Alternative Methods to Prove Theorem of Basis And Dimensions

Arpit Mishra

(Department of Mathematics)
(Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal), Uttarakhand, India) (A Central University)
Corresponding Author: Arpit Mishra

Abstract: In this paper, we study about alternative methods by which we can prove the theorem. In a vector space if \(\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \) generates \(V \) and if \(\{W_1, W_2, \ldots, W_m\} \) is linearly independent (LI), then \(m \leq n \), where \(\dim W = m \) and \(\dim V = n \).

Alternative Methods to Prove Theorem of Basis And Dimensions

I. Introduction

1.1. Basis of A Vector Space:
If \(V(F) \) is a vector space and S is any subset of \(V(F) \), then \(S \) is called a basis for \(V(F) \) if:
1. \(S \) is LI.
2. Every vector of \(V(F) \) is expressible as the linear combination of vectors of \(S \) uniquely.

i.e. \(S \) generates \(V(F) \) \(\Rightarrow \) \(L(S) = V(F) \).

1.2. Dimension of A Vector Space:
The number of vectors in the basis for a vector space \(V(F) \) is called dimension of \(V(F) \). It is denoted by \(\dim V \).

1.3. Linear Dependence of Vectors:
Let \(V(F) \) be a vector space and the set \(S = \{W_1, W_2, \ldots, W_m\} \) is finite set of vector in \(V(F) \), then \(S \) is called linearly dependent if there exists scalars \(x_1, x_2, \ldots, x_m \) not all zero such that \(x_1W_1 + x_2W_2 + \cdots + x_mW_m = 0 \), briefly written as LD.

1.4. Linear Independence of Vectors:
Let \(V(F) \) be a vector space and the set \(S = \{W_1, W_2, \ldots, W_m\} \) is finite set of vector in \(V(F) \), then \(S \) is called linearly independent if there exists scalars \(x_1, x_2, \ldots, x_m \) all are zero such that \(x_1W_1 + x_2W_2 + \cdots + x_mW_m = 0 \), briefly written as LI.

1.5. Linear Combination of Vectors:
Let \(V(F) \) be a vector space and \(W_1, W_2, \ldots, W_m \) be m-vectors and \(x_1, x_2, \ldots, x_m \) are m-scalars, then a vector \(W = x_1W_1 + x_2W_2 + \cdots + x_mW_m = \sum_{i=1}^{m} x_iW_i \) is called Linear Combination of Vectors.

1.6. Linear Span:
If \(V(F) \) is a vector space and \(S \) is any subset of \(V(F) \), then the set of all Linear Combination of elements of \(S \) is called Linear Span of \(S \) and is denoted by \(L(S) \).

\(L(S) = \{ W \mid W = \sum_{i=1}^{m} x_iW_i, x_i \in F \text{ and } W_i \in S \} \)
Here, \(L(S) \) also means that \(S \) generates.

II. Alternative Methods

2.1. Method 1
To prove this theorem, it is sufficient to show that every subset \(S \) of \(V \) which contains more than \(n \) vectors is linearly dependent (LD).

Suppose \(S = \{W_1, W_2, \ldots, W_m\} \) where \(m > n \) and all the vectors of \(S \) are distinct. Since \(\{a_1, a_2, \ldots, a_n\} \) generates \(V \) or span \(V \), so that there exists scalars \(a_i \) in \(F \) such that \(W_j = \sum_{i=1}^{n} a_{ij}W_i \).

For any scalars \(x_1, x_2, \ldots, x_m \), we have
\(x_1W_1 + x_2W_2 + \cdots + x_mW_m = \sum_{j=1}^{m} x_jW_j \)

DOI: 10.9790/5728-1306035556 www.iosrjournals.org 55 | Page
= \sum_{d=1}^{m} \sum_{j=1}^{n} x_j (\sum_{i=1}^{n} a_{ij} a_i).
(Since, W_j = \sum_{i=1}^{n} a_{ij} a_i)

Since, we know that if A is a n x n matrix and n x m then the homogeneous system of linear equation AX = 0 has non-trivial solution. Hence, for m > n, implies that there exists scalars x_1, x_2, ..., x_m not all zero such that \sum_{j=1}^{m} a_{ij} x_j = 0, 1 \leq i \leq n.

Therefore, every element of V(F) be a linear combination of elements of S.
Also, W is given subspace of V(F) so clearly W \subseteq V.
We can now repeat the above process of replacement with the vector W_j.
This relation shows that any vector which is expressible as a linear combination of \alpha_1, \alpha_2, ..., \alpha_n can be expressed as a linear combination of the W_j.

Hence, \alpha_1, \alpha_2, ..., \alpha_n are LLI.

We repeat this process with W_{j+1} and so on. At each step we are able to add one W_j and delete one of the \alpha’s in generating set.
If m \leq n, then we finally obtain a generating set or spanning set of the form \{W_1, W_2, ..., W_m, a_1, a_2, ..., a_n\}.
Lastly, we show that m > n is not possible. Otherwise, after n of the above steps, we obtain the generating sets \{W_1, W_2, ..., W_n\} which contradicts the hypothesis that S is linearly independent (LI).

Hence, m \geq n i.e. m \leq n.

Thus, we can’t have more LLI vectors than the number of elements in a set of generators.

2.2. Method 2
Given dim W = m and dim V = n.
So let set S = \{x_1, x_2, ..., x_n\} be a basis for V(F) and also we have L(S) = V(F).
Therefore, S be linearly independent (LI).
Here, S is linearly independent (LI).
Therefore, either S is a basis of W or any subset of S be a basis for W.
Thus, basis of W cannot contain more than n elements.
Hence, dim W \leq dim V or m \leq n.

2.3. Method 3
If A = \{\alpha_1, \alpha_2, ..., \alpha_n\} generates a span V and if S = \{W_1, W_2, ..., W_m\} is LI, then we have shown that m \leq n.

Since, we know that if A is a n x n matrix and n x m then the homogeneous system of linear equation AX = 0 has non-trivial solution. Hence, for m > n, implies that there exists scalars x_1, x_2, ..., x_m not all zero such that \sum_{j=1}^{m} a_{ij} x_j = 0, 1 \leq i \leq n.

Therefore, every element of V(F) be a linear combination of elements of S.
Also, W is given subspace of V(F) so clearly W \subseteq V.
We can now repeat the above process of replacement with the vector W_j.
This relation shows that any vector which is expressible as a linear combination of \alpha_1, \alpha_2, ..., \alpha_n can be expressed as a linear combination of the W_j.

Hence, \alpha_1, \alpha_2, ..., \alpha_n are LLI.

We repeat this process with W_{j+1} and so on. At each step we are able to add one W_j and delete one of the \alpha’s in generating set.
If m \leq n, then we finally obtain a generating set or spanning set of the form \{W_1, W_2, ..., W_m, a_1, a_2, ..., a_n\}.
Lastly, we show that m > n is not possible. Otherwise, after n of the above steps, we obtain the generating sets \{W_1, W_2, ..., W_n\} which contradicts the hypothesis that S is linearly independent (LI).

Hence, m \leq n.

References
[3]. Linear Algebra 2nd Edition by Kenneth Hoffman (Massachusetts Institute of Technology) and Ray Kunze(University of California, Irvine).