On Scalar Quasi - Weak Commutative Algebras

G.Gopalakrishnamoorthy¹, S.Anitha² and M.Kamaraj³

¹Principal, Sri krishnasamy Arts and Science College, Sattur – 626203, Tamilnadu. ²Lecturer, Raja Doraisingam Government Arts College, Sivagangai – 630 561, Tamil Nadu. ³Dept. of Mathematics, Government Arts and Science College, Sivakasi - 626124.

Abstract: The concepts of scalar commutativity defined in an Algebra A over a commutative ring R and Quasi - weak commutativity defined in a near- ring are mixed together to coin the concept of scalar quasi weak commutativity in an algebra A over a commutative ring R and its various properties are studied.

Date of Submission: 20-04-2018	Date of acceptance: 07-05-2018

I. Introduction:

Koh,Luh,Putcha [5] called an algebra A over a commutative ring R to be scalar commutative if for every x,y \in A there exists an $\alpha \in R$ depending on x and y such that xy = α yx.Coughlin and Rich[1] and Coughlin,Kleinfield [2] have studied scalar commutativity in algebras over a field F.G.Gopalakrishnamoorthy,S.Geetha and M.kamaraj[3] have defined a near - ring N to be Quasi – weak commutative if xyz = yxz for all x,y,z \in N.They have obtained many interesting results of Quasi – weak commutativity in Near – rings. In this paper we call an algebra A over a commutative ring R to be scalar Quasi – weak Commutative, if for every x,y,z \in A, there exists a scalar $\alpha \in R$ depending on x,y,z such that xyz = α yxz. We prove many interesting results.

II. Preliminaries:

In this section we give the basic definitions and various well known results which we use in the sequel.

2.1 Definition[5]:

Let A be an algebra over a commutative ring R.If for every $x, y \in A$, there exists an element $\alpha \in R$ depending on x, y such that $xy = \alpha yx$, then A is said to be scalar commutative. If for every $x, y \in A$, there exists an element $\alpha \in R$ depending on x, y such that $xy = -\alpha yx$, then A is said to anti-scalar commutative.

2.2 Definition[3]:

Let N be a near – ring inwhich xyz = yxz for all $x,y,z \in N$. Then N is called Quasi - weak commutative near-ring. If xyz = -yxz for all $x,y,z \in N$, then N is said to be Quasi - weak anti-commutative.

2.3 Lemma 3.5[4]:

Let N be a distributive near-ring. If $xyz = \pm yxz$ for all $x,y,z \in N$, then N is either quasi weak commutative or quasi weak anti- commutative.

III. Main Results:

3.1 Definition:

Let A be an algebra over a commutative ring R.If for every x,y,z \in A,there exists $\alpha \in$ R depending on x,y,z such that xyz = α yxz,then A is said to be scalar quasi weak commutative. If xyz = - α yxz,then A is said to be scalar quasi weak anti- commutative.

3.2 Theorem:

Let A be an algebra (not necessarily associative) over a field F.If A is scalar quasi weak commutative, then A is either quasi weak commutative or quasi weak anti commutative.

Proof:

Suppose xyz = yxz for all $x,y,z \in A$, there is nothing to prove. Suppose not, we shall prove that xyz = -yxz for all $x,y,z \in A$. We shall first prove that if $x,y,z \in A$ such that $xyz \neq yxz$, then $x^2z = y^2z = 0$.

 $xyz \neq yxz$. Since A is scalar quasi weak commutative, there Let $x, y, z \in A$ such that exists $\alpha = \alpha(x,y,z) \in F$ such that $xyz = \alpha yxz$ \rightarrow (1) Also there exists $\gamma = \gamma(x,x+y,z) \in F$ such that $x(x+y)z = \gamma(x+y)xz$ \rightarrow (2) (1) - (2) gives $xyz - x^2z - xyz = \alpha yxz - \gamma x^2z - \gamma yxz.$ i.e., $\gamma x^2 z - x^2 z = (\alpha - \gamma)yxz$. $(\gamma - 1) - x^2 z = (\alpha - \gamma)yxz$ i.e., $(1 - \gamma) x^2 z = (\gamma - \alpha) y x z$ \rightarrow (3) Now $yxz \neq 0$ for if yxz = 0, then from (1) we get xyz = 0 and so xyz = yxz, contradicting our assumption that $xyz \neq yxz$. Also $\gamma \neq 1$, for if $\gamma = 1$, then from (3) we get $\alpha = \gamma = 1$. Then from (1) we get xyz = yxz, again contradicting our assumption that $xyz \neq yxz$. Now from (3) we get $x^{2}z = \frac{\gamma - \alpha}{1 - \gamma} yxz$ i.e., $x^{2}z = \beta yxz$ for some $\beta \in F$ \rightarrow (4) Similarly $y^2 z = \delta y x z$ for some $\delta \in F$ \rightarrow (5) Now corresponding to each choice of $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in F$, there is an $\eta \in F$ such that $(\alpha_1 \mathbf{x} + \alpha_2 \mathbf{y}) (\alpha_3 \mathbf{x} + \alpha_4 \mathbf{y}) \mathbf{z} = \eta (\alpha_3 \mathbf{x} + \alpha_4 \mathbf{y}) (\alpha_1 \mathbf{x} + \alpha_2 \mathbf{y}) \mathbf{z}$ $(\alpha_1\alpha_3x^2 + \alpha_1\alpha_4xy + \alpha_2\alpha_3yx + \alpha_2\alpha_4y^2)z = \eta(\alpha_3\alpha_1x^2 + \alpha_3\alpha_2xy + \alpha_4\alpha_1yx + \alpha_4\alpha_2y^2)z.$ $\alpha_1 \alpha_3 x^2 z + \alpha_1 \alpha_4 xyz + \alpha_2 \alpha_3 yxz + \alpha_2 \alpha_4 y^2 z = \eta (\alpha_3 \alpha_1 x^2 z + \alpha_3 \alpha_2 xy z + \alpha_4 \alpha_1 yx z + \alpha_4 \alpha_2 y^2 z)$ \rightarrow (6) $\alpha_1 \alpha_3 \beta_{yxz} + \alpha_1 \alpha_4 xyz + \alpha_2 \alpha_3 yxz + \alpha_2 \alpha_4 \delta_{yxz} = \eta (\alpha_3 \alpha_1 \beta_{yx} z + \alpha_3 \alpha_2 xyz + \alpha_4 \alpha_1 yxz + \alpha_4 \alpha_2 \delta_{yxz})$ (using (4) and (5)) $\alpha_1 \alpha_3 \beta \alpha^{-1} xyz + \alpha_1 \alpha_4 xyz + \alpha_2 \alpha_3 \alpha^{-1} xyz + \alpha_2 \alpha_4 \delta \alpha^{-1} xyz$ = $\eta (\alpha_3 \alpha_1 \beta_{yx} z + \alpha_3 \alpha_2 \alpha_{yx} z + \alpha_4 \alpha_1 y_x z + \alpha_4 \alpha_2 \delta_{yx} z)$ i.e., $(\alpha_1 \alpha_3 \beta \alpha^{-1} + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 \alpha^{-1} + \alpha_2 \alpha_4 \delta \alpha^{-1})$ xyz = $\eta (\alpha_3 \alpha_1 \beta + \alpha_3 \alpha_2 \alpha + \alpha_4 \alpha_1 + \alpha_4 \alpha_2 \delta)$ yxz \rightarrow (7) If in (7) we choose $\alpha_2 = 0$, $\alpha_3 = \alpha_1 = 1$, $\alpha_4 = -\beta$, the right hand side of (7) is zero where as the left hand side of (7) is $(\beta \alpha^{-1} - \beta) xyz = 0$ i.e., $\beta(\alpha^{-1} - 1) xyz = 0$. Since $xyz \neq 0$ and $\alpha \neq 1$, we get $\beta = 0$. Hence from (4) we get $x^2 z = 0$. Also if in (7), we choose $\alpha_3 = 0$, $\alpha_4 = \alpha_2 = 1$, $\alpha_1 = -\delta$, the right hand side of (7) is zero where as the left hand side of (7) is $(-\delta + \delta \alpha^{-1}) xyz = 0.$ i.e., $\delta(\alpha^{-1} - 1) xyz = 0$. Since $xyz \neq 0$ and $\alpha \neq 1$, we get $\delta = 0$. Hence from (5) we get $y^2 z = 0$. Then (6) becomes $\alpha_1 \alpha_4 xyz + \alpha_2 \alpha_3 yxz = \eta (\alpha_3 \alpha_2 xyz + \alpha_4 \alpha_1 yxz)$ $\alpha_1 \alpha_4 xyz + \alpha_2 \alpha_3 \alpha^{-1} xyz = \eta (\alpha_3 \alpha_2 xyz + \alpha_4 \alpha_1 \alpha^{-1} xyz)$ i.e., $(\alpha_1 \alpha_4 + \alpha_2 \alpha_3 \alpha^{-1})$ xyz = $\eta (\alpha_3 \alpha_2 + \alpha_4 \alpha_1 \alpha^{-1})$ xyz. This is true for any choice of $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in F$. Choose $\alpha_1 = \alpha_3 = \alpha_4 = 1, \alpha_2 = \alpha^{-1}$, we get $(1 - (\alpha^{-1})^2)$ xyz = 0. Since $xyz \neq 0$, $1 - (\alpha^{-1})^2 = 0$. Hence $(\alpha^{-1})^2 = 1$. i.e., $\alpha = \pm 1$. Since $\alpha \neq 1$, we get $\alpha = -1$. i.e., xyz = -yxz for $x,y,z \in A$. Thus A is either quasi weak commutative or quasi weak anti commutative. 3.3 Lemma: Let A be an algebra (not necessarily associative) over a commutative ring R. Suppose A is scalar quasi- weak commutative .Then for all x,y,z \in A, $\alpha \in$ R, α xyz = 0 iff α yxz = 0. Also xyz = 0 iff yxz = 0. **Proof:**

Let $x,y,z \in A$, $\alpha \in R$ such that $\alpha xyz = 0$.

Since A is scalar quasi weak commutative, there exists $\beta = \beta (\alpha y, x, z) \in \mathbb{R}$ such that $(\alpha y)xz = \beta x(\alpha y)z = \beta \alpha xyz = 0$ (ie) $\alpha yxz = 0$. Similarly If $\alpha yxz = 0$, then there exists $\gamma \in \mathbb{R}$ such that $\gamma = \gamma(x, \alpha y, z) \in \mathbb{R}$, such that $x(\alpha y)z = \gamma(\alpha y)xz = \gamma \alpha yxz = 0$ (ie) $\alpha xyz = 0$ Thus $\alpha xyz = 0$ iff $\alpha yxz = 0$. Assume xyz = 0. Since A is scalar quasi weak commutative there exists $\delta = \delta(y, x, z) \in \mathbb{R}$ such that $yxz = \delta xyz = 0$ Similarly if yxz = 0, then there exists $\eta = \eta(x, y, z) \in \mathbb{R}$ such that $xyz = \eta yxz = 0$ Thus xyz = 0 iff yxz = 0.

3.4 Lemma:

Let A be an algebra over a commutative ring R. Suppose A is scalar quasi weak commutative. Let x,y,z,u ϵ A, $\alpha,\beta \epsilon$ R such that xu = ux, yxz = α xyz and (y+u)xz = β x(y+u)z. Then (xu- α xu- β xu+ $\alpha\beta$ xu)z = 0. **Proof:** Given $(y+u)xz = \beta x(y+u)z$ \rightarrow (1) УХZ $= \alpha xyz$ (2)and xu = ux \rightarrow (3) From (1) we get $= \beta xyz + \beta xuz$ yxz + uxz $= \beta xyz + \beta xuz$ (using (2)) $\alpha xyz + uxz$ $= \beta xyz + \beta xuz$ i.e., $\alpha xyz + xuz$ (using (3))i.e., $x(\alpha y + u - \beta y - \beta u)z = 0$. By Lemma 3.3 we get $(\alpha y + u - \beta y - \beta u)xz = 0.$ α yxz + uxz - β yxz - β uxz = 0. $\alpha yxz + uxz - \alpha \beta xyz - \beta uxz = 0.$ $(using (4)) \rightarrow (4)$ From (1) we get $yxz + uxz = \beta xyz + \beta xuz$ $yxz + uxz = \beta xyz + \beta uxz$ (using (3)) i.e., $yxz - \beta xyz = \beta uxz - uxz$. Multiply by α , $\alpha yxz - \alpha \beta xyz = \alpha \beta uxz - \alpha uxz$ \rightarrow (5) From (4) and (5) we get $\alpha\beta$ uxz - α uxz + uxz - β uxz = 0 i.e., $(\alpha\beta ux - \alpha ux + ux - \beta ux)z = 0$ i.e., $(ux - \alpha ux - \beta ux + \alpha \beta ux) z = 0$ i.e., $(xu - \alpha xu - \beta xu + \alpha \beta xu)z = 0$ (:: xu = ux)

3.5 Corollary:

Hence the Lemma.

Taking u = x, we get ($x^2 - \alpha x^2 - \beta x^2 + \alpha \beta x^2$)z = 0. ($x - \alpha x$) ($x - \beta x$) z = 0.

3.6 Theorem:

Let A be an algebra over a commutative ring R.Suppose A has no zero divisors.If A is scalar quasi weak commutative, then A is quasi weak commutative. **Proof:**

Let x, y, z \in A. Since A is scalar quasi weak commutative, there exists scalars $\alpha = \alpha(y,x,z) \in \mathbb{R}$ and $\beta = \beta(y+x,x,z) \in \mathbb{R}$ such that

DOI: 10.9790/5728-1403013037

(y+	x) xz = β x (y+x)	\rightarrow (1)
and vxz	$= \alpha xyz$	\rightarrow
(2)		
From (1) we get $yxz + x^2 z = \beta xyz + \beta x^2 z.$ $\alpha xyz + x^2 z - \beta xyz - \beta x^2 z = 0.$ $x(\alpha y + x - \beta y - \beta x)z = 0.$	(using (2))	
By Lemma 3.3, $(\alpha y + x - \beta y - \beta x) xz = 0.$		
$\alpha yxz + x^{2}z - \beta yxz - \beta x^{2}z = 0$ $\alpha yxz + x^{2}z - \alpha \beta xyz - \beta x^{2}z = 0$ From (1) we get	(using (2))	\rightarrow (3)
$yxz + x^{2} z = \beta xyz + \beta x^{2} z.$ $yxz - \beta xyz = \beta x^{2} z - x^{2} z.$		
$\begin{array}{l} \alpha yxz - \alpha \beta xyz = \alpha \beta x^2 z - \alpha x^2 z \\ (4) \end{array}$		\rightarrow
From (3) and (4) we get $\alpha \beta x^2 z - \alpha x^2 z + x^2 z - \beta x^2 z = 0.$ $(x^2 - \alpha x^2 - \beta x^2 + \alpha \beta x^2) z = 0.$		
$(x - \alpha x) (x - \beta x) z = 0.$ (x - αx) (x - βx) z = 0. Since A has no zero dvisors.		
$x = \alpha x$ or $x = \beta x$. If $x = \alpha x$, then from (2) we get		
yxz = xyz.		
If $x = \beta x$, then from (1) we get (y+x) $xz = x$ (y+x)z		
$yxz + x^{2}z = xyz + x^{2}z$ $yxz = xyz$		
Thus A is quasi weak commutative.		
3.7 Definition: Let R be any ring and x y	$y \in \mathbf{R}$ We define $xyz - yxz$ as the quasi weak	
commutator of x,y,z.		
(ie) $xyz - yxz = (xy - [x, y])$	yx)z]z is called the quasi weak commutator of x, y, z.	
Let A be an algebra ov	ver a commutative ring R. Let A be a scalar quasi-weak	
commutative. If A has an identity, then the (ie) , $(xyz - yxz)^2 = 0$	the square of every quasi-weak commutator is zero.) for all x,y,z ϵ A.	
Proof:	is sealed succession of a successful descention of the second succession of the second successful and the second successf	
$\alpha = \alpha(y,x,z) \in \mathbb{R}$ and $\beta = \beta(x,y+1,z) \in \mathbb{R}$ $yxz = \alpha xyz$	such that	• (1)
and $\mathbf{x}(\mathbf{x}+1) = -\beta(\mathbf{x}+1)$	1)vz	(1)
From (2) we get $p(y+1) = p(y+1)$		(2)
$xyz + xz - \beta yxz - \beta xz xyz + xz - \alpha \beta xyz - \beta x(y+1 - \alpha \beta y - \beta)z$	$\begin{aligned} z &= 0\\ xz &= 0\\ &= 0 \end{aligned}$	
By Lemma 3.3,	0	
$(y+1 - \alpha\beta y - \beta)xz$ $yxz + xz - \alpha\beta yxz - \beta x$ $\alpha xyz + xz - \alpha\beta yxz - \beta x$		3)
Also from (2) we get $xyz + xz =$	β yxz + β xz	

Multiplying by α $\alpha\beta$ yxz + $\alpha\beta$ xz $\alpha xyz + \alpha xz$ = \rightarrow (4) $\alpha xyz - \alpha \beta yxz$ $\alpha\beta xz - \alpha xz$ = From (3) and (4) we get $xz - \beta xz + \alpha \beta xz - \alpha xz$ = 0 (ie) $x(z - \alpha z)$ $= x(\beta z - \alpha \beta z)$ Multiplying by (y+1) on the left we get $(y+1) \ge (z - \alpha z)$ (y+1) x ($\beta z - \alpha \beta z$) = $(y+1)(xz - \alpha xz)$ $\beta(y+1)xz - \alpha\beta(y+1)xz$ = $\beta x(y+1)z - \alpha x(y+1)z$ (using (2))(ie) $(y+1)(x-\alpha x)z$ = $[yx - \alpha yx + x - \alpha x] z$ $[xy + x - \alpha xy - \alpha x]z$ = (ie) [yx - xy + x - x]z $[\alpha yx + \alpha x - \alpha xy - \alpha x]z$ = (ie) yxz – xyz _ $\alpha yxz - \alpha xyz$ $\alpha xyz - xyz$ = α . α xyz - α xyz (ie) xyz - $2\alpha xyz + \alpha^2 xyz$ 0 = (ie) $x(y - 2\alpha y + \alpha^2 y)z$ 0 _ \rightarrow (5) Now $(xyz - yxz)^2$ = $(xyz - \alpha xyz)^2$ $(xyz - \alpha xyz)(xyz - \alpha xyz)$ = $xyzxyz - \alpha xyzxyz - \alpha xyz + \alpha^2 xyzxyz$ = x (y - $2\alpha y + \alpha^2 y$)zxyz _ = 0 xyz (using(5)) Thus $(xyz - yxz)^2$ = 0.

(ie) Square of every quasi-weak commutator is zero.

3.9 Definition:

Let R be a P.I.D (Principal ideal domain) and A be an algebra over R. Let $a \in R$. Then the order of a, denoted as O(a) is defined to be the generator of the ideal I = { $\alpha \in R / \alpha a = 0$ }. O(a) is unique upto associates and O(a)=1 if and only if a=0. **3.10 Lemma:**

Let A be an algebra with identity over P.I.D. If A is scalar quasi-weak commutative, $y \in R$ with O(y) = 0, then y is in the center of A.

Proof:

Let $v \in R$ with O(v) = 0. For every x ϵ A, there exists scalars $\alpha = \alpha(x,y,1)\epsilon$ R and $\beta = \beta(y,x+1,1)\epsilon$ R such that *α* yx.1 x y.1 = α yx \rightarrow (1) xy = β (x+1)y.1 and y(x+1) =(ie) y(x+1) = β (x+1)y \rightarrow (2) From (2) we get yx + x = $\beta xy + \beta y$ (using(1)) $yx + x - \beta xy - \beta y$ = 0 $y (x + 1 - \alpha \beta x - \beta . 1) . 1 = 0$ Using Lemma 3.3 we get $(x + 1 - \alpha\beta x - \beta.1)y.1$ = 0 $xy + y - \alpha\beta xy - \beta y$ = 0 \rightarrow (3) Also from (2) we get $yx + y - \beta xy - \beta y$ = 0 Multiply by α $\alpha yx + \alpha y - \alpha \beta xy - \alpha \beta y = 0$ $xy + \alpha y - \alpha \beta xy - \alpha \beta y$ = 0 (using(1)) \rightarrow (4) From (3) and (4) we get $y - \beta y - \alpha y + \alpha \beta y$ = 0 $(y - \beta y) - \alpha(y - \beta)$ = 0 $(1-\alpha)(1-\beta)$ y = 0 Since O(y) = 0 we get $\alpha = 1$ or $\beta = 1$ If $\alpha = 1$, from (1) we get xy = yxIf $\beta = 1$ from (2) we get y(x+1) =(x+1)yyx+y = xy + yух = ху

(ie) y commutes with x. As $x \in A$ is arbitrary, y is in the center of A. 3.11 Lemma: Let A be an algebra with unity over a principal ideal domain R. If A is scalar quasi-weak commutative, $x \in A$ such that O(xz) = 0, then xyz = yxz for all $y, z \in A$. **Proof:** Let x ϵA with O(xz) = 0 For y,z ϵA , there exists scalars $\alpha = \alpha(y,x,z)\epsilon R$ and $\beta = \beta(x,y+1,z)\epsilon R$ such that αxyz yxz = (1) $\beta x(y+1)z$ (y+1)xz = \rightarrow (2) From (2) we get $\beta xz + \beta xz$ yxz + xz = \rightarrow (3) $\alpha xyz + xz - \beta xyz - \beta xz$ = 0(using(1)) $x(\alpha y + x - \beta y - \beta .1)z$ = 0By Lemma 3.3, we get $(\alpha y + x - \beta y - \beta .1) xz = 0$ $\alpha yxz + x^2z - \beta yxz - \beta xz = 0$ (ie) \rightarrow (4) Multiplying (3) by α , we get $\alpha yxz + \alpha xz - \alpha \beta xz - \alpha \beta xz = 0$ \rightarrow (5) (4) - (5) gives $x^2z - \beta xz - \alpha xz + \alpha \beta xz = 0$ $(1 - \alpha - \beta + \alpha \beta)$ xz = 0 $(1-\alpha)(1-\beta)xz$ = 0 \rightarrow (6) Since O(xz) = 0, we get $1 - \alpha = 0$ or $1 - \beta = 0$. That is $\alpha = 1$ or $\beta = 1$.

In that is $\alpha = 1$ or $\beta = 1$. If $\alpha = 1$, then from (1) we get yxz = xyz. If $\beta = 1$, then from (3) we get yxz + xz = xyz + xz(ie) yxz = xyz.

3.12 Lemma:

Let A be an algebra with identity over a P.I.D R.Suppose that A is scalar quasi-weak commutative. Assume further that there exists a prime $p \in R$ and a positive integer $m \in Z^+$ such that $p^m A = 0$. Then A is quasi-weak commutative.

Proof:

Let $x, y \in A$ such that $O(yx) = p^k$ for some $k \in Z^+$. We prove by induction on k that xyu = yxu for all $\in \mathbb{R}$. If k = 0, then $O(yx) = p^0 = 1$ and so yx = 0. So yxu = 0.By Lemma 3.3 xyu = 0.Hence xyu = yxu for all $u \in A.So$, assume that k>0 and that the statement is true for all l < k. We first prove that for any $u \in A$, $xyu - yxu \neq 0$ implies y(xu)w - (xu)yw = 0 for all $w \in A$. So,let $xyu - yxu \neq 0$. Since A is scalar quasi-weak commutative, there exists scalars $\alpha = \alpha$ (x,y,u) and $\beta = \beta$ (x,y+1,u) such that \rightarrow (1) $xyu = \alpha yxu$ and $\mathbf{x}(\mathbf{y}+1)\mathbf{u} = \boldsymbol{\beta} \ (\mathbf{y}+1)\mathbf{x}\mathbf{u}$ \rightarrow (2) From (2) we get $xyu + xu = \beta yxu + \beta xu$ α yxu + xu = β yxu + β xu (using(1)) $(\alpha - \beta)$ yxu = $(\beta - 1)$ xu \rightarrow (3) If $(\alpha - \beta)$ yxu = 0, then $(\beta - 1)$ xu = 0 and so β xu = xu \rightarrow (4)

So from (2) we get x (y+1) u = (y+1) β xu

$$= (y+1) xu$$
$$xyu + xu = yx + xu$$

i.e., xyu - yxu = 0, contradicting our assumption that $xyu \neq yxu$.

So $(\alpha - \beta)$ yxu $\neq 0$.Inparticular $\alpha - \beta \neq 0$. Let $(\alpha - \beta) = p^t \delta$ →(5) for some $t \in Z^+$ and $\delta \in \mathbb{R}$ with $(\delta, p) = 1$. If $t \ge k$, then since $O(yx) = p^k$, we would get ($\alpha - \beta$) yxu = 0, a contradiction. Hence t < k. Since p^k yxu = 0,by Lemma 3.3, p^k xyu = 0. From (3) we get $p^{k-t} (\beta - 1) \mathbf{x} \mathbf{u} = p^{k-t} (\alpha - \beta) \mathbf{y} \mathbf{x} \mathbf{u}$ $= p^{k-t}p^t \delta yxu$ $= p^k \delta \mathbf{v} \mathbf{x} \mathbf{u} = 0.$ Let $O(xu) = p^i$. If i < k, then by induction hypothesis xyu = yxu contradicting our assumption. So $i \ge k$. Hence $p^{k} | p^{i} | p^{k-t} (-1)$. Thus $p^t | \beta - 1$ and let $\beta - 1 = p^t \gamma \rightarrow (6)$ for some $\gamma \in \mathbb{R}$. From (3) we get $(\alpha -)$ yxu = $(\beta - 1)$ xu (using (4) and (6)) $p^t \delta yxu = p^t \gamma xu$ $\therefore p^t(\delta \mathbf{y} - \boldsymbol{\gamma}. \mathbf{1}) (\mathbf{x}\mathbf{u}) = \mathbf{0}.$ Hence by induction hypothesis $(\delta y - \gamma, 1) (xu) w = xu (\delta y - \gamma, 1) w$ for all $w \in A$. δ yxuw – γ xuw = δ xuyw – γ xuw $\therefore \delta \{y(xu)w - (xu)yw\} = 0$ \rightarrow (7) Since $(\delta, p) = 1$, there exists μ , $\delta \in \mathbb{R}$ such that $\mu p^m + \gamma \delta = 1$. $\therefore \mu p^m \{ y(xu)w - (xu)yw \} + \gamma \delta \{ y(xu)w - (xu)yw \} = \{ y(xu)w - (xu)yw \}$ 0+0= { y(xu)w - (xu)yw } (:: $p^m A = 0$) i.e., y(xu)w - (xu)yw = 0i.e., $xyu - y(xu) \neq 0$ implies y(xu)w - (xu)yw = 0 for all $w \in A$. \rightarrow (8) Now we proceed to show that xyu = yxu for all $u \in A$. Suppose not there exists $u \in A$ such that $xyu - y(xu) \neq 0$ \rightarrow (9) Then also we have $xy(u+1) - yx(u+1) \neq 0$ \rightarrow (10) From (8) and (9) we get y(xu)w - (xu) yw = 0for all $w \in A$. \rightarrow (11) From (8) and (10) we get y (x(u + 1)) w – (x(u+1) yw = 0 for all w $\in A$. \rightarrow (12) From (12) we get y(xu + x)w - (xu + x)yw = 0y(xu)w + yxw - (xu)yw - xyw = 0i.e., yxw - xyw = 0 for all $w \in A$. (using (11)) a contradiction. This contradiction proves that xyu = yxu for all $x,y,u \in A$. Thus A is quasi-weak commutative. 3.13 Theorem: Let A be an algebra with identity over a principal ideal domain R.If A is scalar quasi-weak commutative, then A is quasi-weak commutative.

Proof: Suppose A is not quasi-weak commutative ,there exists $x \in A$ such that $xyz \neq yxz$ for all y, $z \in A$. Also $(x+1)yz \neq y(x+1)z$. $O(x) \neq 0$ and $O(x+1) \neq 0$. By Lemma 3.10 Hence $O(1) \neq 0$.Let $O(1) = d \neq 0$.Then d is not a unit and hence d = $p_1^{i_1} p_2^{i_2} \dots p_k^{i_k}$ for some primes $p_1, p_2, \dots, p_k \in A$ and some positive integers i_1, i_2, \dots, i_k . Let $A_j = \{ a \in A | p_i^{i_j} a = 0 \}$. Then each A_j is a non-zero sub – algebra of A and $A = A_1 \oplus A_2 \oplus \bigoplus A_k$. Being sub algebras of A, each A_i is scalar quasi-weak commutative. Being homomorphic image of A, all the A_i 's have identity element 1. By Lemma 3.12 each A_i is quasi-weak commutative and hence A is quasi-weak commutative, a

contradiction. This contradiction proves that A is quasi-weak commutative.

References

- [1]. R.Coughlin and M.Rich, On scalar dependent algebras, Canad.J.Math,24(1972), 696-702.
- [2]. R.Coughlin, K.Kleinfield and M.Rich, Scalar dependent algebras, Proc, Amer.Math.Soc, 39(1973), 69-73.
- [3]. G.Gopalakrishnamoorthy, M.Kamaraj and S.Geetha, On Quasi weak commutative
- [4]. Near-rings, International Jour. of Math Research, Volume 5(5), (2013), 431-440.
- [5]. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha ,On Quasi weak m power commutative Near-rings and Quasi-weak (m,n) power commutative Near-rings, IOSR Jour. of Mathematics, Vol12(4), (2016), 87-90.
- [6]. K.Koh, J.Luh and M.S.Putcha, On the associativity and commutativity of algebras over commutative rings, Pacific.J.Math,63,No2,(1976),423-430.
- [7]. Pliz Glinter, Near-Rngs, North Holland, Aneterdam;(1983)

G.Gopalakrishnamoorthy "On Scalar Quasi - Weak Commutative Algebras. "IOSR Journal of Mathematics (IOSR-JM) 14.3 (2018): 30-37.

.

_ _ _ _ _ _ _ _ _ _ _ _ _