1.1) and lots more 
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