Analyticity of Rank of Operators on A Banach Space

Nahid H. k. Abdelgader

Corresponding Author: Nahid H. k. Abdelgader

ABSTRACT. If $G(z)$ is an analytic family of operators on a Banach space which is of finite rank for each z, then rank $G(z)$ is constant except for isolated points.

In this note we consider the analytic group $G(z)$ of operators on a complex Banach space x, such that the rank of $G(z)$ is finite for each z. We show that the rank of $G(z)$ is constant on the domain of analyticity, unless for separated points.

Definition 1 Let X be a real vector space. The complexification of X is the complex vector space $X_C := X \otimes \mathbb{C}$, with scalar multiplication defined by $\alpha(x \otimes \beta) := x \otimes \alpha \beta (\alpha \beta \in \mathbb{C})$

Lemma 1 If $G \in \mathbb{B}(x)$, then rank $G \geq N$ iff there exist bounded projections P and Q of dimension N such that PFQ has rank N.

Proof. If rank $G < N$, then rank $PGQ \leq \text{rank}G < N$. Conversely, if rank $G \geq N$, there are X_1, \ldots, x_N such that Gx_1, \ldots, Gx_N are linearly independent. If P projects on the span of Gx_1, \ldots, Gx_N and Q on the span of X_1, \ldots, x_N, then PGQ has rank N.

Now we show that if $G(z)$ is analytic on a domain Ω and rank $G(z)$ is finite for each z, then there is an integer n such that rank $G(z) = n$ except at some points where $n \geq \text{rank}G(z)$.

Proof. For each $k \leq 0$, let $E_{j-1} = \{z \in \Omega | \text{rank}G(z) \leq j - 1\}$. Since $\Omega = \bigcup_{j}^{\infty} E_{j-1}$, E_{j-1} is uncountable for some integer k, and so there is a smallest integer n such that E_n has a point of accumulation within Ω.

If P and Q are arbitrary projections with dim $P = \text{dim}Q > n$, then the determinant $d(z)$ of $PG(z)Q$, computed with respect to fixed bases of Px and Qx, vanishes on E_n, and hence on all of Ω. Since P and Q are arbitrary, the following lemma satisfying $E_n = \Omega$. Since n is minimal, $E_{(n-1)}$ consists of isolated points.

This proof also shows that the rank of $G(z)$ is determined by its values on any set with an accumulation point in Ω, and hence that no analytic continuation of $G(z)$ can have rank exceeding n.

When we refer to the lemma we find that the norm and rank $G_n \leq n$, then rank $G \leq n$. For if P and Q have the same dimension exceeding m, then $\det PGQ = \lim \det PG_nQ = 0$. The hypothesis of previous theorem can be weakened by assuming only that the set of points at which $G(z)$ has finite rank is uncountable; however, it does not suffice to assume only that $G(z)$ has finite
rank on a set with an accumulation point in \(\Omega \), for if \(G(z) \) is the infinite diagonal matrix \(G(z) \) with diagonal elements \(a_1(z), a_2(z), a_3(z), \ldots a_m(z) \), where \(a_m(z) = (z-1)(z-1/2) \ldots (z-1/m) \), then \(G(z) \) is analytic for \(|z| < 1 \), while \(\text{rank} G(1/n) = m - 1 \). If \(G \in B(X) \) has finite rank, then we let \(\beta(G) \) denote the operator norm of \(G \), and

\[
\tau(G) = \inf \sum_{i=1}^{n} |x_i^*||x_i|
\]

where the infimum is taken over all representations \(G = \sum_{i=1}^{n} (x_i^*, \cdot)x_i \) of \(G \). \(\tau \) is a norm, and

\[
|trG| \leq \tau(F),
\]

\(B(G) \leq \tau(G) \leq \beta(G) \text{ rank } G \) \(\tag{1} \)

and

\[
\tau(AG) \leq B(A)\tau(G) \text{ for any } A \text{ in } B(x). \tag{2}
\]

Theorem if \(G(z) \) is analytic and the rank of \(G(z) \) is finite for all \(z \) in \(\Omega \), then \(trG(z) \) is analytic, and \(tr\frac{G(z)}{dz} = trG'(z) \)

Proof. the rank \(G(z) \) \(\leq n \leq \infty \) for some integer \(n \). The rank of \(D(z, h) = h^{-1}[F(z + h) - F(z)] \) cannot exceed \(2n \), so that

\[
\mid trG(z + h) - trG(z) - trG'(z) \mid = \mid trh^{-1}[F(z + h) - F(z)] \mid \leq \tau(D(z, h) - G'(z)) \leq 4n\beta(D(z, h) - G'(z)).
\]

But the final term tends to zero as \(h \to 0 \), since \(G(z) \) is analytic in norm.

References

[2]. JAMES S. HOWLAND ,Analyticity of Determinants of operators on a Banach Space.