Constructing Box Splines by using subdivisions

Abdellatif Bettayeb
Department of General Studies, Jubail Industrial College, Jubail Industrial City, Kingdom of Saudi Arabia

Abstract: In this paper, we construct and draw the graph of some linear box splines using subdivision. The functions were introduced by Prautzsch in [3]. We focus in a particular example of box splines are the B-splines with equidistant knots. Box splines consist of regularly arranged polynomial pieces. A particular interest in linear box spline surfaces that consist of triangular polynomial pieces. The technique involves control points which can be computed iteratively using Matlab from the initial control points of well dened recursion.

I. Introduction

Box Splines were widely and explicitly studied by Boor, Höllig and Riemenschneider [1]. An S-variate box spline $B(x|v_1 \cdots v_k)$ is determined by some k directions v_i in \mathbb{R}^s. For simplicity, we will assume that $k \geq s$ and that v_1, \ldots, v_s are linearly independent.

A box spline $B_k(x) = B(x|v_1 \cdots v_k)$ can be constructed geometrically as shown in Figure 1 for $k = 4$ and $s = 2$. Any box spline surface

![Box Splines](image)

Figure 1: Box splines are shadows of boxes.

$$s(x) = \sum_{i \in \mathbb{Z}^s} c_i B(x - i). \quad (1)$$

is an affine combination of its control points c_i and this surface representation is affinely invariant meaning that under any affine map the control point images control the surface image.

Since the box splines are non-negative, $s(x)$ is even a convex combination of its control points and lies in their convex hull.
II. Convexity

Let \(e_1, \ldots, e_s \) denote the unit directions and let \(e = e_1 + \ldots + e_s \). Further, let

\[
s(x) = \sum_{i \in \mathbb{Z}^s} c_i B(x - i|e_1 \ldots e_1 \ldots e_s e \ldots e),
\]

be a box spline surface with these directions. The piecewise linear box spline surface

\[
c(x) = \sum_{i \in \mathbb{Z}^s} c_i B(x - i|e_1 \ldots e_1 \ldots e_s e),
\]

is said to be the control net of the surface \(s(x) \).

If the control net \(c(x) \) is a scalar valued and convex, then the surface \(s(x) \) is also a convex function \([2, 4]\). Furthermore, any control net of \(s(x) \) obtained under subdivision as described next is convex \([5]\).

III. Box splines

Any box spline \(B_k(x) = B(x|v_1 \cdots v_k) \) can also be constructed geometrically as in Figure 3 for \(k = 4 \) and \(s = 2 \).

Let \(\pi \) be the orthogonal projection

\[
\pi : [t_1 \cdots t_k]^t \mapsto [t_1 \cdots t_s]^t,
\]

and

\[
\beta_k = [u_1 \cdots u_k][0, 1]^k,
\]

be a parallelepiped such that \(v_i = \pi u_i \).

Then \(B_k(x) \) represents the density of the "shadow" of \(\beta_k \), i.e.,

\[
B_k(x) = \frac{1}{\text{vol}_k \beta_k} \text{vol}_{k-s} \beta_k(x),
\]

where

\[
\beta_k(x) = \pi^{-1} \cap \beta_k.
\]

For \(K=3 \) and \(s=2 \), the corresponding geometric construction illustrated in Figure 4. It is due to \([6]\), while the idea of polyhedral shadows can be traced back to \([7, 8]\).
IV. Some properties of Box splines

The Box spline \(B(x) = \) have the following properties:

- does not depend on the ordering of the directions \(v_i \),
- is positive over the convex set \([v_1 \cdots v_k][0, 1]^k\),
- has the support \(\text{supp} B(x) = [v_1 \cdots v_k][0, 1]^k \),
- is symmetric with respect to the center to its support.
- The box spline \(B(x) \) is polynomial of degree \(\leq k - s \) over each tile of this partition.

![Figure 2: Geometric construction of a piecewise linear box spline over a triangular grid.](image)

V. Box spline surface

Any Box spline surface

\[
s(x) = \sum_{i \in \mathbb{Z}^k} c_i B(x - i),
\]

is an affine combination of its control points \(c_i \) and the surface representation is affinely invariant meaning that under any affine map the control point images control the surface image. Since the box splines are non-negative, \(s(x) \) is even a convex combination of its control points and lies in their convex hull.
VI. Subdivision

Any box $\beta = [u_1 \cdots u_k][0,1)^k$ in \mathbb{R}^k can be partitioned into 2^k translates of the scaled box $\tilde{\beta} = \beta/2$ spanned by the half directions $\hat{u}_i = u_i/2$, see Figure 1.

Based on this observation Prautzsch [9] concluded in 1993 that the non-normalised "shadow" $M_\beta(x) = \text{vol}_{k-s}(\pi^{-1} x \cap \beta)$ of β under the projection

$$\pi : [t_1 \ldots t_k]^t \mapsto [t_1 \ldots t_s]^t$$

can be written as a linear combination of translates of the scaled box spline $M_\beta(x) = 2^{s-k} M_\beta(2x)$.

Consequently, if the projections $v_i = \pi u_i$ lie in \mathbb{Z}^s, then any box spline surface

$$s(x) = \sum_{i \in \mathbb{Z}^s} c_i^1 B(x - i),$$

with $B(x) = B(x|v_1 \ldots v_k)$ has also a "finer" representation

$$s(x) = \sum_{i \in \mathbb{Z}^s} c_i^2 B(2x - i).$$

The new control points c_i^2 can be computed iteratively from the initial control points c_i^1 by the recursion

$$d^0(i) = \begin{cases} 0 & \text{if } i/2 \notin \mathbb{Z}^s, \\ c_{i/2}^1 & \text{if } i/2 \in \mathbb{Z}^s, \end{cases}$$

$$d^r(i) = (d^{r-1}(i) + d^{r-1}(i - v_r))/2, \quad r = 1 \ldots k,$$

$$c_i^2 = 2^s d^k(i).$$

VII. Algorithm

Step 1:
Initial coefficient will be given
Directional vectors $v_1 = (1,0)$, $v_2 = (0,1)$ and $v_3 = (1,1)$.

![Control Points](image)

Figure 3: c^2 Control Points.
Constructing Box Splines by using subdivisions

\[c^1_{(0,0)} = 1 \quad c^1_{(1,0)} = 2, \]
\[d^0(j, k) = 0 \quad \text{if \ } j \text{ is odd or } k \text{ is odd.} \]
\[d^0(2j, 2k) = c^1_{(j,k)}. \]
\[d^0(0, 0) = c^1_{(0,0)} = 1, \]
\[d^0(1, 0) = 0, \]
\[d^0(2, 0) = c^1_{(1,0)} = 2, \]

We have three directional vectors: \(v_1(1,0), v_2 = (0,1) \) and \(v_3 = (1,1) \).

Direction \(v_1(1,0) \):

\[d^1(i) = \frac{d^0(i) + d^0(i - (1,0))}{2}, \]

\[
\begin{array}{cccc}
 & 1 & 0 & 2 \\
 d^0 & d^0(0,0) = 1 & d^0(1,0) = 0 & d^0(2,0) = 2 \\
\end{array}
\]

Figure 4: \(d^0 \) Control Points.
where i is a vector.

\[
\begin{align*}
 d^1(0,0) &= \frac{d^0(0,0) + d^0(-1,0)}{2} = \frac{1}{2}, \\
 d^1(1,0) &= \frac{d^0(1,0) + d^0(0,0)}{2} = \frac{1}{2}, \\
 d^1(2,0) &= \frac{d^0(2,0) + d^0(1,0)}{2} = 1, \\
 d^1(3,0) &= \frac{d^0(3,0) + d^0(2,0)}{2} = 1.
\end{align*}
\]

Direction $v_2(0,1)$:

\[
d^2(i) = \frac{d^1(i) + d^1(i - (0,1))}{2},
\]

where i is a vector.

\[
\begin{align*}
 d^2(0,0) &= \frac{d^1(0,0) + d^1(0,-1)}{2} = \frac{1}{4}, \\
 \end{align*}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
& & & \\
\hline
& & & \\
\hline
& & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\frac{1}{2} & \frac{1}{2} & 1 & 1 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\frac{1}{2} & \frac{1}{2} & 1 & 1 \\
\hline
\end{array}
\]

Figure 5: d^1 Control Points.
Constructing Box Splines by using subdivisions

\[
\begin{align*}
d^2(1, 0) &= \frac{d^1(1, 0) + d^1(1, -1)}{2} = \frac{1}{4}, \\
d^2(2, 0) &= \frac{d^1(2, 0) + d^1(2, -1)}{2} = \frac{1}{2}, \\
d^2(3, 0) &= \frac{d^1(3, 0) + d^1(3, -1)}{2} = \frac{1}{2}, \\
d^2(0, 1) &= \frac{d^1(0, 1) + d^1(0, 0)}{2} = \frac{1}{4}, \\
d^2(1, 1) &= \frac{d^1(1, 1) + d^1(1, 0)}{2} = \frac{1}{4}, \\
d^2(2, 1) &= \frac{d^1(2, 1) + d^1(2, 0)}{2} = \frac{1}{2}, \\
d^2(3, 1) &= \frac{d^1(3, 1) + d^1(3, 0)}{2} = \frac{1}{2}.
\end{align*}
\]

Such that

\((0, 0) - (0, 1) = (0, -1)\)

<table>
<thead>
<tr>
<th>(d^2)</th>
<th>(\frac{1}{4})</th>
<th>(\frac{1}{4})</th>
<th>(\frac{1}{2})</th>
<th>(\frac{1}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^2(0, 1))</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(d^2(1, 1))</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(d^2(2, 1))</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(d^2(3, 1))</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>

Figure 6: \(d^2\) Control Points.
Constructing Box Splines by using subdivisions

(1,0) - (0,1) = (1,1)
(2,0) - (0,1) = (2,1)
(3,0) - (0,1) = (3,1)
(0,1) - (0,1) = (0,0)
(1,1) - (0,1) = (1,0)
(2,1) - (0,1) = (2,0)
(3,1) - (0,1) = (3,0).

Direction $v_3(1,1)$:

$$d^3(i) = \frac{d^2(i) + d^2(i - (1,1))}{2},$$

where i is a vector.

$$d^3(0,0) = \frac{d^2(0,0) + d^2(-1,-1)}{2} = \frac{1}{8}.$$

\[
\begin{array}{cccc}
 & 0 & \frac{1}{8} & \frac{1}{8} & \frac{1}{4} & \frac{1}{4} \\
\hline
 d^{(0)} & d^{(0,0)}=0 & d^{(0,1,1)}=\frac{1}{8} & d^{(0,2,1)}=\frac{1}{8} & d^{(0,3,1)}=\frac{1}{4} & d^{(0,4,1)}=\frac{1}{4} \\
 d^{(0)} & \frac{1}{8} & \frac{1}{4} & \frac{3}{8} & \frac{1}{2} & \frac{1}{4} \\
 d^{(1)} & \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} \\
 d^{(2)} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\end{array}
\]

Figure 7: d^3 Control Points.
Constructing Box Splines by using subdivisions

\[
\begin{align*}
d^3(1, 0) & = \frac{d^2(1, 0) + d^2(0, -1)}{2} = \frac{1}{8}, \\
d^3(2, 0) & = \frac{d^2(2, 0) + d^2(1, -1)}{2} = \frac{1}{4}, \\
d^3(3, 0) & = \frac{d^2(3, 0) + d^2(2, -1)}{2} = \frac{1}{4},
\end{align*}
\]

such that

\[
\begin{align*}
(0, 0) - (1, 1) & = (-1, -1) \\
(1, 0) - (1, 1) & = (0, -1) \\
(2, 0) - (1, 1) & = (1, -1) \\
(3, 0) - (1, 1) & = (2, -1).
\end{align*}
\]

Computing control points \(c_i^2 \):

\[
c_i^2 = 4d^3(i).
\]

For example

\[
c_{(0, 0)}^2 = 4d^3(0, 0) = \frac{1}{8} = \frac{1}{2}.
\]

<table>
<thead>
<tr>
<th>(i(x, y))</th>
<th>(c_i^2)</th>
<th>(c_{(0, 0)}^2)</th>
<th>(c_{(1, 0)}^2)</th>
<th>(c_{(2, 0)}^2)</th>
<th>(c_{(3, 0)}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>((0, 0))</td>
<td>((0, 0, \frac{1}{2}))</td>
<td>(v_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>((\frac{1}{2}, 0))</td>
<td>((\frac{1}{2}, 0, \frac{1}{2}))</td>
<td>(v_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>((1, 0))</td>
<td>((1, 0, 1))</td>
<td>(v_3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>((\frac{3}{2}, 0))</td>
<td>((\frac{3}{2}, 0, 1))</td>
<td>(v_4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>((2, 0))</td>
<td>((2, 0, 0))</td>
<td>(v_5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>((0, \frac{1}{2}))</td>
<td>((0, \frac{1}{2}, \frac{1}{2}))</td>
<td>(v_6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>((\frac{1}{2}, \frac{1}{2}))</td>
<td>((\frac{1}{2}, \frac{1}{2}, 1))</td>
<td>(v_7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{3}{2})</td>
<td>((1, \frac{1}{2}))</td>
<td>((1, \frac{1}{2}, \frac{1}{2}))</td>
<td>(v_8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>((\frac{3}{2}, \frac{1}{2}))</td>
<td>((\frac{3}{2}, \frac{1}{2}, 1))</td>
<td>(v_9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>((2, \frac{3}{2}))</td>
<td>((2, \frac{3}{2}, 1))</td>
<td>(v_{10})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>((0, 1))</td>
<td>((0, 1, 0))</td>
<td>(v_{11})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>((\frac{1}{2}, 2))</td>
<td>((\frac{1}{2}, 1, \frac{1}{2}))</td>
<td>(v_{12})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>((\frac{1}{2}, \frac{3}{2}))</td>
<td>((\frac{1}{2}, \frac{3}{2}, \frac{1}{2}))</td>
<td>(v_{13})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>((2, 1))</td>
<td>((2, 1, 1))</td>
<td>(v_{14})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>((2, \frac{3}{2}))</td>
<td>((2, \frac{3}{2}, 1))</td>
<td>(v_{15})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We evaluate all of the control points and the resulting vectors \(v_i \) where

\[
i = 1, 15
\]

DOI: 10.9790/5728-1402012435 www.iosrjournals.org 32 | Page
VIII. Using Matlab

We use Matlab to find all the control points and plot the graph of the resulting linear Box splines with initial four control points.

\[c^1 = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix} \]

\[d^0 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 6 \end{pmatrix} \]

\[d^1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1.5 & 1.5 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 2.5 & 2.5 & 3 \end{pmatrix} \]

\[d^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.75 & 0.75 & 1 \\ 0 & 0.75 & 0.75 & 1 \\ 0 & 1.25 & 1.25 & 1.5 \end{pmatrix} \]

\[d^3 = \begin{pmatrix} 0 & 0 & 0.375 & 0.375 \\ 0 & 0.375 & 0.75 & 0.875 \\ 0 & 0.375 & 1 & 1.125 \\ 0 & 1.25 & 1.25 & 1.5 \end{pmatrix} \]

\[c^2 = 4 \cdot d^3 = \begin{pmatrix} 0 & 0 & 1.5 & 1.5 \\ 0 & 1.5 & 3 & 3.5 \\ 0 & 1.5 & 4 & 4.5 \\ 0 & 5 & 5 & 6 \end{pmatrix} \]
Constructing Box Splines by using subdivisions

<table>
<thead>
<tr>
<th>$c^{(0)}$</th>
<th>0</th>
<th>$\frac{1}{2}$</th>
<th>$\frac{1}{2}$</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c^{(1),2}=0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(1),2}=\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(2),2}=\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(3),2}=\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(4),2}=\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$c^{(1)}$</th>
<th>$\frac{1}{2}$</th>
<th>1</th>
<th>$\frac{3}{2}$</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c^{(0),1}=\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(1),1}=\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(2),1}=\frac{3}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(3),1}=\frac{3}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(4),1}=\frac{3}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$c^{(2)}$</th>
<th>$\frac{1}{2}$</th>
<th>$\frac{1}{2}$</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c^{(0),0}=\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(1),0}=\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(2),0}=\frac{3}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(3),0}=\frac{3}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^{(4),0}=\frac{3}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8: c^2 Control Points.

Figure 9: The Linear Box spline.
Bibliography
