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Abstract: In this paper, nonlinear difference equations for zooplankton–fish population model with noise is 

considered. The model is on predation of phytoplanktivore fishes on zooplankton, this is to understand the 

individual behaviour of the organisms as well as interaction with the environment. The model is a nonlinear 

logistic type of model incorporating nonlinear feeding functions. The conditions for the existence of the 

equilibrium points are obtained through some nonlinear equations and Diophantine equations. The conditions 

for local stability for the dual population investigated and results obtained .Simulation made for the dual 

populations when the ocean is polluted with chemical substances and oil spillage using Gaussian noise. The 

noise accounts for pollution of the ocean that may lead to species migration from the pollutants source. It is 

observed that the risk factor increases with time and makes the species to be endangered and some kind of 

chemo taxis effect is experienced whereby the survived species tend to migrate to region with lower 

concentrations of pollutants. 
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I. Introduction 
Modelling integrates understanding of field observation, laboratory experiments’ theory and 

computation together within wide range of physical and biological processes. All activities in the marine 

ecosystem have some mathematical connections hence modelling the economic resources, chemical and 

biological processes of the marine ecosystem is of great concern to researchers in the recent times [1,4,6,8]. 

There is a growing need among researchers, environmental conservatives and government agencies to 

understand the pollution of the ocean and attendant environmental changes that accompany it and the 

biodiversity of the marine ecosystem([3,6,11]). 

The fish constitute great percentage of human sources of protein and the population of fishes (school) 

can be affected by global change in temperature, salinity, turbulence and mixing in the ocean ([8,12]).  The 

ocean is constantly polluted by chemical substances that are found to affect the biodiversity and the food chain 

system of the marine biomes. Consequently, the global economic resources from the ocean are depleting with 

time ([5, 10, 11, 12, and 13]). 

The motivation for this paper is to study the predation of phytoplankton fishes on zooplankton and to 

simulate the model when the ocean is polluted by spillages from crude oil and other chemical substances. The 

model we will consider is a kind prey-predator model. There several prey-predator models for studying 

predation of phytoplankton fishes on zooplankton. There are also individual based models (IBMs) used for 

investigating the dynamic of different spatial and temporal pattern and transportation of fish eggs and larvae 

([4]).  There are models of trophodynamics of species, surrogate of biomass and multispecies models and 

circulation of nutrients in aquatic systems ([2]). 

The main food item of pelagic fishes is zooplankton which has also been influenced by the change of 

salinity that is thought to have caused a decrease of large zooplankton in the Gulf of Finland. It is found that the 

distribution pattern of phytoplanktivore fish changes according to current [8]. Horst et. al. [4] considered 

plankton interaction-diffusion model to study the influence of fish on the spatial-temporal pattern for the 

zooplankton population. The local properties such as the excitation and stability of spatially uniform stability in 

the absence of diffusion were analysed.    

Arnfinn [1] studied the effect of fish predation on zooplankton community in an oligotrophic lake with 

addition of artificial fertilizer .It was found that there was increase in the biomass of zooplankton and fish 

predation and  the distribution pattern of planktivore fish change according to current direction. Nutrient–

phytoplankton–zooplankton–detritus (NPZD) models have been developed for more than 40 years (e.g. Andrew 

[2]; Katja et.al, [6]; Ute et al. [12]).
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The lack of general models for zooplankton population has become a major setback to carbon flux 

models for simulating the effects of zooplankton grazing and faecal production on carbon storage and export 

flux, and for food-web models to simulate biomass transfer from lower to higher tropic level organisms 

including fish populations([2,7,9]). 

The modelling of marine zooplankton has made great progress over the two last decades covering a 

large range of representations from detailed individual processes to functional groups. A new challenge is to 

dynamically represent zooplankton within marine food webs coupling lower tropic levels to fish and to thereby 

further our understanding of the role of zooplankton in global change ([1,8,11 ,12]).  

The weight and composition of zooplankton varies significantly, and it can be attributed to age, 

seasonal difference, geographical distribution, or environmental conditions (Makoso [9]).eddies and fronts are 

generally thought to have phytoplankton abundance than adjacent waters through an increase in phytoplankton 

stock (Thibault et al. [11]) 

The eggs and dry weight of zooplankton are found to be nonlinear in the Bariri reservoir in the Sao 

Paulo state in Brazil. From field experiment(see Gozalez [3]) in the middle of Tieli river in Sau Paulo in Brazil, 

the diameter of cladoceran and copepod species sizes are found to be 108.6 micron (Keratella tropical) to 2488.6 

micron (females of Argyrodiaptomus azevedol) while dry weight varies between 0.025 micron(K.tropical) and 

51.250 micron (female azevedol) egg diameter.  

In this paper, nonlinear difference equations for zooplankton –fish population model with noise is 

proposed. The model is on predation of phytoplanktivore fishes on zooplankton; our aim is to understand the 

individual organism, behaviour as well as interaction with the environment. The conditions for the existence of 

the equilibrium points obtained through some nonlinear equations and Diophantine equations and conditions for 

local stability for the dual population are obtained. The model considered is a type nonlinear stochastic equation 

treated as a type of Prey-predator model with pursuit and search parameters as against the continuous and 

impulsive version found in the literature (see for example [13]).  

The use of nonlinear difference equations with nonlinear feeding functions used in this paper is 

expected to offer interesting platform for research on prey-predator models for species and should open-up the 

window of future research on species in polluted environments. 

 

II. Preliminary Definitions and Notations 
2.1 Notations 

We will make use of the following notations 

1tu Velocity of the fish 

2tu Velocity of the zooplankton 

1td Search distance at the period t by the fish 

2td Escape distance at the period t of the zooplankton 

2

1 2x t ta m r u x , r is the search radius and xm is mass of zooplankton 

2

1 1y tb m r u , ym is mass of the fish 

1ta Volumetric search velocity for fish 

2ta Volumetric escape velocity for the zooplankton 

tx  Population of zooplankton at time t measured in months 

ty  Population of the fish at time t measured in months. 

{ }tE u   The expected value for tu  

   ( )( ,t t t tE y y Cov y y         Auto covariance with lag while (.,.)d  is the common 

divisor of (.,.) . 

 

2.2 NONLINEAR STOCHASTIC EQUATIONS 

Consider the stochastic equation form 

 1 ,t t tZ f Z t     
(1) 
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f is an arbitrary function   such that : ( , ) nf R R    . It is a special case of linear model in which

( ) yf y  .  Analyses of the properties of eq. (1) have been subject of many researches in the recent times. 

Removing the noise from the model, we obtain the following deterministic model 

 

 1 ( 1)t tz f z t   

where tz in the lower case is for the deterministic form as against the stochastic form in the eq. (1) where tz  is 

used .We are not going to make discussion on this but will focus on some features of the deterministic model but 

later on we will consider the simulation for the fish-zooplankton model which special form of the eq. (2). 

  

Definition 1 

 A solution z of the equation ( )z f z  is an equilibrium point of the difference equation in the eq. 

(2), if ( ) 0f z   .In many cases 0z  is an equilibrium point this is a trivial case, but for non-trivial case the 

equilibrium point 0z  are often be of interest. An equilibrium point  z  is said to be asymptotically stable or 

an asymptotical stable limit point for (almost) all initial value, 0z such that tz z as t  . 

Definition 2 

An equilibrium point z* is said to be weakly stable if given an infinitesimal perturbation from the equilibrium 

point z the process returns to the equilibrium point i.e. given that
* *

0  as  ,h 0 ( 0)tz z h z z t t      

  

Definition 3 

 A process is said to be weakly stationary (or covariance) stationary or in wide sense stationary if 

{ }tE u is constant over time and cov( , )t tu u  depends only on the lag and not t . If { }tE u  ,

cov( , )t tu u    then strictly stationary process implies weakly stationary process but weakly stationary 

process does not imply strictly stationary process. 

 

Definition 4 

 Let tu be independently and identically distributed (i.i.d), with common variance 
2  such that 

2

0 0 r , 0 ( 0), 1 and 0 ( 0).             

tu is said to be white noise process if it’s stationary and the tu  is pairwise uncorrelated.  

A sequence ( )n n of radium variables is said to be convergent in mean to random variable  if 

{( )} 0n n
E  


  . We will simply write

m

n  .   

 

III. Statement of Problem 
 The model we will consider is a nonlinear logistic type of model for the zooplankton-fish population 

which incorporated nonlinear feeding functions , 1,2iF i  .The feeding function 1F takes into consideration the 

search rate and search velocity of the fish on the zooplankton and the escape rate of the zooplankton from the 

fish. The model also includes escape velocity of the zooplankton from predation of fish and feeding rate 

function 2F for the zooplankton. 

 

Now consider the nonlinear zooplankton-fish population  

(2) 
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1 1
1 1 1 1 1

1

2 1
2 2 2 1 2

2

t
t t t

t
t t t

k x
x a F b y

k

k y
y a F b y

k







 
    

  


  
    

  

(3) 

Where the feeding functions , 1,2iF i  are given as 

1

1 1 1
1

1 1 1 1 1

1

2 1 1
2

1 1 1 2 1

1

1

and

1

1

t t t
r

t t t t t

t t

t t t
r

t t t t t

t t

d a x
F t

a x a u x

d b y
F t

b y b u y





 





 

  
  

      
  

  
  

      
  

 

 

 

To ensure capture of zooplankton by the fish, we must have 1 1 1 1t t t t

t t

a x b y   for every t . The noise 

accounts for pollution of the ocean by chemical substances or other forms of pollutants that may lead to chemo 

taxis effect of the dual population, that is, forcing the species to migrate toward the region of low chemical 

concentration or away from the region of high chemical concentration. 

 

Now consider the model in the eq. (3) and let ( , )T

t t tz x y then the model can be represented in deterministic 

form for ( , ), 0, 1,2.itz x y i    Let

1
1 1 1

1

2
2 2 2

2

( , )

k x
a F b xy

k
f x y

k y
a F b xy

k

  
  

  
  

    
  

. If 0, 0x y  then  

1 1 1 2 2 2,t r t rx a F a t y a F a t    . Therefore the per capita growth rate of the zooplankton is
1 1
r

a

t
 , and the 

per capita growth rate of the fish is
2 1.
r

a

t


 

It is worthy of note that the presence of fishes is causing the zooplankton population to decrease.  
 

IV. Methods 

Assuming that f is continuously differentiable and 1th   is infinitesimally small and from the eq. (2) 

   1 1 1t t t t

f f
z f z f z f z h

z z

 

  

 
    

 
where 

f

z




is the matrix of partial derivative with (i, j) 

element 
j

j

f

z




are evaluated at the equilibrium points; if i are the eigenvalues to 

f

z




and 1i

f

z


 
 

 
, then 

0th  as 0t   

In order to obtain the equilibrium points for the model in the eq. (3), we set the right hand side of the equation to 

zero and we have the following equations: 
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1
1 1 1

1

2
2 2 2

2

0

.

0

k x
a F b x y

k

k x
a F b x y

k


 


 

 
   

  

 

   
  

 

We found that the equilibrium points are 
* * * *

1 2 2 3 1 4(0,0), (0, ) (0, ), ( ,0) ( ,0) and ( , ).E E y k E x k E x y       

To obtain E4 involves solving the following nonlinear equation 

 

1 1
1 1 1 2 2 2

1 2

0.
k x k y

b a F b a F
k k

     
    

   
 

 

Solutions to the eq. (5) is intractable because of the nonlinear nature of the feeding functions , 1,2iF i 

.Solving the eq. (5) for andx y 
can be done by the use of approximation method. If we have that 

2 1 2, , 1,2, , , andi ia k i b x F F  are integers we can use number theory to solve it. However, let

 ,t t tz x y , andt tx y  are random variables and tu t can be obtained through experimental fittings, time 

series or some kind of functions. 

 

4.2 Risk Assessment as result of chemical pollutions  

 The estimation of the risk for various environmental hazard factors in the pollution of the ocean and the 

equivalent environmental cost can be computed from the following formulae 

 

Risk , 0,1,2, ,i it it

t t

u f w i n
  

    
  
    

And the equivalent environmental cost 

, 0,1,2, , , 1it it it

t t

u f w i n e



   
    
  
    

Where t

t

f
 
 
 
 are the cumulative weight frequencies of the types of hazard present at the period t and n is the 

number of hazard factors. 

t

t

w
 
 
 
 are the cumulative weights of the types of hazard at present at the period t. 

For example, weight 1w is for chemical hazard and 2w is for biological hazard, etc. 

 

 Each of the weights can be estimated as number of death of the specie at the given period when the 

hazard occurs divided by total death recorded during estimation period. This is expressible in the time scale of 

month or year. For example, if there are cases of hazard that occurred in given month as a result chemical 

pollution and a total 10 hazards occurred during experiment period, then
2

1 10
w  . 

 

V. Results 

Let the Jacobean matrix,  , andJ x y A A   is n n matrix and  1 1,t t tE   is the noise variable. Then 

we can find the approximate solution to the eq. (1) using the following iterative equations with noise. 

 

1 1t t t tZ AZ u E    

(4) 

(5) 

(6) 

(7) 
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For 0,1,2, ,t k  ,we have  

 

 

 

 

     

 
1 1 0 0

2 1 1 1 0 0 1

2

0 0 0 1 1

3 2

3 2 2 2 0 0 0 1 1

1

1 0 0 0 1 1 1 1.
t t

t t t

z Az u E

z Az u E A Az u E

A z Au E u E

z Az u E A z A u E Au E

z A z A u E Au E u E

  

 

   

  

    

    





 

In the Lemma1, we intend to estimate the bound for the ratio 1

2

F

F
of the feeding functions for given two 

equilibrium points 
*x and 

*y and the upper bound for 
*

2k y  . 

 

Lemma 1 

Let andx y 
be equilibrium points for the eq. (5) such that 

* *

1 1
1 1 1 2 2 2

1 2

0
k x k y

b a F b a F
k k

    
    

   
 

Assume that F1 and F2 are such that 

2

21

1

2

y

r

t

x

t t

t

d
e t

uF

F
e a x





 


 
 
 


 

Then  

* *2 1 2 1
2 1

1 1 2 2

k a b F
k y k x

k b a F
  

 

2

*22 1 2
11

1 1 2

.

y

r

t

x

t t

t

d
e t

uk a b
k x

k b a
e x





 
  

  
  
  
   

  

 

Proof. 

For the proof, we process as follows: 
1

2 2

2 2

1

1

2 2

1 2

.

y t t
t t r

t t t t

t

x t t t
t t r

t t t t

t

d b y
e b y t

b u y
F

F a x d
e x t

a x u










 
  

 


 
  

 






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From eq. (5), we have 

2

2 2

2 2

1

1

2

y t
r

t t t t

t

x

t t

t

d

u d
e t

b u y u
F

F
e x





 


 
 
 



  

* *
2

2

x y

r t t

tt

d
e e t x

u


 
   

 


 
 

Then if
1 xk x r  , then it implies that 

   * * * 2
2

2

1 1 r

t

d
k y x y t

u


 
      

 
 

 

Using Taylor series, we have 
** * *1 , 1 and y x

t

t

e y e x x       

Therefore,  

   * * * 2
2

2

1 1 .r

t

d
k y x y t

u


 
      

 
 

This ends the proof of the Lemma. 

 

In the next Lemma, we will determine the conditions for solvability of the Diophantine equations characterising 

the equilibrium equations in the eq. (4) when , , , 1,2i i ia b F i  are integers.  

 

Lemma 2 

Let 1 1 2 2 2 2,a b a b    such that 1 2 1 2, , , , , andn F F x y   
are integers such that 

* *1 2
1 2 1 2

1 2

 (mod ).F x F x n
k k

 
     

Then the above Diophantine equation is solvable if and only if 1 2
1 2

1 2

,d F F
k k

  
 
 

 is such that  2 2d   . 

However, if 1 2
1 2

1 2

, 1d F F
k k

  
 

 
then there exist ,x y   such that

1 2
1 2

1 2

1F x F x
k k

    . 

 

Proof 

If ,x y   are equilibrium point too. 

Therefore,    1 2 1 2,x y      are equilibrium points. 

 

Therefore,  

   * *1 1 2 2
2 1 2 1 2 1

1 2

.
F F

x y
k k

 
           

If 
*

0x  and 
*

0y  are another solution to the eq. (5), then 
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* * * *1 1 2 2 1 1 2 2
0 0 2 1 2 1

1 2 1 2

0
F F F F

x y x y
k k k k

   
   

   
          

   
 

Therefore,  

* * * *1 1 2 2
0 0

1 2

( ) ( ) 0.
F F

x x y y
k k

  
    

 
 

 

This is equivalent to 
* *

01 1 2 2

* *

1 2 0

* *1
1 0

1

* *2
2 0

2

/

or 

 .

y yF F

k k x x

Ft x x
k

F t y y
k

 






 




 


 

 

Therefore, 

* * * *2 2 1 1
0 0

2 1

, , .
F F

y y t x x t t
k k

 
      

For every 1 2
1 2

1 2

,d F F
k k

  
  
 

 since t is arbitrary, hence, the Diophantine equation has infinitely many 

solutions. However, if 1 2
1 2

1 2

, 1d F F
k k

  
  
 

then eq. (1) transforms to 

1 1 2 2

* * 2 11 2

F F

k k
x y

d d d

 

 
 

 
 

And solution is
* * * *1 2

0 0and
k k

x x t y y t
d d

      . 

This ends the proof. 

 

In the 4.2 section we will consider linearization method for the nonlinear zooplankton-fish model when the 

underlying variables and the feeding functions are continuous.  

 

4.2   Linearization Method of the Nonlinear Equations 

 Let , 1,2iF i   be continuous functions, therefore, we can linearize the nonlinear equation in the eq. 

(1). Let the Jacobean off with respect (x,y) be defined by 

 

1 2

1 2

1 2

1 1 1 1 1
1 1 1 2

1 1 1

1 1 1 1 2
1 1 2 2 2

1 1 1

( , )
( , ) .

( , )

( , ) .

f f

f f f x x
J x y

f fz x y

y y

a k x F k x F
F a b y b x

k k x k y
J x y

k x F a k x F
a b y F a b y

k x k k y

  
    
   
    

   

       
      

     
  

                   
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Without ambiguity we will drop t in the indices. 

Therefore, for the equilibrium 1 2( ,0), (0, ) and (0,0)E k E k E and we obtain the corresponding Jacobean 

for 1(0,0)and ( ,0)J J k  as follows: 

 

1

1

2

1

1

1

2

2

0
(1 )(1 )

(0,0)

0
(1 )(1 )

r

r

a a
a

k t b
J

a b
a

k t b

 
 
  
 
 
  
   









 

 

1 2( ,0) and (0, )E k E k  

 

1
1 1 1 1

1

1

1 2 1
1 1 2 1 1 2

1

( ,0)

( ,0)
( ,0)

( ,0)

a
F k b k

k
J k

a F k
b k F k a b x

k y

 
 
 
  

   

 

 

1 1 1 2 1 2
1 2 1 1

1 1 2
2 2

22 2 2
2 2

0 (0, ) (0, )
(0, ) ( )

(0, ) ( )
(0, ) (0, )

a k F k F k
F k a a

k k x x a
J k k y

kF k F k
a a

y y

   
  

   
  

   

 

 

where 
1

1 1

1

1

( ,0) (1 )

1

r

x

r

F k t

e adx
F t

x u x 







 

 
   
 
  

 

 

 

Therefore, 

1 0
F

y





 

2 0
F

x





 

2

2 2
2 22(1 )

y yF F
bsd u bx bsd bu bye due

y ub

  
      

  
  

 

 

In our next Theorem, we determine the conditions for weakly stability of the equilibrium points for the model  

 

Theorem 1 

Let there exist constants 1,a k  and the resting time rt such that the following inequalities are satisfied: 
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   

  

 

  

 

 

 

Then the prey-predator model is locally stable at the equilibrium points 

   1
2 2 2

1

(0,0) and 0, andstableif 0, 1.
a

E E k F k
k

    

 

Proof 

The eigenvalues for eq. (5) are 

1 2

1

1
2 2

1

(1 )(1 )

and

.
(1 )(1 )

r

r

a b
a

k t a

a ba

k t b





 
 

 
 








 

 

Therefore, for the equilibrium point 2(0, )E k  the condition for local stability is to require that 1, 1,2i i  

for the eigenvalues of  20,J k  which is obtained from 

11
1 1

1

12
1 1 2 1

2

(1 )

0.

(1 )

r

r

a
t b k

k

a
b k t b k

k









 
  

  
 

   
 

 

 

Applying the condition that 1, 1,2i i   for the eigenvalues 1 2( ,0) and (0, )J k J k leads to the inequalities 

given in the hypothesis and hence the stability of the equilibrium points are established. 

 

VI. Numerical Simulation of the Model 
 We will simulate the model using Maple 18 software by making use of Maple Library on Linear 

Algebra and Statistics. We consider a hypothetical situation and let us choose the following parameters:

1 2 1 0

1
2000, 200, , 0.02, 30.

50
rk k t b y      

That is, we start the simulation with 30 fishes and the resting time to be 1/50 hoursrt  . 

Then the matrix

1
1 1

1

12
1 1 2 1

2

(1 )

(1 )

r

r

a
b k

k t

a
b k t b k

k



 
 
 

 
  

 

  after inputting the parameters into Matrix A (see the 

Appendix) we have 
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When we invoke the Maple Code we obtain the 

eigenvalues and eigenvectors to the matrix A as 

Eigenvalue: .5391e-1 

Multiplicity: 1 

Eigenvector: < .9998, .2113e-1 > 

 

Eigenvalue: -.2727 

Multiplicity: 1 

Eigenvector: < -.2113e-1, .9998 > 

 

We also make use And the set of eigenvalues were obtain to be 

 

We invoked the Maple Code we obtained the Figures in the Fig.1& Fig.2. 

 

 
Fig. 1: Eigenplot for matrix A 

 

 
Fig. 2: Eigenplot2 for matrix A 

 

We note that the equilibrium is locally stable since the eigenvalues 0.5391 and -0.27727.The field of 

eigenvalues are toward the inside of the circle with radius at the centre (z=0)and modulus of the eigenvaluesare 

less than one(unity) as long as the absolute value of , 0,1,2,...t tu E t  are very small.We note that 1A   

and 
* ,as tz u E t  . 

Suppose we consider the hypothetical situation where the environment is polluted with spillage from oil or 

chemical substance and the data from the field is obtain and recorded in the Table 1.The data are obtained as 

described in the section 3 and  tu and 
s

tu are obtain using the eq.(5) and the eq.(6). The data in Table 1 were 

plotted to obtain in the Fig.3. 
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Table 1: Environmental risks and frequencies of various hazard weights 

t  0 1 2 3 4 5 6 

tf  
0.5000 0.3333 0.2500 0.8000 0.6000 0.2857 0.5455 

tw  
0.07142 0.01645 0.4444 0.3750 0.4000 0.5000 0.4615 

tu  
0.03541 0.1958 0.7343 2.9282 3.3034 5.002 7.4999 

s

tu  
0.0035 0.9191 1.6021 1.4182 4.3142 8.0841 14.129 

 

 
Figure 3: Bar Charts environmental risks and frequencies of various hazard weights for the fish 

 

 In the Figure 3 the blue bars are frequencies of the occurrence of hazards while the brown coloured 

bars are the weights values for the hazards. The green colour is the risk values and the purple is the colour of the 

environmental risk cost. We note as time increases the risk factor increases with time as the figure shows, this 

make the species to be endangered and some kind of chemotaxis effect is experiences whereby the survived 

species tend to migrate to region with lower concentrations of pollutants. 

 The matrix plots in the Fig.4 we plotted using the data in the Table1 for us to have 3-D view of the 

frequencies of the fish and the corresponding risk assessment in the eq.(5) and the eq.(6). In Matrix Plot 1 and 

Matrix plot 2 the gap between the histogram are of length 0.15 and 0.25 inches respectively while the Matrix 

Plot4 used the plot colour of map sin xy.The first set of histograms in the Matrix Plots are the values of ut
s in the 

Table 1 and next histograms are the values of ut , wt and  ft respectively. 

 

 
Fig.3: Matrix plots environmental risks and frequencies of various hazard weights for the fish
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Table 2: Environmental risks and frequencies of various hazard weights for the zooplankton 
T 0 1 2 3 4 5 6 

tf  
0.400 0.3750 0.5556 0.7500 0.5330 0.4615 0.5334 

tw  
0.0200 0.0305 0.3700 0.3734 0.4750 0.5071 0.4602 

tu  
0.0080 0.1783 0.7067 1.8820 3.6057 4.3236 6.7342 

s

tu  
0.0004 0.0449 0.5354 1,7367 4.6038 5.6784 11.0906 

        

 

 

Fig. 4: Environmental risks and frequencies of various hazard weights for the zooplankton 

 

The Fig 4 is Bar charts generated from Environmental risks and frequencies for various hazard weights and 

periods for the zooplankton. We generate the white noise from environmental risk factor and environmental risk 

cost factor  

for the simulation using the vectors: 

0% 20% 40% 60% 80% 100%

Ft

wt

ut

ust
0

1

2

3

4

5

6
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 

 

1

2

3

4

6

1

2

3

4

6

0.03541 0.1958 0.7343 2.9282 ... 7.499

0.035 0.9191 1.6021 1.4182 ... 14.129

t

t

tE

s

tE

X

X

X
u

X

X

Y

Y

Y
u

Y

Y





 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
  





 

Where 

, (0,1), 1,2,...,6i iX Y N i 

 
We computed iterative solutions to the model using the environmental risk values in the Table 1 and the 

following iterative equation: 
1

1 0 0 0 1 1 1 1.
t t

t t tz A z A u E Au E u E

      
 Using Maple 17, see the Appendix, we obtained: 

>  

 

>  

 

> 

 

>  

 

Where 0, (0,1)R R N .  

We computed iterative solutions to the model using the environmental risk cost values in the Table 1 and the 

following iterative equation: 
1

1 0 0 0 1 1 1 1.
t t s s s

t t tz A z A u E Au E u E

      
 We obtained: 

 
 

 

 

>  
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>  

 

 

>  

 

 

Where 0, (0,1)R R N . 

We note that the iteration solutions for the fish and zooplankton depend on the values of random numbers 

0, (0,1)R R N .Therefore the model has infinitely many solutions. From the solution is obvious that 

population of the two species tends to be decreasing with time. For survival of the species there got to be 

migration from region of pollution to a region that would sustain the growth and flourishing of the species. 

  

 

VII. Conclusion 
 Simulation is made for the zooplankton and fish populations when the ocean is polluted with chemical 

substances and oil spillage and the noise is Gaussian. We note that the iteration solutions for the fish and 

zooplankton depend on the values of random numbers 0, (0,1)R R N .Therefore the model has infinitely 

many solutions. From the solution is obvious that population of the two species tends to be decreasing with 

time. We emphasised that the noise accounts for pollution of the ocean by the chemical substances and oil 

spillage that may lead to species migration from the pollutants source. It was observed that the environmental 

risk factor used increases with time and this will make the species to be endangered and some kind of chemo 

taxis effect will be experienced whereby the survived species tend to migrate to region with lower 

concentrations of pollutants. The use of nonlinear difference equations with nonlinear feeding functions used in 

this paper will offer interesting platform for research on prey-predator models for species and should open the 

window of opportunities for future research on species in polluted environments. 
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Appendix 

# involving the Linear Algebra and plots library  

>  

>  

>  

# input the value of the matrix A

 

>  

 

# input the value of the parameters 

 

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

# computes the eigenvalues of matrix A

 

>  

 

>  

 

>  

 

# invoking Student[LinearAlgebra] library facility to obtain eigenvalues and eigenvectors 
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> with(Student[LinearAlgebra]): 

> infolevel[Student[LinearAlgebra]] := 1: 

 

>  

>  

>  

Eigenvalue: .5391e-1 

Multiplicity: 1 

Eigenvector: < .9998, .2113e-1 > 

Eigenvalue: -.2727 

Multiplicity: 1 

Eigenvector: < -.2113e-1, .9998 > 

# inputting the data from Table 1 to generate the matrix plots 

 

>  

>  

>  

 

# input the Maple codes to generate matrix plots of various gap lengths

 

>  

 

>  

 

>  

 

>  

>  

# generation random sample for Wight noise 

>  

>  

>  

>  

>  

 

>  
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>  

 

# input the value of the initial data

 

>  

 

# generate the power matrix for matrix A of various power for n= 1,2,…4

 

>  

 

>  

 

>  

 

>  

 

>  

 

# computes iterative solutions to the model using the environmental risk values in the Table 1

 

>  

 

>  

 

> 

 

>  
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>  

 

> 

 

>  

 

>  

>  

>  

>  

>  

# generate the Wight noise using environmental risk cost formula 

 

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  
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>  

 

>  

 

>  

 

 

# computes iterative solutions to the model using the environmental risk cost values in the Table 1

 

 

>  

 

 
 

 

 

>  

 

 

>  

 

 

>  

 

 

>  

>  

 

>  

 

>  

 

 

 

>  

>  
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