On The Linear Systems over Non Commutative Rhotrices

Okon, Ubong E ${ }^{1}$ Galadima Dauda J ${ }^{1}$ AndMalachy Markus ${ }^{1}$

${ }^{1}$ Department of General studies,Nigerian Institute of Leather and Science Technology, P.M.B 1024, Samaru Zaria
Corresponding Author:OKON, UBONG E

Abstract

Rhotrices P_{n}, Q_{n} and R_{n} were considered with the binary operation of non-commutative method of rhotrix multiplication defined by Sani(2007) to study linear systems of the form $P_{n} \circ Q_{n}=R_{n}$. This work identified conditions necessary for the solvability of the system and also presented procedure for computing the square root of a rhotrix.

Keywords: Rhotrix; Linear system; Row-column multiplication

I. Introduction

A mathematical arrays that is in some way between two-dimensional vectors and 2×2 dimensional matrices were suggested by Atanassov and Shannon [3]. As an extension to thisidea, Ajibade [1] introduced an object that lies between 2×2 dimensional matrices and 3×3 dimensional matrices called 'rhotrix'. A rhotrix as given in [1] is of the form

$$
R_{3}(\mathfrak{R})=\left\{\left\langle\begin{array}{lll}
& \mathrm{a} & \tag{1}\\
\mathrm{~b} & \mathrm{c} & d \\
& e
\end{array}\right\rangle: a, b, c, d, e \in \mathfrak{R}\right\}
$$

wherea,b,d,e, $\mathrm{c}=h(R) \in \mathfrak{R}$ and $h(R)$ is called the heart of a rhotrix R. A rhotrix of the form (1) is called based rhotrix, which is rhotrix of base three. It was also mentioned in [1] that a
rhotrix can be extended to n-dimension. A rhotrix of size n denoted by $R(n)$ or R_{n}, we mean a rhomboidal array having $\frac{1}{2}\left(n^{2}+1\right)$ entries and of size $n \in 2 Z^{+}+1$.
The algebra of rhotrices was presented in [1].
The operation of addition $(+)$, scalar multiplication (m) and multiplication (o) were also defined in [1] and is recorded as below:
Let $R=\left\langle\left.\begin{array}{cc}\mathrm{a} \\ \mathrm{b} & \mathrm{h}(\mathrm{R}) \\ & e\end{array} \right\rvert\, \begin{array}{l}d\end{array}\right\rangle$ and $Q=\left\langle\begin{array}{cc}\mathrm{f} \\ \mathrm{g} & \mathrm{h}(\mathrm{Q}) \\ & i\end{array}\right\rangle$ be any two rhotrices of size three and m a scalar, then
$R+Q=\left\langle\begin{array}{ccc}\mathrm{a} \\ \mathrm{b} & \mathrm{h}(\mathrm{R}) & d \\ e & e\end{array}\right\rangle+\left\langle\begin{array}{cc}\mathrm{f} \\ \mathrm{g} & \mathrm{h}(\mathrm{Q}) \\ & j\end{array}\right)=\left\langle\begin{array}{cc}\mathrm{a}+\mathrm{f} \\ \mathrm{b}+\mathrm{g} & \mathrm{h}(\mathrm{R})+\mathrm{h}(\mathrm{Q}) \\ & d+\mathrm{i} \\ e+\mathrm{j}\end{array}\right\rangle$,
$m R=m\left\langle\begin{array}{cc}\mathrm{a} \\ \mathrm{b} & \mathrm{h}(\mathrm{R}) \\ & d\end{array}\right\rangle=\left\langle\begin{array}{cc}\mathrm{ma} \\ \mathrm{mb} & \mathrm{mh}(\mathrm{R}) \\ & m d \\ m e & \end{array}\right\rangle$,
and

$$
R \circ Q=\left\langle\begin{array}{ccc}
\mathrm{a} & \tag{4}\\
\mathrm{~b} & \mathrm{~h}(\mathrm{R}) & d \\
& e &
\end{array}\right\rangle \circ\left\langle\begin{array}{cc}
\mathrm{f} & \\
\mathrm{~g} & \mathrm{~h}(\mathrm{Q}) \\
& j
\end{array}\right\rangle=\left\langle\begin{array}{lll}
& \mathrm{ah}(\mathrm{Q})+\mathrm{fh}(\mathrm{R}) \\
\mathrm{bh}(\mathrm{Q})+\mathrm{gh}(\mathrm{R}) & \mathrm{h}(\mathrm{R}) \mathrm{h}(\mathrm{Q}) & d \mathrm{~h}(\mathrm{Q})+\mathrm{ih}(\mathrm{R})) \\
& e \mathrm{~h}(\mathrm{Q})+\mathrm{jh}(\mathrm{R}) &
\end{array}\right\rangle .
$$

Sani (2007) extended the work of Sani (2004) to rhotrices of size n and gave the following proposition:
Let $\mathrm{R}(n)$ and $\mathrm{S}(n)$ be rhotrices of size n , then the product of $\mathrm{R}(n)$ and $\mathrm{S}(n)$ $\mathrm{R}(n) \circ \mathrm{S}(n)=\left\langle a_{i j}, c_{k l}\right\rangle \circ\left\langle b_{i j}, d_{k l}\right\rangle$

$$
\begin{equation*}
=\left\langle\sum_{i, j=1}^{t}\left(a_{i, j} \cdot b_{i, j}\right), \sum_{k, l=1}^{t-1}\left(c_{k, l} \cdot d_{k, l}\right)\right\rangle, \tag{5}
\end{equation*}
$$

$$
\text { where } t=\frac{1}{2}\left(n^{2}+1\right)
$$

Thus, $\mathrm{R}(n)$ and $\mathrm{S}(n)$ can be expressed as in Equation (5) and (6)respectively.

and

$$
S(n)=\left\langle b_{i, j}, d_{k, l}\right\rangle=\left(\begin{array}{cccccccc}
& & & & b_{1,1} & & & \tag{7}\\
& & & b_{2,1} & d_{1,1} & b_{1,2} & & \\
\\
& b_{31} & d_{2,1} & b_{2,1} & d_{1,2} & b_{1,3} & & \\
& \ldots \\
b_{t, 1} & \ldots \\
& \ldots \\
& & b_{t, t-2} & d_{t-1, t-2} & b_{t-1, t-1} & d_{t-2, t-1} & b_{t-2, t} & \\
& & & b_{t, t-1} & d_{t-1, t-1} & b_{t-2, t} & & \\
& & & & & b_{t, t} & & \\
& & & &
\end{array}\right) .
$$

The elements $a_{i, j}(i, j=1,2, \ldots, t)$ and $c_{k, l}(k, l=1,2, \ldots, t-1)$ are called the major and minor entries of $R(n)$ respectively. Similarly, The elements $b_{i, j}(i, j=1,2, \ldots, t)$ and $d_{k, l}(k, l=1,2, \ldots, t-1)$ are the major and minor entries of $S(n)$ respectively.
Also Sani (2007), generalized the definition of the transpose, determinant, identity and inverse of rhotrix $R(n)$ of size n, (provided $R(n) \neq 0$). Sani (2007) further established some interesting relationships between invertible n-size rhotrices and invertible $t \times t$ dimensional matrices, where $t=\frac{1}{2}(n+1), n \in 2 Z^{+}+1$.

This paper shall adopt the row-column method of rhotrix multiplication proposed by Sani to present Linear systems and their conditions for solvability.
2.0 Basic properties

This paper presents a summary of some basic properties of rhotrices.
Let P_{n}, Q_{n} and R_{n} be rhotrices of the same dimension n , let + and \circ be the usual addition and the rowcolumn method of rhotrix multiplication respectively, then the following is true for rhotrices over a field \mathfrak{R} and $\alpha \in \mathfrak{R}$
$P_{n}+0=0+P_{n}=P_{n}$
$P_{n}+R_{n}=R_{n}+P_{n}$
$\left(P_{n}+Q_{n}\right)+R_{n}=P_{n}+\left(Q_{n}+R_{n}\right)$
$\alpha\left(P_{n}+Q_{n}\right)=\alpha P_{n}+\alpha Q_{n}$
$\left(P_{n} \circ Q_{n}\right) \circ R_{n}=P_{n} \circ\left(Q_{n} \circ R_{n}\right)$

II. Linear systems of Non-commutative rhotrices

Aminu, [2] presented a study of Linear systems over rhotrices, considering the heart-based method of rhotrix multiplication as the binary operation. This paper investigates linear system under the binary operation defined by Sani (2004) for n-dimensional rhotrices.
Let us assume, without loss of generality that rhotrices P_{n}, Q_{n} and R_{n} are base rhotrices, that is, rhotrices of dimension 3.
Consider the linear system

$$
\left.\left.\begin{array}{rl}
P_{3} \circ Q_{3} & =R_{3} \\
P_{3} \circ Q_{3} & =\left\langle\begin{array}{ccc}
p_{1} \\
p_{2} & \mathrm{~h}(\mathrm{P}) & p_{3} \\
p_{4}
\end{array}\right) \circ\left\langle\begin{array}{cc}
q_{1} \\
q_{2} & \mathrm{~h}(\mathrm{Q}) \\
q_{4} & q_{3}
\end{array}\right) \\
& =\left\langle\begin{array}{ll}
p_{1} q_{1}+p_{3} q_{2} \\
p_{2} q_{1}+p_{4} q_{2} & \mathrm{~h}(\mathrm{R}) \times \mathrm{h}(\mathrm{Q}) \\
p_{2} q_{3}+p_{4} q_{4}
\end{array}\right.
\end{array} p_{1} q_{3}+p_{3} q_{4}\right\rangle=\left\langle\begin{array}{ccc}
r_{1} \\
r_{2} & \mathrm{~h}(\mathrm{R}) & r_{3} \\
r_{4}
\end{array}\right\rangle\right) .
$$

This is equivalent to

$$
\left.\begin{array}{r}
p_{1} q_{1}+p_{3} q_{2}=r_{1} \\
p_{2} q_{1}+p_{4} q_{2}=r_{2} \\
p_{1} q_{3}+p_{3} q_{4}=r_{3} \tag{8}\\
p_{2} q_{3}+p_{4} q_{4}=r_{4} \\
\mathrm{~h}(\mathrm{P}) \times \mathrm{h}(\mathrm{Q})=\mathrm{h}(\mathrm{R})
\end{array}\right\}
$$

Solving (8) yields,
$q_{1}=\frac{1}{|P|}\left(p_{4} r_{1}-p_{3} r_{2}\right)$
$q_{2}=\frac{1}{|P|}\left(p_{1} r_{2}-p_{2} r_{1}\right)$
$\left.q_{3}=\frac{1}{|P|}\left(p_{4} r_{3}-p_{3} r_{4}\right)\right\}$
$q_{4}=\frac{1}{|P|}\left(p_{1} r_{4}-p_{2} q_{3}\right)$
$\mathrm{h}(\mathrm{Q})=\frac{\mathrm{h}(\mathrm{R})}{\mathrm{h}(\mathrm{P})}, \frac{1}{|P|} \neq 0$

III. Proposition

Let P_{n}, Q_{n} and R_{n} be rhotrices of the same dimension n over reals, then the system $P_{n} \circ Q_{n}=R_{n}$ has a unique solution if and only if $\operatorname{det}\left(P_{n}\right) \neq 0$ and $\operatorname{det}\left(R_{n}\right) \neq 0$.
Proof:
Suppose $\operatorname{det}\left(P_{n}\right) \neq 0$ and $\operatorname{det}\left(R_{n}\right) \neq 0$, it follows from (7) that $\operatorname{det}\left(P_{n}\right) \neq 0$ and $\operatorname{det}\left(R_{n}\right) \neq 0$.

$$
\begin{aligned}
& \Leftrightarrow h(Q)=\frac{h(R)}{h(P)} \text { and } \\
& q_{i}=\left\{\begin{array}{c}
p_{4} r_{i}+p_{3} r_{i+1}: \text { if } i \in(2 N-1) \\
p_{1} r_{i}+p_{2} r_{i+1}: \text { if } i \in 2 N
\end{array}\right.
\end{aligned}
$$

This completes the proof.
It can easily be deduced from proposition 3.1 above that the necessary and sufficient condition for obtaining an exact solution to the linear system $P_{n} \circ Q_{n}=R_{n}$ is that $\operatorname{det}\left(\left\langle P_{i, j}, p_{k, l}\right\rangle\right) \neq 0$ and $\operatorname{det}\left(\left\langle R_{i, j}, R_{k, l}\right\rangle\right) \neq 0$.

Proposition 3.2

Let P_{n}, Q_{n} and R_{n} be rhotrices of the same dimension n over reals, then the system $P_{n} \circ Q_{n}=R_{n}$ has no solution if and only if $\operatorname{det}\left(P_{n}\right)=0$ and $\operatorname{det}\left(R_{n}\right) \neq 0$.

Proposition 3.3

Let P_{n}, Q_{n} and R_{n} be rhotrices of the same dimension n over reals, then the system $P_{n} \circ Q_{n}=R_{n}$ has a infinite solution if and only if $\operatorname{det}\left(P_{n}\right)=0$ and $\operatorname{det}\left(R_{n}\right)=0$.

IV. Concrete example

Consider the linear system of rhotrices $P_{3} \circ Q_{3}=R_{3}$ where $P_{3}=\left\langle\begin{array}{lll}2 & \\ 1 & 3 & 5 \\ & 4\end{array}\right)$ and $R_{3}=\left\langle\begin{array}{lll}4 & \\ 3 & 4 & 2 \\ 5\end{array}\right\rangle$
Find the rhotrix Q_{3} such that $P_{3} \circ Q_{3}=R_{3}$.
Using (9), we find the rhotrix Q_{3}

$$
\left.\begin{array}{c}
q_{1}=\frac{1}{|P|}\left(p_{4} r_{1}-p_{3} r_{2}\right)=\frac{1}{3}(4.4-5.3)=\frac{1}{3} \\
q_{2}=\frac{1}{|P|}\left(p_{1} r_{2}-p_{2} r_{1}\right)=\frac{1}{3}(2.3-1.4)=\frac{2}{3} \\
q_{3}=\frac{1}{|P|}\left(p_{4} r_{3}-p_{3} r_{4}\right)=\frac{1}{3}(4.2-5.5)=\frac{-17}{3} \tag{10}\\
q_{4}=\frac{1}{|P|}\left(p_{1} r_{4}-p_{2} q_{3}\right)=\frac{1}{3}(2.5-1.2)=\frac{8}{3} \\
\mathrm{~h}(\mathrm{Q})=\frac{\mathrm{h}(\mathrm{R})}{\mathrm{h}(\mathrm{P})}=\frac{4}{3},
\end{array}\right\}
$$

Hence, the rhotrix $Q_{3}=\left\langle\begin{array}{ccc}\frac{1}{3} & \\ \frac{1}{3} & \frac{4}{3} & \frac{-17}{3} \\ \frac{8}{3} & \end{array}\right\rangle$.

V. Conclusion

In this paper the necessary and sufficient conditions for the solvability of
linear system over rhotrices using rhotrix multiplication method proposed in [4] was developed. These conditions depend on the determinant of the respective rhotrices. A concrete example was given to verify the work.

References

11]. A.O. Ajibade, The concept of rhotrix in mathematical enrichment, International Journal of MathematicsEducation ,Science and Technology . 34 (2003), pp 175-179.
2]. A. Aminu, On the linear systems of rhotricesNNTDM 15 (2009), 4, 7-
[3]. K.T. Atanassov, A.G. Shannon, Matrix-tertions and matrix noitrets: exercises in mathematical. enrichment, Int. J. Math. Educ. Sci. Technol. 29 (1998), pp 98-903
[4]. B. Sani, An alternative method for multiplication of rhotrices, Journa4l of MathematicsEducation ,Science and Technology. 35.(2004), pp 777-781.
[5]. B. Sani, The row-column multiplication for high dimensional rhotrices, Journal of MathematicsEducation, Science and Technology. 38 (2007) pp 657-662.

[^0]
[^0]: OKON, UBONG E "On the Linear Systems over Non Commutative Rhotrices. "IOSR Journal of Mathematics (IOSR-JM) 14.3 (2018): 68-72.

