Lacunary Arithmetic Statistical Convergence For Double Sequences.

A. M. Brono¹ M. M. Karagama² And F. B. Ladan³

¹Department of Mathematical Sciences, University of Maiduguri, Borno State, Nigeria
Email: bronaoahmadu@unimaid.edu.ng

²Department of Mathematical Sciences, University of Maiduguri, Borno State, Nigeria
Email: mustaphakaragama@gmail.com

³Department of Mathematical Sciences, University of Maiduguri, Borno State, Nigeria
Email: falmatabladan@gmail.com

Abstract: This paper extends the recently introduced summability concept of convergence namely: arithmetic statistical convergence and lacunary arithmetic statistical convergence, to double sequences. We shall also investigate the relationship between these concepts and prove some inclusion theorems.

Keywords and Phrases: Summability, Arithmetic statistical convergence, lacunary arithmetic statistical convergence and double sequences.

Date of Submission: 02-11-2017 Date of acceptance: 24-11-2017

I. Introduction:

The concept of statistical convergence was introduced by Fast [4] and it was further investigated from the sequence space point of view and linked with summability theory by Fridy [2], Connor [3], Fridy and Orhan [1], Salát [5] and many others.

The idea of arithmetic convergence was introduced by Ruckle [9]. Yaying and Hazarika [8] used this concept of arithmetic convergence introduced arithmetic statistical convergence and lacunary arithmetic statistical convergence of single sequence. We shall use the concept of statistical convergence of double sequences. [see Mursaleen (6)] to extend the results of Yaying and Hazarika [8] to double sequences.

II. Lacunary Arithmetic Statistical Convergence.

Definition 2.1: (Yaying and Hazarika [2017]) A sequence \(x = (x_k) \) is called arithmetically convergent if for each \(\varepsilon > 0 \) there is an integer \(l \) such that for every integer \(k \) we have \(|x_k - x_{(k,l)}| < \varepsilon \), where the symbol \((k,l) \) denotes the greatest common divisor of two integers \(k \) and \(l \). We denote the sequence space of all arithmetic convergent sequence by AC.

Definition 2.2: (Fridy and Orhan [1993]) Let \(\theta = (k_r) \) be a lacunary sequence. A number sequence \(x = (x_k) \) is said to be lacunary statistically convergent to \(l \) if, for each \(\varepsilon > 0 \),

\[
\lim_{r \to \infty} \frac{1}{k_r} \left\{ \{ k \in I_r : |x_k - l| \geq \varepsilon \} \right\} = 0
\]

In this case, one writes \(S_{k_r} - \lim x_k = l \) or \(x_k \Rightarrow l(S_{k_r}) \). The set of all lacunary statistically convergence sequences is denoted by \(S_\theta \).

Definition 2.3: (Yaying and Hazarika [2017]) A sequence \(x = (x_k) \) is said to be arithmetic statistically convergent if for each \(\varepsilon > 0 \), there is an integer \(l \) such that

\[
\lim_{n \to \infty} \frac{1}{n} \left\{ \{ k \in n : |x_k - x_{(k,l)}| \geq \varepsilon \} \right\} = 0
\]

We shall use \(ASC \) to denote the set of all arithmetic statistically convergence sequences. Thus for \(\varepsilon > 0 \) and integer \(l \)

\[
ASC = \left\{ (x_k) : \lim_{n \to \infty} \frac{1}{n} \left\{ \{ k \in n : |x_k - x_{(k,l)}| \geq \varepsilon \} \right\} = 0 \right\}.
\]

We shall write \(ASC - \lim x_k = x_{(k,l)} \) to denote the sequence \((x_k) \) is arithmetic statistically convergent to \(x_{(k,l)} \).

Definition 2.4: (Yaying and Hazarika [2017]) Let \(\theta = (k_r) \) be a lacunary sequence. The number sequence \(x = (x_k) \) is said to be lacunary arithmetically statistically convergent if for each \(\varepsilon > 0 \) there is an integer \(l \) such that

\[
\lim_{r \to \infty} \frac{1}{l_r} \left\{ \{ k \in l_r : |x_k - x_{(k,l)}| \geq \varepsilon \} \right\} = 0
\]
We shall write

\[\text{ASC}_\theta = \{ x = (x_k): \lim_{r \to +\infty} \frac{1}{h_r} \sum_{k \leq l_r} |x_k - x_{(k,l_r)}| \geq \varepsilon \} \].

We shall write \(\text{ASC}_\theta = \lim x_k = x_{(k,l)} \) to denote the sequence \((x_k) \) is lacunary statistically convergent to \(x_{(k,l)} \).

Definition 2.5: (Yaying and Hazarika [2017]) Let \(\theta = (k_r) \) be a lacunary sequence. A lacunary refinement of \(\theta \) is a lacunary sequence \(\theta' = (k'_r) \) satisfying \(k'_r \subseteq (k_r) \). (See Freedman et al. [].

Definition 2.6: (Yaying and Hazarika [2017]) A function \(f \) defined on a subset \(E \) of \(\mathbb{R} \) is said to be lacunary arithmetic statistical continuous if it preserves lacunary arithmetic statistical convergence i.e. if

\[\text{ASC}_\theta - \lim x_k = x_{(k,l)} \Rightarrow \text{ASC}_\theta - \lim f(x_k) = f(x_{(k,l)}). \]

Theorem 2.1: (Yaying and Hazarika [2017]) Let \(x = (x_k) \) and \(y = (y_k) \) be two sequences.

(i) If \(\text{ASC}_\theta - \lim x_k = x_{(k,l)} \) and \(a \in \mathbb{R} \), then \(\text{ASC}_\theta - \lim ax_k = ax_{(k,l)} \).

(ii) If \(\text{ASC}_\theta - \lim x_k = x_{(k,l)} \) and \(\text{ASC}_\theta - \lim y_k = y_{(k,l)} \), then \(\text{ASC}_\theta - \lim (x_k + y_k) = (x_{(k,l)} + y_{(k,l)}) \).

Theorem 2.2: (Yaying and Hazarika [2017]) Let \(x = (x_k) \) and \(y = (y_k) \) be two sequences.

(i) If \(\text{ASC}_\theta - \lim x_k = x_{(k,l)} \) and \(a \in \mathbb{R} \), then \(\text{ASC}_\theta - \lim cx_k = cx_{(k,l)} \).

(ii) If \(\text{ASC}_\theta - \lim x_k = x_{(k,l)} \) and \(\text{ASC}_\theta - \lim y_k = y_{(k,l)} \), then \(\text{ASC}_\theta - \lim (x_k + y_k) = (x_{(k,l)} + y_{(k,l)}) \).

Theorem 2.3: (Yaving and Hazarika [2017]) If \(\theta' = (k'_r) \) is a lacunary refinement of a lacunary sequence \(\theta = (k_r) \) and \((x_k) \in \text{ASC}_\theta \), then \((x_k) \in \text{ASC}_{\theta'} \).

Theorem 2.4: (Yaying and Hazarika [2017]) Suppose \(\beta = (l_r) \) is a lacunary refinement of a lacunary sequence \(\theta = (k_r) \). Let \(l_r = (k_{r-1}, k_r) \) \(r \in \mathbb{R} \). If \(\text{ASC}_\theta - \lim x_k = x_{(k,l)} \), then \(\text{ASC}_{\beta} - \lim x_k = x_{(k,l)} \).

Theorem 2.5: (Yaving and Hazarika [2017]) Suppose \(\beta = (l_r) \) and \(\theta = (k_r) \) are two lacunary sequences.

Let \(l_r = (k_{r-1}, k_r) \) \(r \in \mathbb{R} \). If \(\text{ASC}_{\beta} - \lim x_k = x_{(k,l)} \), then \(\text{ASC}_{\theta} - \lim x_k = x_{(k,l)} \).

Theorem 2.6: (Yaving and Hazarika [2017]) Let \(\theta = (k_r) \), \(r = 1, 2, 3, \ldots \) be a lacunary sequence. If \(\lim \inf \theta > 1 \), then \(\text{ASC} \subseteq \text{ASC}_{\theta} \).

Theorem 2.7: (Yaving and Hazarika [2017]) For \(\lim \sup \theta < \infty \), we have \(\text{ASC}_\theta \subseteq \text{ASC} \).

We shall now use analogy to extend the above concepts and results to double sequences;

III. Lacunary Arithmetic Statistical Convergence For Double Sequences.

Definition 3.1: A double sequence \(x = (x_{k,m}) \) is called arithmetically convergent if for each \(\varepsilon > 0 \) there is an integer \(l, m \) such that for every integer \(k, m \) we have \(|x_{k,m} - x_{(k,l,m)}| < \varepsilon \), where the symbol \((k, l, m, n)\) denotes the greatest common divisor of four integers \(k, l, m, n \). We denote the double sequence space of all arithmetic convergent sequences by \((AC)_2\).

Note: \(g = (\{(k, l), (m, n)\}) \) where \(g \) denotes the greatest common divisor (gcd) for double sequences. Therefore we shall use \(g \) as the above equality throughout this paper.

Definition 3.2: Let \(\theta = (k_{r,s}) \) be a lacunary double sequence. A double sequence \(x = (x_{k,m}) \) is said to be lacunary statistically convergent to \(l \text{or} \ S_{\theta_{r,s}} - \lim x_{k,m} \) convergent to \(l \), if, for each \(\varepsilon > 0 \),

\[\lim_{r,s \to +\infty} \frac{1}{h_{r,s}} \sum_{k \leq l_{r,s}} |x_{k,m} - l| \geq \varepsilon = 0 \]

In this case, one writes \(S_{\theta_{r,s}} - \lim x_{k,m} = l \text{ or} \ S_{\theta_{r,s}} - \lim x_{k,m} = l \text{or} \ S_{\theta_{r,s}} - \lim x_{k,m} = l \text{or} \ S_{\theta_{r,s}} - \lim x_{k,m} = l \).

Definition 3.3: A double sequence \(x = (x_{k,m}) \) is said to be arithmetically statistically convergent if for each \(\varepsilon > 0 \), there is an integer \(l, m \) such that

\[\lim_{n \to +\infty} \frac{1}{n} \sum_{k \leq l_{r,s}} |x_{k,m} - x_{g}| \geq \varepsilon = 0 \]

We shall use \((ASC)_2\) to denote the set of all arithmetic statistical convergent double sequences. Thus for \(\varepsilon > 0 \) and integer \(l, m \).
Lacunary Arithmetic Statistical Convergence For Double Sequences.

\((ASC)_{2} = \{ (x_{k,m}) : \lim_{n \to \infty} \frac{1}{u} \left| \{ k, m \in n : |x_{k,m} - x_{\varepsilon}| \geq \varepsilon \} \right| = 0 \} .\)

We shall write \((ASC)_{2} - \lim x_{k,m} = x_{\varepsilon}\) to denote the double sequence \((x_{k,m})\) is arithmetic statistically convergent to \(x_{\varepsilon}\)

Definition 3.4: Let \(\theta = (k_{r,s})\) be a lacunary double sequence. The double sequence \(x = (x_{k,m})\) is said to be lacunary arithmetic statistically convergent for double sequences if for each \(\varepsilon > 0\) there is an integer \(l, n\) such that for every integer \(k, m \geq l, n\)

\[
\lim_{r,s \to \infty} \frac{1}{h_{r,s}} \left| \{ k, m \in I_{r,s} : |x_{k,m} - x_{\varepsilon}| \geq \varepsilon \} \right| = 0
\]

We shall write

\(ASC_{\theta_{r,s}} = \left\{ x = (x_{k,m}) : \lim_{r,s \to \infty} \frac{1}{h_{r,s}} \left| \{ k, m \in I_{r,s} : |x_{k,m} - x_{\varepsilon}| \geq \varepsilon \} \right| = 0 \right\} .\)

We shall write \(ASC_{\theta_{r,s}} - \lim x_{k,m} = x_{\varepsilon}\) to denote the double sequence \((x_{k,m})\) is lacunary arithmetic statistically convergent to \(x_{\varepsilon}\)

Definition 3.5: Let \(\theta = (k_{r,s})\) be a lacunary double sequence. A lacunary refinement of \(\theta\) is a lacunary double sequence \(\theta' = (k'_{r,s})\) satisfying \((k'_{r,s}) \subseteq (k_{r,s})\). (See Freedman et al. [7].)

Theorem 3.1: Let \(x = (x_{k,m})\) and \(y = (y_{k,m})\) be two double sequences.

(i) If \((ASC)_{2} - \lim x_{k,m} = x_{(k,l)(m,n)}\) and \(a \in \mathbb{R}\), then \((ASC)_{2} - \lim ax_{k,m} = ax_{(k,l)(m,n)}\).

(ii) If \((ASC)_{2} - \lim x_{k,m} = x_{(k,l)(m,n)}\) and \((ASC)_{2} - \lim y_{k,m} = y_{(k,l)(m,n)}\), then \((ASC)_{2} - \lim (x_{k,m} + y_{k,m}) = (x_{(k,l)(m,n)} + y_{(k,l)(m,n)})\).

Proof 3.1:

(i) The result is obvious when \(a = 0\). Suppose \(a \neq 0\), then for integer \(l, n\)

\[
\frac{1}{uv} \left| \{ k \leq u, m \leq v : |ax_{k,m} - ax_{\varepsilon}| \geq \varepsilon \} \right| = \frac{1}{uv} \left| \{ k \leq u, m \leq v : |x_{k,m} - x_{\varepsilon}| \geq \frac{\varepsilon}{|a|} \} \right|
\]

Which gives the result

The result of (ii) follows from

\[
\frac{1}{uv} \left| \{ k \leq u, m \leq v : |(x_{k,m} + y_{k,m}) - (x_{(k,l)(m,n)} + y_{(k,l)(m,n)})| \geq \varepsilon \} \right| \\
\leq \frac{1}{uv} \left| \{ k \leq u, m \leq v : |x_{k,m} - x_{(k,l)(m,n)}| \geq \frac{\varepsilon}{2} \} \right| + \frac{1}{uv} \left| \{ k \leq u, m \leq v : |y_{k,m} - y_{(k,l)(m,n)}| \geq \frac{\varepsilon}{2} \} \right|
\]

Thus we defined a related concept of convergence in which the set \(\{ k, m : k, m \leq uv \}\) is replaced by the set \(\{ k, m : k_{r-1,s-1} \leq k, m \leq k_{r,s} \}\), for some lacunary double sequence \((k_{r,s})\). (see definition 3.4)

Theorem 3.2: Let \(x = (x_{k})\) and \(y = (y_{k})\) be two sequences.

(iii) If \(\forall \theta_{r,s} - \lim x_{k} = x_{(k,l)}\) and \(a \in \mathbb{R}\), then \(\forall \theta_{r,s} - \lim ax_{k} = ax_{(k,l)}\)

(iv) If \(\forall \theta_{r,s} - \lim x_{k} = x_{(k,l)}\) and \(\forall \theta_{r,s} - \lim y_{k} = y_{(k,l)}\), then \(\forall \theta_{r,s} - \lim (x_{k} + y_{k}) = (x_{(k,l)} + y_{(k,l)})\)

Proof 3.2:

(i) The result is obvious when \(a = 0\). Suppose \(a \neq 0\), then for integer \(l, n\)

\[
\frac{1}{hr,s} \left| \{ k \in I_{r,s} : |ax_{k,m} - ax_{\varepsilon}| \geq \varepsilon \} \right| = \frac{1}{hr,s} \left| \{ k \in I_{r,s} : |x_{k,m} - x_{\varepsilon}| \geq \frac{\varepsilon}{|a|} \} \right|
\]

Which gives the result

The result of (ii) follows from
\[
\frac{1}{h_{r,s}} \left| \left(k, m \in I_{r,s} : \left| (x_{k,m} + y_{k,m} - (x_g + y_g) \right| \geq \varepsilon \right) \right| \\
\leq \frac{1}{w_u} \left| \left(k \leq u, m \leq v : |x_{k,m} - x_g| \geq \frac{\varepsilon}{2} \right) \right| + \frac{1}{w_v} \left| \left(k \leq u, m \leq v : |y_{k,m} - y_g| \geq \frac{\varepsilon}{2} \right) \right| \\
\leq \frac{1}{h_{r,s}} \left| \left(k, m \in I_{r,s} : |x_{k,m} - x_g| \geq \frac{\varepsilon}{2} \right) \right| + \frac{1}{h_{r,s}} \left| \left(k, m \in I_{r,s} : |y_{k,m} - y_g| \geq \frac{\varepsilon}{2} \right) \right|
\]

\[\square\]

Theorem 3.3: If \(\hat{\Theta}' = (k_{r,s}) \) is a lacunary refinement of a lacunary double sequence \(\Theta = (k_{r,s}) \) and \((x_{k,m}) \in ASC_{\hat{\Theta}'_{r,s}} \), then \((x_{k,m}) \in ASC_{\Theta_{r,s}} \).

Proof 3.3:
Suppose for each \(I_{r,s} \) of \(\Theta \) contains the point \((k_{r,s}) \) \(\mu_{r,s} \) of \(\Theta' \) such that \(k_{r-1,s-1} < k_{r,s} < k_{r,s+1} < \cdots < k_{r,s} \).

Where \(I_{r,s} = (k_{r,x-1}, k_{r,s}) \).

Since \((k_{r,s}) \subseteq (k_{r,s}) \), so \(r, s \mu_{r,s} \geq 1 \).

Let \((I_{r,s})_{r,s}^{\infty} \) be the double sequence of interval \((I_{r,s}) \) ordered by increasing right end points. Since \((x_{k,m}) \in ASC_{\Theta_{r,s}} \), then for each \(\varepsilon > 0 \) and integer \(l, n \)

\[
\lim_{I_{r,s} \subseteq I_{r,s}^*} \sum_{I_{r,s} \subseteq I_{r,s}^*} \frac{1}{h_{r,s}} \sum_{I_{r,s} \subseteq I_{r,s}^*} \left| \left(k, m \in I_{r,s} : |x_{k,m} - x_g| \geq \varepsilon \right) \right| = 0
\]

Also since \(h_{r,s} = k_{r,s} - k_{r,s-1}, s \), \(h_{r,s} = k_{r,s} - k_{r-1,s} \).

For each \(\varepsilon > 0 \) and integer \(l, n \)

\[
\frac{1}{h_{r,s}} \left| \left(k, m \in I_{r,s} : |x_{k,m} - x_g| \geq \varepsilon \right) \right| = \frac{1}{h_{r,s}} \sum_{I_{r,s} \subseteq I_{r,s}^*} \frac{1}{h_{r,s}} \sum_{I_{r,s} \subseteq I_{r,s}^*} \left| \left(k, m \in I_{r,s} : |x_{k,m} - x_g| \geq \varepsilon \right) \right| \\
\to 0 \text{ as } r, s \to \infty
\]

This implies \((x_{k,m}) \in ASC_{\Theta_{r,s}} \).

Theorem 3.4: Suppose \(\gamma = (l_{r,s}) \) is a lacunary refinement of a lacunary double sequences \(\Theta = (k_{r,s}) \). Let \(l_{r,s} = (k_{r,x-1}, k_{r,s}) \) and \(j_{r,s} = (l_{r,x-1}, l_{r,s}) \), \(r, s \). \(\Theta \) is \(\mu_{r,s} \) such that \(\gamma_{r,s} \geq \delta \) for every \(j_{r,s} \subseteq I_{l,s} \).

Then \((x_{k,m}) \in ASC_{\Theta_{r,s}} \Rightarrow (x_{k,m}) \in ASC_{\gamma_{r,s}} \).

Proof 3.4:
For any \(\varepsilon > 0 \) and integer \(l, n \), every \(j_{r,s} \) we can find \(I_{l,s} \) such that \(j_{r,s} \subseteq I_{l,s} \), then we have

\[
\frac{1}{|j_{r,s}|} \left| \left(k, m \in I_{r,s} : |x_{k,m} - x_g| \geq \varepsilon \right) \right| = \left(\frac{|j_{l,s}|}{|j_{r,s}|} \right) \left(\frac{1}{|j_{l,s}|} \right) \left| \left(k, m \in I_{r,s} : |x_{k,m} - x_g| \geq \varepsilon \right) \right| \\
\leq \left(\frac{|I_{l,s}|}{|j_{r,s}|} \right) \left(\frac{1}{|I_{l,s}|} \right) \left| \left(k, m \in I_{l,s} : |x_{k,m} - x_g| \geq \varepsilon \right) \right| \\
\leq \left(\frac{1}{\beta} \right) \left(\frac{1}{|I_{l,s}|} \right) \left| \left(k, m \in I_{l,s} : |x_{k,m} - x_g| \geq \varepsilon \right) \right| \square
\]

Which gives the result.

Theorem 3.5: Suppose \(\gamma = (l_{r,s}) \) and \(\Theta = (k_{r,s}) \) are two lacunary double sequences. Let \(l_{r,s} = (k_{r,x-1}, k_{r,s}) \) and \(j_{r,s} = (l_{r,x-1}, l_{r,s}) \), \(r, s \in \{1, 2, \ldots\} \) and \(l_{a,b} = I_{a,x} \cap I_{b,z} \) \(a, b = 1, 2, 3, \ldots \) and where \(a \) = \(wz \) and \(b \) \(yz \). If there exists \(\delta > 0 \) such that \(\gamma_{a,b} \geq \delta \) for every \(y, z, a, b \), then \((x_{k,m}) \in ASC_{\Theta_{r,s}} \Rightarrow (x_{k,m}) \in ASC_{\gamma_{r,s}} \).

Proof 3.5:
Let \(\gamma \cup \Theta \). Then \(\mu \) is a lacunary refinement of \(\Theta \). The interval sequence of \(\mu \) is \(\{l_{a,b} = I_{a,x} \cap I_{b,z} : l_{a,b} \neq \emptyset, \text{ where } a = wz \text{ and } b \text{ } yz\} \). Using theorem 3.4 and the condition \(\gamma_{a,b} \geq \delta \) gives \((x_{k,m}) \in ASC_{\Theta_{r,s}} \Rightarrow (x_{k,m}) \in ASC_{\gamma_{r,s}} \).

DOI: 10.9790/5728-1306020611 www.iosrjournals.org 9 | Page
Let \(x_{k,m} \in \text{ASC}_{r,s} \). Since \(\mu \) is a lacunary refinement of the lacunary double sequences, from theorem 3.3, we have \((x_{k,m}) \in \text{ASC}_{r,s} \Rightarrow (x_{k,m}) \in \text{ASC}_{r,s} \).

Theorem 3.6: Let \(\theta = (k_{r,s}) \), \(r,s = 1,2,3, \ldots \), be a lacunary double sequences. If \(\liminf r_{r,s} > 1 \), then \((\text{ASC})_2 \subseteq \text{ASC}_{\theta_{r,s}} \).

Proof 3.6:

Let \((x_{k,m}) \in (\text{ASC})_2 \) and \(\liminf r_{r,s} > 1 \). Then there exist \(\alpha > 1 \) such that \(q_{r,s} = \frac{k_{r,s}}{k_{r-1,s-1}} \geq 1 + \alpha \) for sufficiently large \(r,s \) which implies that \(\frac{h_{r,s}}{k_{r,s}} \geq \frac{\alpha}{1+\alpha} \).

Then, for sufficiently large \(r,s \) and integer \(k,m \):

\[
\frac{1}{k_{r,s}} \left[\{ k, m \in k_{r,s} : |x_{k,m} - x_g| \geq \varepsilon \} \right] \geq \frac{1}{k_{r,s}} \left[\{ k, m \in l_{r,s} : |x_{k,m} - x_g| \geq \varepsilon \} \right]
\]

\[
\geq \frac{\alpha}{1+\alpha} \frac{1}{h_{r,s}} \left[\{ k, m \in l_{r,s} : |x_{k,m} - x_g| \geq \varepsilon \} \right]
\]

Thus \(x = (x_{k,m}) \in (\text{ASC})_2 \Rightarrow (x_{k,m}) \in \text{ASC}_{\theta_{r,s}} \).

Theorem 3.7: For \(\limsup q_{r,s} < \infty \), we have \(\text{ASC}_{\theta_{r,s}} \subseteq (\text{ASC})_2 \).

Proof 3.7:

Let \(\limsup q_{r,s} < \infty \) then there exist \(\omega > 0 \) such that \(q_{r,s} < \omega \) for every \(r,s \). Let \(r_{r,s} = \left\lfloor \frac{k_{r,s}}{k_{r-1,s-1}} \right\rfloor \). Then for an integer \(l,n \):

\[
\frac{1}{p} \left[\{ k, m \in p : |x_{k,m} - x_g| \geq \varepsilon \} \right] \leq \frac{1}{\frac{h_{r,s}}{r_{r,s}}} \left[\{ k, m \in r_{r,s} : |x_{k,m} - x_g| \geq \varepsilon \} \right]
\]

\[
= \frac{1}{\frac{h_{r,s}}{r_{r,s}}} \left\lfloor \left(\frac{\tau_{r,s}}{h_{r,s}} \right) \left(h_{r,s} + \cdots + h_{r,s} \right) \right\rfloor
\]

\[
\leq \frac{\frac{k_{r,s}}{h_{r,s}} + 1}{\frac{k_{r,s}}{h_{r,s}}} \left(\frac{\tau_{r,s}}{r_{r,s}} \left(h_{r,s} + \cdots + h_{r,s} \right) \right)
\]

\[
\leq \frac{\frac{k_{r,s}}{h_{r,s}} + 1}{\frac{k_{r,s}}{h_{r,s}}} T + \epsilon q_{r,s}
\]

Which gives \((x_{k,m}) \in (\text{ASC})_2 \).

Corollary 3.1.

From there 2.6 and 2.7, if \(\theta = (k_r) \) be a lacunary double sequences and if

\[
1 < \liminf q_r \leq \limsup q_r < \infty
\]

Then \((\text{ASC})_2 = \text{ASC}_{\theta} \).

In (2016) Yaying and Hazarika introduced lacunary arithmetic convergent sequence \(AC_{\theta} \) as follow:

\[
AC_{\theta} = \left\{ (x_k) : \lim_{r \to \infty} h_r \left(\sum_{k \in \ell_r} |x_k - x_{[k,l]}| = 0 \text{ for integer } l \right) \right\}
\]

Analogously, we define double lacunary arithmetic convergence.

From theorem 3.6 and 3.7, if \(\theta = (k_{r,s}) \) be a lacunary double sequences and if

\[
1 < \liminf q_{r,s} \leq \limsup q_{r,s} < \infty
\]

Then \((\text{ASC})_2 = \text{ASC}_{\theta_{r,s}} \).

Now we introduce lacunary arithmetic convergent sequence \(AC_{\theta_{r,s}} \) as follow:

DOI: 10.9790/5728-1306020611 www.iosrjournals.org 10 | Page
\[
AC_{\theta_{r,s}} = \left\{ (x_{k,m}) : \lim_{r,s \to \infty} \frac{1}{h_{r,s}} \sum_{k \in I_{r}, m \in I_{s}} |x_{k,m} - x_{g}| = 0 \text{ some integers } l, n \right\}
\]

In relation to this we shall introduce for double sequences space and give some relation between the double spaces \(AC_{\theta_{r,s}}\) and \(ASC_{\theta_{r,s}}\).

Theorem 3.8: Let \(\theta = (k_{r,s})\) be a lacunary double sequence; then if \((x_{k,m}) \in (AC_{\theta})_{2}\) then \((x_{k,m}) \in (ASC_{\theta})_{2}\)

Proof 3.8: Let \((x_{k,m}) \in (AC_{\theta})_{2}\) and \(\varepsilon > 0\). We can write, for an integer \(l, n\)

\[
\sum_{k,m \in I_{l,r}} |x_{k,m} - x_{g}| \geq \sum_{k,m \in I_{l,r}, |x_{k,m} - x_{g}| \geq \varepsilon} |x_{k,m} - x_{g}| = \sum_{k,m \in I_{l,r}, |x_{k,m} - x_{g}| < \varepsilon} |x_{k,m} - x_{g}| + \sum_{k,m \in I_{l,r}, |x_{k,m} - x_{g}| \geq \varepsilon} |x_{k,m} - x_{g}|
\]

\[
\geq \sum_{k,m \in I_{l,r}, |x_{k,m} - x_{g}| \geq \varepsilon} |x_{k,m} - x_{g}|
\]

\[
\geq \varepsilon \left\{ (k, m \in I_{r,s} : |x_{k,m} - x_{g}| \geq \varepsilon) \right\}
\]

Which gives the result.

References

