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I. Introduction 
 Cauchy Principal Value of a singular integral of the type: 

                                              𝐼 𝑓, 𝑐 = 𝑃  
𝑓(𝑧)

𝑧−𝑐
𝑑𝑧;

𝐿
                                                                                        (1.1) 

 where 𝑓(𝑧) is an analytic function in a simply connected domain Ω containig the line segment L from a 

to b in the complex plane C and c being the affix of a point on L is defined in Saff and Snider [16] as 

                                   𝐼 𝑓, 𝑐 = limΔ→0   
𝑓(𝑧)

𝑧−𝑐
𝑑𝑧 +  

𝑓(𝑧)

𝑧−𝑐
𝑑𝑧

𝐿2𝐿1
 ;                                                                  (1.2) 

 (provided this limit exists) where 𝐿1 and 𝐿2 are line segments having end points a, c-∆ and c+∆, b 

respectively on the path L.As far as it is known, the approximate evaluation of the integral given in (1.2) has not 

received sufficient attention by researchers associated with numerical integration of real Cauchy principal value 

integrals of the type  

                                                  𝐼 𝑓, 𝑎 = 𝑃  
𝑓(𝑥)

𝑥−𝑎
𝑑𝑥;        −1 < 𝑎 < 1

1

−1
                                                        (1.3) 

which exists if 𝑓 𝑥  is H𝑜 lder continuous in −1 ≤ 𝑥 ≤ 1. 
 We find a collection of important but significant research works in the area of numerical integration of 

the integral (1.3) given in “Methods of numerical Integration” by Davis and Rabinowitz [11]. However, we do 

not find any mention of numerical integration of the integral (1.2) except the one due to Birkhoff-Young [4] for 

numerical integration of analytic function on a directed line segment in the complex plane C. The rule 

formulated by them is given by  

           𝑓 𝑧 𝑑𝑧~𝑅𝐵𝑌(𝑓) =
𝑕

15
 24𝑓(𝑧0) + 4 𝑓(𝑧1) + 𝑓(𝑧3) −  𝑓(𝑧2) + 𝑓(𝑧4)  

𝑧0+𝑕

𝑧0−𝑕
                                   (1.4) 

where    

                                             𝑧𝑘 = 𝑧0 + (𝑖)𝑘−1𝑕 ;    for k = 1,2,3,4 and  𝑖 =  −1.                                            (1.5) 

     It is a five point quadrature rule of degree of precision five and its error term (𝐸) satisfies  

                                             𝐸 ≤
1

1890
 𝑕 7 max𝑧𝜖𝑆  𝑓(6)(𝑧0) ,                                                                          (1.6) 

 where S denotes a square whose vertices are :  𝑧𝑘 = 𝑧0 + (𝑖)𝑘𝑕 ; k=0,1,2,3 and 𝑖 =  −1 [Ref. 

[11],pp.136]. 

 The quadrature formula given in equation (1.4) with its error estimates given in equation (1.6) appears 

to be the first rule formulated by Birkhoff-Young [4] with error estimate (𝐸) derived by Young [17] for the 

numerical integration of analytic function using two of the five nodes off the path of integration in the complex 

plane.  

 Later, in the year 1976, Lether [13] suggested to transfer the integral  

                                              𝐼 =  𝑓(𝑧)𝑑𝑧;
𝑧0+𝑕

𝑧0−𝑕
                                                                                               (1.7) 

to                                        𝐼 = 𝑕  𝑓(𝑧0 + 𝑕𝑡)𝑑𝑡;
1

−1
                                                                                          (1.8) 
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 By using the transformation: 𝑧 = 𝑧0 + 𝑕𝑡; −1 ≤ 𝑡 ≤ 1 and then to numerically integrate the integral 

(1.8) by quadrature formula meant for approximation of real definite integrals in order to find an approximate 

value of the integral (1.7). It was also pointed out by Lether [13] that , the three point Gauss-Legender 

quadrature formula: 

                                          𝑓(𝑥)𝑑𝑥~
1

9
 8𝑓 0 + 5  𝑓  − 

3

5
 + 𝑓   

3

5
   ;

1

−1
                                                (1.9) 

which is also of precision five integrates the integral (1.7) more accurately in comparison to the quadrature 

formula (1.4) with less number of function evaluation .  

In the same vein in 1979, Acharya and Das [1] used the same transformation i.e.  𝑧 = 𝑧0 + 𝑕𝑡 ; 
−1 ≤ 𝑡 ≤ 1 to convert the Complex Cauchy Principal value integral of the type 

                                                    𝐼 𝑓, 𝑧0 =  
𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧

𝑧0+𝑕

𝑧0−𝑕
                                                                               (1.10) 

to a real Cauchy Principal value integral 

                                                𝐼 𝑓, 0 =  
𝑓(𝑧0+𝑕𝑡)

𝑡
𝑑𝑡        

1𝑕

−1
                                                                            (1.11) 

and then numerically integrated the integral (1.11) by the pair of rules formulated by Price [15] for 

approximation of real Cauchy Principal value integral of the type  

                                                 𝐼 𝑓 = 𝑃  
𝑓(𝑥)

𝑥
𝑑𝑥        

1

−1
                                                                                 (1.12) 

 to achieve approximate value of the Complex Cauchy Principal value integral given in equation (1.10).  

Recently, Acharya and Mohapatra [2], Das and Hotta [7, 8, 9], Milovanovic [14] have formulated some 

quadrature formulas for numerical integration of the Complex Cauchy Principal value integral of the type given 

in equation (1.10). 

 Cauchy Principal value integrals quite often encountered by scientists and engineers in the studies of 

applied mathematics, theory of aerodynamics, scattering theory, crack problem in plane elasticity, the singular 

eigen function method in neutron transport and many other field of physical sciences. Since the evaluation of 

such integrals by analytic method in closed form is not possible in most of the situations, the approximation of 

these integral is inevitable. 

 Keeping in view the importance of approximate evaluation of Cauchy Principal value integrals (both 

real and complex) in pure and applied sciences, we desire to construct a quadrature formula for Complex 

Cauchy Principal value integral (1.10) with nodes used by Birkhoff and Young for the construction of 

quadrature formula for numerical integration of analytic function along a directed line segment in the complex 

plane. This formula also helps in the approximate evaluation of real Cauchy Principal value integrals of the type 

given in equation (1.12). 

 

II. Formulation of the four-point Rule 
Let the rule based on the nodes given in (1.5) be denoted by 𝑅 𝑓  and  

             𝑅 𝑓  = A𝑓(𝑧0) + B  𝑓 𝑧0 + 𝑕 − 𝑓 𝑧0 − 𝑕  + C  𝑓 𝑧0 + 𝑖𝑕 − 𝑓 𝑧0 − 𝑖𝑕  .                                   (2.1) 

The weights A,B,C are to be determined so that it exactly integrates polynomials of maximum degree. In other 

words, 

                                             𝐼((𝑧 − 𝑧0)𝑘) = 𝑅((𝑧 − 𝑧0)𝑘)      for k= 0,1,3.                                                   (2.2)                                      

It is pertinent to note here that  

                                                   𝐼((𝑧 − 𝑧0)2𝑘) = 𝑅((𝑧 − 𝑧0)2𝑘) ;    for  k=1,2,3,…               

since the nodes associated with the proposed rule R(𝑓) are symmetrically situated about the point 𝑧0 . 

Using the identities given in equation (2.2), the following set of three equations in the unknowns A, B, C is 

obtained: 

                                        
𝐴 = 0,

𝐵 + 𝑖𝐶 = 1,

B − iC =   
−1

3
 .

                                                                                                          (2.3) 

On solving the pair of linear equations in B and C we get 

                                            B =  
2

3
     and     C =  

−𝑖

3
   .                                                                                (2.4) 

   

 Thus, the quadrature rule proposed in the equation (2.1) is now given by  

               

                         𝑅(𝑓)=   
2

3
    𝑓 𝑧0 + 𝑕 − 𝑓 𝑧0 − 𝑕  −

𝑖

3
 𝑓 𝑧0 + 𝑖𝑕 − 𝑓 𝑧0 − 𝑖𝑕   .                                     (2.5) 

                                                  Degree of Precision of the rule 𝑹(𝒇) 

            Let                                    𝐸 𝑓 = 𝐼 𝑓 − 𝑅(𝑓)                                                          (2.6) 

Denote the truncation error in approximation of the Cauchy principal value of the integral 𝐼(𝑓) by the rule 𝑅(𝑓) 

given in equation (2.5). Now, it is easy to see that, 
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                                                  𝐸 (𝑧 − 𝑧0)𝑘 = 0 ; k = 0(1)4 

 and 

                                                 𝐸 (𝑧 − 𝑧0)5 = −
8

5
𝑕5                                                                                 (2.7) 

                                                                           ≠ 0 . 

So, the degree of precision of the rule given in (2.5) is four. 

 

III. Error Analysis 
 We divide this section into two parts: in the first part, we derive an asymptotic error estimate and in the 

second part an error bound is obtained. In both the parts we assume that the function 𝑓(z) is analytic in a disc in 

the complex plane. 

 

Asymptotic error estimate 

 Let 𝑓(z) be analytic in the disc 

                                           Ω = {𝑧𝜖𝐶:  𝑧 − 𝑧0 ≤ 𝜌 = 𝑟 𝑕  ; 𝑟 > 1}     

 so that the points given in (1.5) are all interior to the disc Ω  . 

 Using the Taylor’s series expansion about 𝑧 = 𝑧0 we obtain   

                                        𝑓 𝑧 =  𝑎𝑛 (𝑧 − 𝑧0)𝑛 ,∞
𝑛=0                                                                                       (3.1)  

 Where 

                                                 𝑎𝑛 = 𝑓 𝑛 (𝑧0)/(𝑛)!  
 are the Taylor’s coefficients. 

Further, as the series given in equation (3.1) is absolutely and uniformly convergent  in Ω, we get the following 

by integrating term by term the right hand side of (3.1).This yields 

                                     𝐼 𝑓  =   𝑎2𝑛+1
2𝑕2𝑛 +1

2𝑛+1

∞
𝑛=0  .                                                                                        (3.2)      

On the other hand, using the Taylor’s series expansion for each term of 𝑅 𝑓  given in equation (2.5) about 

𝑧 = 𝑧0 we obtain after simplification, 

                       𝑅 𝑓 =  2𝑕𝑓 ′ 𝑧0 +
1

3

2𝑕3

 3! 
𝑓 3  𝑧0 +

2𝑕5

 5! 
𝑓 5  𝑧0 + ⋯    .                                                       (3.3) 

Then the truncation error 𝐸 𝑓  as defined in equation (2.6) is now given by 

                     𝐸 𝑓 = −
4

5

2𝑕5

 5! 
𝑓 5  𝑧0 −

4

21

2𝑕7

 7! 
𝑓 7  𝑧0 − ⋯  .                 (3.4) 

Thus from equation (3.4) we have the following: 

 

 

Theorem – 1 : 

 If  𝑓 𝑧  is analytic in a certain domain Ω containing the line segment L then 

                                                 𝐸 𝑓 =   О( 𝑕5).                                                         (3.5)  

for asymptotically small h. 

 

Error Bound 

 The error bound of the truncation error 𝐸(𝑓) for the rule given in equation (2.1) is obtained by    using 

the technique due to Lether[12] for fully symmetric quadrature rules and it is given in the following theorem. 

 

Theorem - 2:  

 Let the function 𝑓 𝑧  is analytic in the disc Ω. Then the upper bound for the truncation error                                             

 𝐸 𝑓  is given by 

                                                   𝐸(𝑓) ≤ 2 M(𝜌 ) 𝑒(𝑟)                                                                                (3.6) 

where                             

                                              𝑀(𝜌) = 𝑚𝑎𝑥 𝑧− 𝑧0 =𝜌  𝑓(𝑧)   

 and  

                                                 𝑒 𝑟 =  ln  
𝑟+1

𝑟−1
 −  

2𝑟(3𝑟2+1)

3(𝑟4−1)
                                                               (3.7) 

 which tends to zero as r → ∞. 

 

Proof: 

 Expanding 𝑓(𝑧) in Taylor’s series about 𝑧 = 𝑧0 and using the transformation 𝑧 = 𝑧0 + 𝑕𝑡, 𝑡𝜖[−1,1]   
we obtain, 

                                                𝐸 𝑓 =  𝑎2𝜇+1𝑕2𝜇+1𝐸(𝑡2𝜇+1)∞
𝜇 =2      .                                                       (3.8) 

Now using Cauchy’s inequality for derivatives [5] in equation (3.8) we arrive at 
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                                             𝐸(𝑓) ≤ 2M (𝜌 )    
1

𝑟2𝜇 +1
∞
𝜇=2   𝐸(𝑡2𝜇+1) .                                                      (3.9) 

 But                                          𝐸 𝑡2𝜇+1 = 2  
1

2𝜇+1
−

1

3
{2 +  −1  𝜇 } < 0;    𝜇 ≥ 2. 

Therefore, as it is done by Lether [12] , we can rewrite the equation (3.9) as 

                                                𝐸(𝑓) ≤ 2 M(𝜌 ) 𝑒(𝑟) 

  where                                            𝑒 𝑟 =  𝐸   1 −
𝑡

𝑟
 

−1

  . 

  It is not difficult to derive 

                                               𝐸   1 −
𝑡

𝑟
 

−1

     =  ln  
𝑟+1

𝑟−1
 −  

2𝑟(3𝑟2+1)

3(𝑟4−1)
   

by applying the quadrature rule (2.5) to the function  ∅ 𝑡 = (1 −
𝑡

𝑟
)−1 ;   𝑟 > 1. 

 Analytically   e( r ) → 0 as  r → ∞ ,but practically  e(r)  = 0 for  r =43.7 which is shown below in  

Table – 1 of error constant for different values of r (> 1) .Now the graph of  r  verses  e( r ) is given in figure –

1  and from this  it is observed  that  e( r )  approaches  to zero as r → ∞.    

                  

Table-1 

 
 
 
 
 
 
 
 
 
 

Figure-1 

 
IV. Numerical Verification 

The integrals 

𝐼1 = 𝑃  
𝑒𝑧

𝑧
𝑑𝑧

0.1𝑖

−0.1𝑖

 

and                                                                        

𝐼2 = 𝑃  
𝑒𝑥

𝑥
𝑑𝑥

0.1

−0.1

 

 have been numerically integrated by the four-point degree four rule  𝑅 𝑓  given in equation (2.5) and 

the results of numerical integration of these CPV integrals are given  in Table-2 

                                                                               

 

 

           r        e(r) 

           1.6      0.20081 

           1.8      0.101684 

           2.1      0.0438025 

           2.7      0.0117615 

           4.3      0.0011059 

          6.7      0.0001192 

         10.6      0.0000119 

         17.1      0.0000011 

          27.5      0.0000001 

           43.7      0.0000000 
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Table-2 

 

 

 

 

 

                                                                        

                                                                     

 

 

V. Conclusion 

1. The rule does not require the evaluation of function at 𝑧 = 𝑧0: the point of singularity. Also, it is not 

required to evaluate the derivative of the integrand at any of its nodes, which is a positive advantage over 

the existing rules where evaluation of derivatives is required at 𝑧 = 𝑧0 . 

2. We have noted that as the range of integration increases the accuracy of approximation gradually decreases 

and this is obvious since the rule given in (2.1) is a low precision rule i.e. four. Such a rule will be useful in 

case the higher order derivatives of the integrand (order greater than five) do not exist. 

3. This rule may also be employed in adaptive integration of analytic functions over a line segment; the point 

of singularity may be indentated by an interval (−𝜀, 𝜀 ) ; 𝜀 > 0 in which this rule for sufficiently small 𝜀  

may be applied and on the rest of the intervals suitable quadrature rules meant for integration of analytic 

functions may be used.  
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        Integral        Approximate  

              Value           

      Exact Value Absolute   

    Error 

𝐼1 

  

0.1998891𝑖 
 

 

                  0.1998889𝑖 
 

 

2.0× 10−7 

𝐼2 

 

 

              

           0.2001113 

                       

0.2001111 

 

2.0× 10−7 


