On Scalar Quasi - Weak Commutative Algebras

G.Gopalakrishnamoorthy ${ }^{1}$, S.Anitha ${ }^{2}$ and M.Kamaraj ${ }^{3}$
${ }^{1}$ Principal, Sri krishnasamy Arts and Science College , Sattur - 626203, Tamilnadu.
${ }^{2}$ Lecturer, Raja Doraisingam Government Arts College, Sivagangai - 630 561, Tamil Nadu.
${ }^{3}$ Dept. of Mathematics,Government Arts and Science College,Sivakasi- 626124.

Abstract

The concepts of scalar commutativity defined in an Algebra A over a commutative ring R and Quasi - weak commutativity defined in a near- ring are mixed together to coin the concept of scalar quasi weak commutativity in an algebra A over a commutative ring R and its various properties are studied.

I. Introduction:

Koh,Luh,Putcha [5] called an algebra A over a commutative ring R to be scalar commutative if for every $\mathrm{x}, \mathrm{y} \in \mathrm{A}$ there exists an $\alpha \in \mathrm{R}$ depending on x and y such that $\mathrm{xy}=\alpha \mathrm{yx}$.Coughlin and Rich[1] and Coughlin,Kleinfield [2] have studied scalar commutativity in algebras over a field F.G.Gopalakrishnamoorthy,S.Geetha and M.kamaraj[3] have defined a near - ring N to be Quasi - weak commutative if $\mathrm{xyz}=\mathrm{yxz}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$.They have obtained many interesting results of Quasi - weak commutativity in Near - rings. In this paper we call an algebra A over a commutative ring R to be scalar Quasi weak Commutative, if for every $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$, there exists a scalar $\alpha \in \mathrm{R}$ depending on $\mathrm{x}, \mathrm{y}, \mathrm{z}$ such that $\mathrm{xyz}=$ $\alpha y x z$. We prove many interesting results.

II. Preliminaries:

In this section we give the basic definitions and various well known results which we use in the sequel.

2.1 Definition[5]:

Let A be an algebra over a commutative ring R.If for every $\mathrm{x}, \mathrm{y} \in \mathrm{A}$,there exitsts an element $\alpha \in \mathrm{R}$ depending on x, y such that $\mathrm{xy}=\alpha \mathrm{yx}$, then A is said to be scalar commutative.If for every $\mathrm{x}, \mathrm{y} \in \mathrm{A}$, there exists an element $\alpha \in \mathrm{R}$ depending on x, y such that $\mathrm{xy}=-\alpha \mathrm{yx}$, then A is said to anti-scalar commutative.

2.2 Definition[3]:

Let N be a near - ring inwhich $\mathrm{xyz}=\mathrm{yxz}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$.Then N is called Quasi - weak commutative nearring.If $x y z=-y x z$ for all $x, y, z \in N$, then N is said to be Quasi - weak anti-commutative

2.3 Lemma 3.5[4]:

Let N be a distributive near-ring.If $\mathrm{xyz}= \pm \mathrm{yxz}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$,then N is either quasi weak commutative or quasi weak anti- commutative.

III. Main Results:

3.1 Definition:

Let A be an algebra over a commutative ring R.If for every $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$,there exists $\alpha \in \mathrm{R}$ depending on $\mathrm{x}, \mathrm{y}, \mathrm{z}$ such that $\mathrm{xyz}=\alpha \mathrm{yxz}$,then A is said to be scalar quasi weak commutative.
If $x y z=-\alpha y x z$,then A is said to be scalar quasi weak anti- commutative.

3.2 Theorem:

Let A be an algebra (not necessarily associative) over a field F.If A is scalar quasi weak commutative,then A is either quasi weak commutative or quasi weak anti commutative.

Proof:

Suppose $\mathrm{xyz}=\mathrm{yxz}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$, there is nothing to prove. Suppose not, we shall prove that $x y z=-y x z$ for all $x, y, z \in A$. We shall first prove that if $x, y, z \in A$ such that $x y z \neq y x z$, then $x^{2} z=y^{2} z=0$.

Let $x, y, z \in A$ such that exists $\alpha=\alpha(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{F}$ such that
$\mathrm{xyz} \neq \mathrm{yxz}$.Since A is scalar quasi weak commutative,there

$$
\begin{equation*}
\mathrm{xyz}=\alpha \mathrm{yxz} \tag{1}
\end{equation*}
$$

Also there exists $\gamma=\gamma(\mathrm{x}, \mathrm{x}+\mathrm{y}, \mathrm{z}) \in \mathrm{F}$ such that

$$
\begin{equation*}
\mathrm{x}(\mathrm{x}+\mathrm{y}) \mathrm{z}=\gamma(\mathrm{x}+\mathrm{y}) \mathrm{xz} \tag{2}
\end{equation*}
$$

(1) - (2) gives

$$
\mathrm{xyz}-\mathrm{x}^{2} \mathrm{z}-\mathrm{xyz}=\alpha \mathrm{yxz}-\gamma \mathrm{x}^{2} \mathrm{z}-\gamma \mathrm{yxz}
$$

i.e., $\quad \gamma \mathrm{x}^{2} \mathrm{z}-\mathrm{x}^{2} \mathrm{z}=(\alpha-\gamma) \mathrm{yxz}$.
$(\gamma-1)-\mathrm{x}^{2} \mathrm{z}=(\alpha-\gamma) \mathrm{yxz}$
i.e., $(1-\gamma) \mathrm{x}^{2} \mathrm{z}=(\gamma-\alpha) \mathrm{yxz} \quad \rightarrow(3)$

Now

$$
y x z \neq 0 \text { for if } y x z=0 \text {, then from (1) we get } x y z=0 \text { and so } x y z=y x z,
$$

contradicting our assumption that $\mathrm{xyz} \neq \mathrm{yxz}$.
Also $\gamma \neq 1$, for if $\gamma=1$, then from (3) we get $\alpha=\gamma=1$.
Then from (1) we get $x y z=y x z$, again contradicting our assumption that $x y z \neq y x z$.
Now from (3) we get

$$
\mathrm{x}^{2} \mathrm{z}=\frac{\gamma-\alpha}{1-\gamma} \mathrm{yxz}
$$

$$
\begin{equation*}
\text { i.e., } \mathrm{x}^{2} \mathrm{z}=\beta \mathrm{yxz} \text { for some } \beta \in \mathrm{F} \quad \rightarrow(4) \tag{5}
\end{equation*}
$$

Similarly $\mathrm{y}^{2} \mathrm{z}=\delta \mathrm{yxz}$ for some $\delta \in \mathrm{F}$
Now corresponding to each choice of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathrm{~F}$, there is an $\eta \in \mathrm{F}$ such that

$$
\begin{aligned}
& \left(\alpha_{1} \mathrm{x}+\alpha_{2} \mathrm{y}\right)\left(\alpha_{3} \mathrm{x}+\alpha_{4} \mathrm{y}\right) \mathrm{z}=\eta\left(\alpha_{3} \mathrm{x}+\alpha_{4} \mathrm{y}\right)\left(\alpha_{1} \mathrm{x}+\alpha_{2} \mathrm{y}\right) \mathrm{z} \\
& \left(\alpha_{1} \alpha_{3} \mathrm{x}^{2}+\alpha_{1} \alpha_{4} \mathrm{xy}+\alpha_{2} \alpha_{3} \mathrm{yx}+\alpha_{2} \alpha_{4} \mathrm{y}^{2}\right) \mathrm{z}=\eta\left(\alpha_{3} \alpha_{1} \mathrm{x}^{2}+\alpha_{3} \alpha_{2} \mathrm{xy}+\alpha_{4} \alpha_{1} \mathrm{yx}+\alpha_{4} \alpha_{2} \mathrm{y}^{2}\right) \mathrm{z} . \\
& \alpha_{1} \alpha_{3} \mathrm{x}^{2} \mathrm{z}+\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \mathrm{yxz}+\alpha_{2} \alpha_{4} \mathrm{y}^{2} \mathrm{z}=\eta\left(\alpha_{3} \alpha_{1} \mathrm{x}^{2} \mathrm{z}+\alpha_{3} \alpha_{2} \mathrm{xyz}+\alpha_{4} \alpha_{1} \mathrm{yx} \mathrm{z}+\alpha_{4} \alpha_{2} \mathrm{y}^{2}\right) \quad \rightarrow(6) \\
& \alpha_{1} \alpha_{3} \beta \mathrm{yxz}+\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \mathrm{yxz}+\alpha_{2} \alpha_{4} \delta \mathrm{yxz}=\eta\left(\alpha_{3} \alpha_{1} \beta \mathrm{yxz}+\alpha_{3} \alpha_{2} \mathrm{xyz}+\alpha_{4} \alpha_{1} \mathrm{yx} \mathrm{z}+\alpha_{4} \alpha_{2} \delta \mathrm{yxz}\right)
\end{aligned}
$$

$$
\begin{equation*}
\alpha_{1} \alpha_{3} \beta \alpha^{-1} \mathrm{xyz}+\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \alpha^{-1} \mathrm{xyz}+\alpha_{2} \alpha_{4} \delta \alpha^{-1} \mathrm{xyz} \tag{4}
\end{equation*}
$$

$$
=\eta\left(\alpha_{3} \alpha_{1} \beta \mathrm{yxz}+\alpha_{3} \alpha_{2} \alpha \mathrm{yxz}+\alpha_{4} \alpha_{1} \mathrm{yx} \mathrm{z}+\alpha_{4} \alpha_{2} \delta \mathrm{yxz}\right)
$$

i.e., $\left(\alpha_{1} \alpha_{3} \beta \alpha^{-1}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha^{-1}+\alpha_{2} \alpha_{4} \delta \alpha^{-1}\right) \mathrm{xyz}$

$$
=\eta\left(\alpha_{3} \alpha_{1} \beta+\alpha_{3} \alpha_{2} \alpha+\alpha_{4} \alpha_{1}+\alpha_{4} \alpha_{2} \delta\right) \mathrm{yxz} \quad \rightarrow(7)
$$

If in (7) we choose $\alpha_{2}=0, \alpha_{3}=\alpha_{1}=1, \alpha_{4}=-\beta$, the right hand side of (7) is zero where as the left hand side of (7) is

$$
\begin{aligned}
& \quad\left(\beta \alpha^{-1}-\beta\right) \mathrm{xyz}=0 \\
& \text { i.e., } \beta\left(\alpha^{-1}-1\right) \mathrm{xyz}=0 .
\end{aligned}
$$

Since $\mathrm{xyz} \neq 0$ and $\alpha \neq 1$, we get $\beta=0$.
Hence from (4) we get $x^{2} z=0$.
Also if in (7), we choose $\alpha_{3}=0, \alpha_{4}=\alpha_{2}=1, \alpha_{1}=-\delta$, the right hand side of (7) is zero where as the left
hand side of (7) is

$$
\begin{aligned}
& \quad\left(-\delta+\delta \alpha^{-1}\right) \mathrm{xyz}=0 . \\
& \text { i.e., } \delta\left(\alpha^{-1}-1\right) \mathrm{xyz}=0 .
\end{aligned}
$$

Since xyz $\neq 0$ and $\alpha \neq 1$, we get $\delta=0$.
Hence from (5) we get $y^{2} z=0$.
Then (6) becomes

$$
\begin{gathered}
\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \mathrm{yxz}=\eta\left(\alpha_{3} \alpha_{2} \mathrm{xyz}+\alpha_{4} \alpha_{1} \mathrm{yxz}\right) \\
\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \alpha^{-1} \mathrm{xyz}=\eta\left(\alpha_{3} \alpha_{2} \mathrm{xyz}+\alpha_{4} \alpha_{1} \alpha^{-1} \mathrm{xyz}\right) \\
\text { i.e., }\left(\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha^{-1}\right) \mathrm{xyz}=\eta\left(\alpha_{3} \alpha_{2}+\alpha_{4} \alpha_{1} \alpha^{-1}\right) \mathrm{xyz} .
\end{gathered}
$$

This is true for any choice of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in$ F.Choose $\alpha_{1}=\alpha_{3}=\alpha_{4}=1, \alpha_{2}=\alpha^{-1}$, we get

$$
\left(1-\left(\alpha^{-1}\right)^{2}\right) x y z=0
$$

Since $\mathrm{xyz} \neq 0,1-\left(\alpha^{-1}\right)^{2}=0$.Hence $\left(\alpha^{-1}\right)^{2}=1$.
i.e., $\alpha= \pm 1$. Since $\alpha \neq 1$, we get $\alpha=-1$.
i.e., $x y z=-y x z$ for $x, y, z \in A$.

Thus A is either quasi weak commutative or quasi weak anti commutative.

3.3 Lemma:

Let A be an algebra (not necessarily associative) over a commutative ring R.
Suppose A is scalar quasi- weak commutative. Then for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}, \alpha \in \mathrm{R}, \alpha \mathrm{xyz}=0$ iff
$\alpha \mathrm{yxz}=0$. Also $\mathrm{xyz}=0$ iff $\mathrm{yxz}=0$.

Proof:

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}, \alpha \in \mathrm{R}$ such that $\alpha \mathrm{xyz}=0$.

Since A is scalar quasi weak commutative,there exists $\beta=\beta(\alpha \mathrm{y}, \mathrm{x}, \mathrm{z}) \in \mathrm{R}$ such that

$$
\begin{aligned}
& (\alpha y) \mathrm{xz}=\beta \mathrm{x}(\alpha \mathrm{y}) \mathrm{z}=\beta \alpha \mathrm{xyz}=0 \\
& \text { (ie) } \alpha \mathrm{yxz}=0 .
\end{aligned}
$$

Similarly
If $\alpha \mathrm{yxz}=0$, then there exists $\gamma \in \mathrm{R}$ such that $\gamma=\gamma(\mathrm{x}, \alpha \mathrm{y}, \mathrm{z}) \in \mathrm{R}$, such that
$\mathrm{x}(\alpha \mathrm{y}) \mathrm{z}=\gamma(\alpha \mathrm{y}) \mathrm{xz}=\gamma \alpha \mathrm{yxz}=0$
(ie) $\quad \alpha x y z=0$
Thus $\alpha \mathrm{xyz}=0$ iff $\alpha \mathrm{yxz}=0$.
Assume $x y z=0$.
Since A is scalar quasi weak commutative there exists $\delta=\delta(\mathrm{y}, \mathrm{x}, \mathrm{z}) \in \mathrm{R}$ such that

$$
\mathrm{yxz}=\delta \mathrm{xyz}=0
$$

Similarly if $\mathrm{yxz}=0$, then there exists $\eta=\eta(x, y, z) \in R$ such that

$$
x y z=\eta y x z=0
$$

Thus $x y z=0$ iff $y x z=0$.

3.4 Lemma:

Let A be an algebra over a commutative ring R. Suppose A is scalar quasi weak commutative. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u} \in \mathrm{A}, \quad \alpha, \beta \in \mathrm{R}$ such that

$$
\mathrm{xu}=\mathrm{ux}, \quad \mathrm{yxz}=\alpha \mathrm{xyz} \quad \text { and } \quad(\mathrm{y}+\mathrm{u}) \mathrm{xz}=\beta \mathrm{x}(\mathrm{y}+\mathrm{u}) \mathrm{z} \text {. Then }(\mathrm{xu}-\alpha \mathrm{xu}-\beta \mathrm{xu}+\alpha \beta \mathrm{xu}) \mathrm{z}=0 .
$$

Proof:

Given

$$
\begin{array}{ll}
(\mathrm{y}+\mathrm{u}) \mathrm{xz} & =\beta \mathrm{x}(\mathrm{y}+\mathrm{u}) \mathrm{z} \\
\mathrm{yxz} & =\alpha \mathrm{xyz} \tag{2}
\end{array}
$$

$$
\text { and } \quad \mathrm{xu} \quad=\mathrm{ux}
$$

From (1) we get

$$
\left.\begin{array}{cl}
\mathrm{yxz}+\mathrm{uxz} & =\beta \mathrm{xyz}+\beta \mathrm{xuz} \\
\alpha \mathrm{xyz}+\mathrm{uxz} & =\beta \mathrm{xyz}+\beta \mathrm{xuz} \quad \text { (using (2)) } \\
\text { i.e., } \alpha \mathrm{xyz}+\mathrm{xuz} & =\beta \mathrm{xyz}+\beta \mathrm{xuz}
\end{array} \quad \text { (using (3)) }\right)
$$

i.e., $\mathrm{x}(\alpha \mathrm{y}+\mathrm{u}-\beta \mathrm{y}-\beta \mathrm{u}) \mathrm{z}=0$.

By Lemma 3.3 we get
$(\alpha y+u-\beta y-\beta u) x z=0$.
$\alpha \mathrm{yxz}+\mathrm{uxz}-\beta \mathrm{yxz}-\beta \mathrm{uxz}=0$.
$\alpha \mathrm{yxz}+\mathrm{uxz}-\alpha \beta \mathrm{xyz}-\beta \mathrm{uxz}=0 . \quad($ using (4)) \rightarrow (4)
From (1) we get
$y \mathrm{yz}+\mathrm{uxz}=\beta \mathrm{xyz}+\beta \mathrm{xuz}$
$\mathrm{yxz}+\mathrm{uxz}=\beta \mathrm{xyz}+\beta \mathrm{uxz} \quad$ (using (3))
i.e., $\mathrm{yxz}-\beta \mathrm{xyz}=\beta \mathrm{uxz}-\mathrm{uxz}$.

Multiply by α,
$\alpha \mathrm{yxz}-\alpha \beta \mathrm{xyz}=\alpha \beta \mathrm{uxz}-\alpha \mathrm{uxz} \quad \rightarrow(5)$
From (4) and (5) we get
$\alpha \beta \mathrm{uxz}-\alpha \mathrm{uxz}+\mathrm{uxz}-\beta \mathrm{uxz}=0$
i.e., $(\alpha \beta \mathrm{ux}-\alpha \mathrm{ux}+\mathrm{ux}-\beta \mathrm{ux}) \mathrm{z}=0$
i.e., $(\mathrm{ux}-\alpha \mathrm{ux}-\beta \mathrm{ux}+\alpha \beta \mathrm{ux}) \mathrm{z}=0$
i.e., $(\mathrm{xu}-\alpha \mathrm{xu}-\beta \mathrm{xu}+\alpha \beta \mathrm{xu}) \mathrm{z}=0$ $(\because \mathrm{xu}=\mathrm{ux})$

Hence the Lemma.

3.5 Corollary:

Taking $\mathrm{u}=\mathrm{x}$, we get
$\left(\mathrm{x}^{2}-\alpha \mathrm{x}^{2}-\beta \mathrm{x}^{2}+\alpha \beta \mathrm{x}^{2}\right) \mathrm{z}=0$.
$(\mathrm{x}-\alpha \mathrm{x})(\mathrm{x}-\beta \mathrm{x}) \mathrm{z}=0$.

3.6 Theorem:

Let A be an algebra over a commutative ring R.Suppose A has no zero divisors.If
A is scalar quasi weak commutative ,then A is quasi weak commutative.

Proof:

Let $x, y, z \in A$.
Since A is scalar quasi weak commutative,there exists scalars $\alpha=\alpha(\mathrm{y}, \mathrm{x}, \mathrm{z}) \in \mathrm{R}$ and $\beta=\beta(\mathrm{y}+\mathrm{x}, \mathrm{x}, \mathrm{z}) \in \mathrm{R}$ such that

$$
\begin{equation*}
(\mathrm{y}+\mathrm{x}) \mathrm{xz}=\beta \mathrm{x}(\mathrm{y}+\mathrm{x}) \tag{1}
\end{equation*}
$$

and

$$
\mathrm{yxz}=\alpha \mathrm{xyz}
$$

(2)

From (1) we get
$y \mathrm{yz}+\mathrm{x}^{2} \mathrm{z}=\beta \mathrm{xyz}+\beta \mathrm{x}^{2} \mathrm{z}$.
$\alpha x y z+x^{2} z-\beta x y z-\beta x^{2} z=0$. (using (2))
$\mathrm{x}(\alpha \mathrm{y}+\mathrm{x}-\beta \mathrm{y}-\beta \mathrm{x}) \mathrm{z}=0$.
By Lemma 3.3,
$(\alpha y+x-\beta y-\beta x) x z=0$.
$\alpha \mathrm{yxz}+\mathrm{x}^{2} \mathrm{z}-\beta \mathrm{yxz}-\beta \mathrm{x}^{2} \mathrm{z}=0$
$\alpha y x z+x^{2} z-\alpha \beta x y z-\beta x^{2} z=0 \quad$ (using (2)) \rightarrow (3)
From (1) we get

$$
\mathrm{yxz}+\mathrm{x}^{2} \mathrm{z}=\beta \mathrm{xyz}+\beta \mathrm{x}^{2} \mathrm{z}
$$

$$
\mathrm{yxz}-\beta \mathrm{xyz}=\beta \mathrm{x}^{2} \mathrm{z}-\mathrm{x}^{2} \mathrm{z}
$$

$\alpha \mathrm{yxz}-\alpha \beta \mathrm{xyz}=\alpha \beta \mathrm{x}^{2} \mathrm{z}-\alpha \mathrm{x}^{2} \mathrm{z}$
(4)

From (3) and (4) we get
$\alpha \beta \mathrm{x}^{2} \mathrm{z}-\alpha \mathrm{x}^{2} \mathrm{z}+\mathrm{x}^{2} \mathrm{z}-\beta \mathrm{x}^{2} \mathrm{z}=0$.
$\left(\mathrm{x}^{2}-\alpha \mathrm{x}^{2}-\beta \mathrm{x}^{2}+\alpha \beta \mathrm{x}^{2}\right) \mathrm{z}=0$.
$(\mathrm{x}-\alpha \mathrm{x})(\mathrm{x}-\beta \mathrm{x}) \mathrm{z}=0$.
Since A has no zero dvisors.
$\mathrm{x}=\alpha \mathrm{x}$ or $\mathrm{x}=\beta \mathrm{x}$.
If $\mathrm{x}=\alpha \mathrm{x}$, then from (2) we get

$$
y x z=x y z .
$$

If $x=\beta x$,then from (1) we get

$$
(y+x) x z=x(y+x) z
$$

$y x z+x^{2} z=x y z+x^{2} z$

$$
y x z=x y z
$$

Thus A is quasi weak commutative.

3.7 Definition:

Let R be any ring and $x, y, z \in R$.We define $x y z-y x z$ as the quasi weak
commutator of $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
(ie) $x y z-y x z$

$$
\begin{array}{ll}
= & (x y-y x) z \\
= & {[x, y] z \text { is called the quasi weak commutator of } x, y, z}
\end{array}
$$

3.8 Theorem:

Let A be an algebra over a commutative ring R. Let A be a scalar quasi-weak commutative. If A has an identity, then the square of every quasi-weak commutator is zero.

$$
\text { (ie)., }(x y z-y x z)^{2}=0 \text { for all } x, y, z \in A \text {. }
$$

Proof:

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$. Since A is scalar quasi-weak commutative, there exists scalars
$\alpha=\alpha(\mathrm{y}, \mathrm{x}, \mathrm{z}) \in \mathrm{R}$ and $\beta=\beta(\mathrm{x}, \mathrm{y}+1, \mathrm{z}) \in \mathrm{R}$ such that

$$
\begin{equation*}
\mathrm{yxz} \quad=\quad \alpha \mathrm{xyz} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{x}(\mathrm{y}+1)=\quad \beta(\mathrm{y}+1) \mathrm{xz} \tag{2}
\end{equation*}
$$

From (2) we get

$$
\begin{aligned}
& \mathrm{xyz}+\mathrm{xz}-\beta \mathrm{yxz}-\beta \mathrm{xz}=0 \\
& \mathrm{xyz}+\mathrm{xz}-\alpha \beta \mathrm{xyz}-\beta \mathrm{xz}=0 \\
& \mathrm{x}(\mathrm{y}+1-\alpha \beta \mathrm{y}-\beta) \mathrm{z}
\end{aligned}
$$

By Lemma 3.3,

$$
\begin{aligned}
& (\mathrm{y}+1-\alpha \beta \mathrm{y}-\beta) \mathrm{xz} \\
& \mathrm{yxz}+\mathrm{xz}-\alpha \beta \mathrm{yxz}-\beta \mathrm{xz}=0
\end{aligned}
$$

$$
\alpha \mathrm{xyz}+\mathrm{xz}-\alpha \beta \mathrm{yxz}-\beta \mathrm{xz}=0 \quad(\mathrm{using}(1)) \quad \rightarrow(3)
$$

Also from (2) we get
$\mathrm{xyz}+\mathrm{xz} \quad=\quad \beta \mathrm{yxz}+\beta \mathrm{xz}$

Multiplying by α

$$
\begin{array}{rll}
\alpha \mathrm{xyz}+\alpha \mathrm{xz} & = & \alpha \beta \mathrm{yxz}+\alpha \beta \mathrm{xz} \\
\alpha \mathrm{xyz}-\alpha \beta \mathrm{yxz} & = & \alpha \beta \mathrm{xz}-\alpha \mathrm{xz} \tag{4}
\end{array}
$$

From (3) and (4) we get

$$
\begin{aligned}
& \mathrm{xz}-\beta \mathrm{xz}+\alpha \beta \mathrm{xz}-\alpha \mathrm{xz}=0 \\
& \mathrm{x}(\mathrm{z}-\alpha \mathrm{z})
\end{aligned}
$$

(ie)
Multiplying by $(y+1)$ on the left we get
$(\mathrm{y}+1) \mathrm{x}(\mathrm{z}-\alpha \mathrm{z})$
$=\quad(\mathrm{y}+1) \mathrm{x}(\beta \mathrm{z}-\alpha \beta \mathrm{z})$
$(\mathrm{y}+1)(\mathrm{xz}-\alpha \mathrm{xz}) \quad=\quad \beta(\mathrm{y}+1) \mathrm{xz}-\alpha \beta(\mathrm{y}+1) \mathrm{xz}$
(ie) $(\mathrm{y}+1)(\mathrm{x}-\alpha \mathrm{x}) \mathrm{z}$
$=\quad \beta \mathrm{x}(\mathrm{y}+1) \mathrm{z}-\alpha \mathrm{x}(\mathrm{y}+1) \mathrm{z} \quad$ (using (2))
$[y \mathrm{y}-\alpha \mathrm{yx}+\mathrm{x}-\alpha \mathrm{x}] \mathrm{z}$
$=\quad[\mathrm{xy}+\mathrm{x}-\alpha \mathrm{xy}-\alpha \mathrm{x}] \mathrm{z}$
(ie) $[y x-x y+x-x] z$
$=\quad[\alpha \mathrm{yx}+\alpha \mathrm{x}-\alpha \mathrm{xy}-\alpha \mathrm{x}] \mathrm{z}$
(ie) $y x z-x y z$
$=\quad \alpha y \mathrm{yz}-\alpha \mathrm{xyz}$
$\alpha x y z-x y z$
$=\quad \alpha \cdot \alpha \mathrm{xyz}-\alpha \mathrm{xyz}$
(ie) $\mathrm{xyz}-2 \alpha \mathrm{xyz}+\alpha^{2} \mathrm{xyz} \quad=0$
(ie) $\mathrm{x}\left(\mathrm{y}-2 \alpha \mathrm{y}+\alpha^{2} \mathrm{y}\right) \mathrm{z} \quad=\quad 0 \quad \rightarrow(5)$

Now
$(x y z-y x z)^{2}$

$$
\begin{array}{ll}
= & (\mathrm{xyz}-\alpha \mathrm{xyz})^{2} \\
= & (\mathrm{xyz}-\alpha \mathrm{xyz})(\mathrm{xyz}-\alpha \mathrm{xyz}) \\
= & \mathrm{xyzxyz}-\alpha \mathrm{xyzxyz}-\alpha \mathrm{xyz}+\alpha^{2} \mathrm{xyzxyz} \\
= & \mathrm{x}\left(\mathrm{y}-2 \alpha \mathrm{y}+\alpha^{2} \mathrm{y}\right) \mathrm{zxyz} \\
= & 0 \mathrm{xyz} \text { (using(5)) }
\end{array}
$$

Thus $(x y z-y x z)^{2}=0$.
(ie) Square of every quasi-weak commutator is zero.

3.9 Definition:

Let R be a P.I.D (Principal ideal domain) and A be an algebra over R. Let $\mathrm{a} \in \mathrm{R}$.
Then the order of a, denoted as $\mathrm{O}(\mathrm{a})$ is defined to be the generator of the ideal $\mathrm{I}=\{\alpha \in \mathrm{R} / \alpha \mathrm{a}=0\}$.
$O(a)$ is unique upto associates and $O(a)=1$ if and only if $a=0$.

3.10 Lemma:

Let A be an algebra with identity over P.I.D. If A is scalar quasi-weak commutative, $\mathrm{y} \in \mathrm{R}$ with $\mathrm{O}(\mathrm{y})=0$, then y is in the center of A .

Proof:

$$
\text { Let } \mathrm{y} \in \mathrm{R} \text { with } \mathrm{O}(\mathrm{y})=0 \text {. }
$$

For every $\mathrm{x} \epsilon \mathrm{A}$, there exists scalars $\alpha=\alpha(\mathrm{x}, \mathrm{y}, 1) \in \mathrm{R}$ and $\beta=\beta(\mathrm{y}, \mathrm{x}+1,1) \in \mathrm{R}$ such that

$$
\begin{array}{ll}
\mathrm{xy} .1 & =\alpha \mathrm{yx} .1 \\
\mathrm{xy} & = \tag{1}\\
\mathrm{yx}
\end{array}
$$

$$
\text { and } \quad \mathrm{y}(\mathrm{x}+1)=\quad \beta(\mathrm{x}+1) \mathrm{y} .1
$$

$$
\begin{equation*}
\text { (ie) } \quad y(x+1)=\quad \beta(x+1) y \tag{2}
\end{equation*}
$$

From (2) we get

$$
\begin{aligned}
& \mathrm{yx}+\mathrm{x}=\beta \mathrm{xy}+\beta \mathrm{y} \\
& \mathrm{yx}+\mathrm{x}-\beta \mathrm{xy}-\beta \mathrm{y} \\
& \mathrm{y}(\mathrm{x}+1-\alpha \beta \mathrm{x}-\beta \cdot 1) \cdot 1=0
\end{aligned}
$$

Using Lemma 3.3 we get

$$
\begin{align*}
& (\mathrm{x}+1-\alpha \beta \mathrm{x}-\beta .1) \mathrm{y} \cdot 1=0 \\
& \mathrm{xy}+\mathrm{y}-\alpha \beta \mathrm{xy}-\beta \mathrm{y} \tag{3}
\end{align*}=0
$$

Also from (2) we get

$$
y x+y-\beta x y-\beta y \quad=0
$$

Multiply by α

$$
\begin{array}{ll}
\alpha \mathrm{yx}+\alpha \mathrm{y}-\alpha \beta \mathrm{xy}-\alpha \beta \mathrm{y} & =0 \\
\mathrm{xy}+\alpha \mathrm{y}-\alpha \beta \mathrm{xy}-\alpha \beta \mathrm{y} & =0
\end{array}
$$

$$
(\operatorname{using}(1)) \quad \rightarrow(4)
$$

From (3) and (4) we get

$$
\begin{array}{ll}
\mathrm{y}-\beta \mathrm{y}-\alpha \mathrm{y}+\alpha \beta \mathrm{y} & =0 \\
(\mathrm{y}-\beta \mathrm{y})-\alpha(\mathrm{y}-\beta) & \\
(1-\alpha)(1-\beta) \mathrm{y} & =0
\end{array}
$$

Since $\mathrm{O}(\mathrm{y})=0$ we get $\alpha=1$ or $\beta=1$
If $\alpha=1$, from (1) we get $\mathrm{xy}=\mathrm{yx}$
If $\beta=1$ from (2) we get $\mathrm{y}(\mathrm{x}+1)=\quad(\mathrm{x}+1) \mathrm{y}$

$y x+y$	$=$	$x y+y$
$y x$	$=$	$x y$

DOI: 10.9790/5728-1403013037
(ie) y commutes with x.
As $\mathrm{x} \in \mathrm{A}$ is arbitrary, y is in the center of A .

3.11 Lemma:

Let A be an algebra with unity over a principal ideal domain R . If A is scalar quasi-weak commutative, $x \in A$ such that $O(x z)=0$, then $x y z=y x z$ for all $y, z \in A$.

Proof:

Let $\mathrm{x} \in \mathrm{A}$ with $\mathrm{O}(\mathrm{xz})=0$
For $\mathrm{y}, \mathrm{z} \in \mathrm{A}$, there exists scalars $\alpha=\alpha(\mathrm{y}, \mathrm{x}, \mathrm{z}) \in \mathrm{R}$ and $\beta=\beta(\mathrm{x}, \mathrm{y}+1, \mathrm{z}) \epsilon \mathrm{R}$ such that

$$
\mathrm{yxz} \quad=\quad \alpha \mathrm{xyz}
$$

(1)

$$
\begin{equation*}
(\mathrm{y}+1) \mathrm{xz}=\quad \beta \mathrm{x}(\mathrm{y}+1) \mathrm{z} \tag{2}
\end{equation*}
$$

From (2) we get

	$\mathrm{yxz}+\mathrm{xz}=$	$\beta \mathrm{xz}+\beta \mathrm{xz}$	
$\alpha \mathrm{xyz}+\mathrm{xz}-\beta \mathrm{xyz}-\beta \mathrm{xz}$	$=0$		$($ using(1))
$\mathrm{x}(\alpha \mathrm{y}+\mathrm{x}-\beta \mathrm{y}-\beta .1) \mathrm{z}$		$=0$	

By Lemma 3.3, we get
$(\alpha \mathrm{y}+\mathrm{x}-\beta \mathrm{y}-\beta .1) \mathrm{xz}=0$
(ie) $\alpha y x z+x^{2} z-\beta y x z-\beta x z=0 \quad \rightarrow$ (4)
Multiplying (3) by α, we get
$\alpha \mathrm{yxz}+\alpha \mathrm{xz}-\alpha \beta \mathrm{xz}-\alpha \beta \mathrm{xz}=0$
(4) - (5) gives
$\mathrm{x}^{2} \mathrm{z}-\beta \mathrm{xz}-\alpha \mathrm{xz}+\alpha \beta \mathrm{xz} \quad=0$
$(1-\alpha-\beta+\alpha \beta) \mathrm{xz} \quad=0$
$(1-\alpha)(1-\beta) x z=0$
Since $O(x z)=0$, we get $1-\alpha=0$ or $1-\beta=0$.
That is $\alpha=1$ or $\beta=1$.
If $\alpha=1$, then from (1) we get $\mathrm{yxz}=\mathrm{xyz}$.
If $\beta=1$, then from (3) we get

$$
y x z+x z=x y z+x z
$$

(ie) $y x z=x y z$.

3.12 Lemma:

Let A be an algebra with identity over a P.I.D R.Suppose that A is scalar quasi-weak commutative.Assume further that there exists a prime $\mathrm{p} \in \mathrm{R}$ and a positive integer $\mathrm{m} \in Z^{+}$such that $p^{m} \mathrm{~A}=0$.Then A is quasi-weak commutative.

Proof:

Let $\mathrm{x}, \mathrm{y} \in \mathrm{A}$ such that $\mathrm{O}(\mathrm{yx})=p^{k}$ for some $\mathrm{k} \in Z^{+}$. We prove by induction on k that
$x y u=y x u$ for all $\in R$.
If $\mathrm{k}=0$, then $\mathrm{O}(\mathrm{yx})=p^{0}=1$ and so $\mathrm{yx}=0$.
So yxu $=0$. By Lemma $3.3 \quad \mathrm{xyu}=0$.
Hence $x y u=y x u$ for all $u \in A$.So, assume that $k>0$ and that the statement is true for all $\mathrm{l}<\mathrm{k}$.
We first prove that for any $u \in A$,

$$
x y u-y x u \neq 0 \text { implies }
$$

$y(x u) w-(x u) y w=0$ for all $w \in A$.
So, let $x y u-y x u \neq 0$.Since A is scalar quasi-weak commutative, there exists scalars
$\alpha=\alpha(\mathrm{x}, \mathrm{y}, \mathrm{u})$ and
$\beta=\beta(\mathrm{x}, \mathrm{y}+1, \mathrm{u})$ such that
$\mathrm{xyu}=\alpha \mathrm{yxu}$
and

$$
\mathrm{x}(\mathrm{y}+1) \mathrm{u}=\beta(\mathrm{y}+1) \mathrm{xu} \quad \rightarrow(2)
$$

From (2) we get

$$
\mathrm{xyu}+\mathrm{xu}=\beta \mathrm{yxu}+\beta \mathrm{xu}
$$

$$
\begin{equation*}
\alpha \mathrm{yxu}+\mathrm{xu}=\beta \mathrm{yxu}+\beta \mathrm{xu} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
(\alpha-\beta) \mathrm{yxu}=(\beta-1) \mathrm{xu} \tag{3}
\end{equation*}
$$

If $(\alpha-\beta) \mathrm{yxu}=0$, then $(\beta-1) \mathrm{xu}=0$ and so $\beta \mathrm{xu}=\mathrm{xu}$
So from (2) we get

$$
\begin{aligned}
\mathrm{x}(\mathrm{y}+1) \mathrm{u}= & (\mathrm{y}+1) \beta \mathrm{xu} \\
& =(\mathrm{y}+1) \mathrm{xu} \\
\mathrm{xyu}+\mathrm{xu}= & \mathrm{yx}+\mathrm{xu}
\end{aligned}
$$

i.e., $\mathrm{xyu}-\mathrm{yxu}=0$, contradicting our assumption that $\mathrm{xyu} \neq \mathrm{yxu}$.

So $(\alpha-\beta)$ yxu $\neq 0$.Inparticular $\alpha-\beta \neq 0$.
Let $(\alpha-\beta)=p^{t} \delta$
for some $\mathrm{t} \in Z^{+}$and $\delta \in \mathrm{R}$ with ($\left.\delta, \mathrm{p}\right)=1$. If $\mathrm{t} \geq \mathrm{k}$, then since
$\mathrm{O}(\mathrm{yx})=p^{k}$, we would get $(\alpha-\beta) \mathrm{yxu}=0$, a contradiction. Hence $\mathrm{t}<\mathrm{k}$.
Since p^{k} yxu $=0$, by Lemma 3.3, p^{k} xyu $=0$.
From (3) we get

$$
\begin{aligned}
p^{k-t}(\beta-1) \mathrm{xu}= & p^{k-t}(\alpha-\beta) \mathrm{yxu} \\
& =p^{k-t} p^{t} \delta \mathrm{yxu} \\
& =p^{k} \delta \mathrm{yxu}=0 .
\end{aligned}
$$

Let $\mathrm{O}(\mathrm{xu})=p^{i}$.If $\mathrm{i}<\mathrm{k}$,then by induction hypothesis $\mathrm{xyu}=\mathrm{yxu}$ contradicting our assumption.
So $\mathrm{i} \geq \mathrm{k}$.
Hence $p^{k}\left|p^{i}\right| p^{k-t}(-1)$.
Thus $p^{t} \mid \beta-1$ and let $\beta-1=p^{t} \gamma \rightarrow(6)$ for some $\gamma \in \mathrm{R}$.
From (3) we get

$$
(\alpha-) \mathrm{yxu}=(\beta-1) \mathrm{xu}
$$

$$
p^{t} \delta \mathrm{yxu}=p^{t} \gamma \mathrm{xu} \quad \text { (using (4) and (6)) }
$$

$\therefore p^{t}(\delta \mathrm{y}-\gamma .1)(\mathrm{xu})=0$.
Hence by induction hypothesis

$$
(\delta \mathrm{y}-\gamma .1)(\mathrm{xu}) \mathrm{w}=\mathrm{xu}(\delta \mathrm{y}-\gamma .1) \mathrm{w} \text { for all } \mathrm{w} \in \mathrm{~A} .
$$

$$
\delta \text { yxuw }-\gamma \text { xuw }=\delta \text { xuyw }-\gamma \text { xuw }
$$

$$
\begin{equation*}
\therefore \delta\{\mathrm{y}(\mathrm{xu}) \mathrm{w}-(\mathrm{xu}) \mathrm{yw}\}=0 \tag{7}
\end{equation*}
$$

Since $(\delta, \mathrm{p})=1$,there exists $\mu, \delta \in \mathrm{R}$ such that $\mu p^{m}+\gamma \delta=1$.
$\therefore \mu p^{m}\{\mathrm{y}(\mathrm{xu}) \mathrm{w}-(\mathrm{xu}) \mathrm{yw}\}+\gamma \delta\{\mathrm{y}(\mathrm{xu}) \mathrm{w}-(\mathrm{xu}) \mathrm{yw}\}=\{\mathrm{y}(\mathrm{xu}) \mathrm{w}-(\mathrm{xu}) \mathrm{yw}\}$ $0+0=\{y(x u) w-(x u) y w\} \quad\left(\because p^{m} A=0\right)$

$$
\text { i.e., } \mathrm{y}(\mathrm{xu}) \mathrm{w}-(\mathrm{xu}) \mathrm{yw}=0
$$

$$
\text { i.e., } x y u-y(x u) \neq 0 \text { implies } y(x u) w-(x u) y w=0 \quad \text { for all } w \in A . \quad \rightarrow(8)
$$

Now we proceed to show that $x y u=y x u$ for all $u \in A$.Suppose not there exists $u \in A$ such that

$$
\begin{equation*}
x y u-y(x u) \neq 0 \tag{9}
\end{equation*}
$$

Then also we have $x y(u+1)-y x(u+1) \neq 0$
From (8) and (9) we get

$$
\begin{equation*}
y(x u) w-(x u) y w=0 \quad \text { for all } w \in A . \tag{10}
\end{equation*}
$$

From (8) and (10) we get

$$
\begin{equation*}
y(x(u+1)) w-(x(u+1) y w=0 \text { for all } w \in A . \tag{11}
\end{equation*}
$$

From (12) we get

$$
\begin{equation*}
y(x u+x) w-(x u+x) y w=0 \tag{1}
\end{equation*}
$$

$$
y(x u) w+y x w-(x u) y w-x y w=0
$$

i.e., $y x w-x y w=0$ for all $w \in A$. (using (11))
a contradiction.This contradiction proves that $x y u=y x u$ for all $x, y, u \in A$.
Thus A is quasi-weak commutative.

3.13 Theorem:

Let A be an algebra with identity over a principal ideal domain R.If A is scalar quasi-weak commutative,then A is quasi-weak commutative.

Proof:

Suppose A is not quasi-weak commutative ,there exists $x \in A$ such that $x y z \neq y x z$
for all $\mathrm{y}, \mathrm{z} \in \mathrm{A}$.
Also $(x+1) y z \neq y(x+1) z$.
By Lemma $3.10 \quad O(x) \neq 0$ and $O(x+1) \neq 0$.
Hence $\mathrm{O}(1) \neq 0$.Let $\mathrm{O}(1)=\mathrm{d} \neq 0$. Then d is not a unit and hence

$$
\mathrm{d}=p_{1}^{i_{1}} p_{2}^{i_{2}} \ldots \ldots \ldots \ldots . p_{k}^{i_{k}} \text { for some primes } p_{1}, p_{2} \ldots \ldots \ldots \ldots p_{k} \in \mathrm{~A} \text { and some }
$$

positive integers i_{1}, i_{2}
.i_{k}.
Let $\mathrm{A}_{\mathrm{j}}=\left\{\mathrm{a} \in \mathrm{A} \mid p_{j}^{i_{j}} \mathrm{a}=0\right\}$.Then each A_{j} is a non-zero sub - algebra of A and
$A=A_{1} \oplus A_{2} \oplus \ldots \ldots \ldots A_{k}$. Being sub algebras of A, each A_{j} is scalar quasi-weak commutative. Being homomorphic image of A , all the A_{j} ' s have identity element 1 .
By Lemma 3.12 each A_{j} is quasi-weak commutative and hence A is quasi-weak commutative, a contradiction. This contradiction proves that A is quasi-weak commutative.

References

[1]. R.Coughlin and M.Rich, On scalar dependent algebras, Canad.J.Math,24(1972), 696-702.
[2]. R.Coughlin, K.Kleinfield and M.Rich, Scalar dependent algebras, Proc, Amer.Math.Soc, 39(1973), 69-73.
[3]. G.Gopalakrishnamoorthy,M.Kamaraj and S.Geetha,On Quasi weak commutative
[4]. Near-rings,International Jour. of Math Research,Volume 5(5),(2013),431-440.
[5]. G.Gopalakrishnamoorthy,S.Geetha and S.Anitha ,On Quasi - weak m power commutative Near-rings and Quasi-weak (m,n) power commutative Near-rings, IOSR Jour. of Mathematics,Vol12(4),(2016),87-90.
[6]. K.Koh, J.Luh and M.S.Putcha, On the associativity and commutativity of algebras over commutative rings, Pacific.J.Math,63,No2,(1976),423-430.
[7]. Pliz Glinter, Near-Rngs, North Holland, Aneterdam;(1983)

[^0]
[^0]: G.Gopalakrishnamoorthy "On Scalar Quasi - Weak Commutative Algebras. "IOSR Journal of Mathematics (IOSR-JM) 14.3 (2018): 30-37.

