Radio labeling of Hurdle graph and Biregular rooted Trees

K. Sunitha ${ }^{1}$, Dr. C. David Raj ${ }^{2}$ and Dr. A. Subramanian ${ }^{3}$
${ }^{\text {1. }}$ Department of Mathematics Women's Christian College, Nagercoil
${ }^{2}$. Department of Mathematics Malankara Catholic College, Mariagiri
3. Department of Mathematics M. D. T. Hindu College, Tirunelveli Corresponding Author: K. Sunitha

Abstract

A Radio labeling of a connected graph G is an injective map $h: V(G) \rightarrow\{0,1,2, \ldots, N\}$ such that for every two distinct vertices x and y of G, $d(x, y)+|h(x)-h(y)| \geq 1+\operatorname{diam}(G)$. The span of a labeling h is the greatest integer in the range of h. The minimum span taken over all radio labeling of the graph is called radio number of G, and is denoted by $r n(G)$. In this paper, we find the radio number of hurdle graph and radio number of biregular rooted trees.

Keywords: Radio labeling, Distance, Eccentricity, Diameter, Hurdle graph, Rooted tree, Biregular rooted trees, Status, Median.

I. Introduction and Definitions

Throughout this paper we consider finite, simple, undirected and connected graphs. Let $V(G)$ and $E(G)$ respectively denote the vertex set and edge set of G. Radio labeling, or multilevel distance labeling, is motivated by the channel assignment problem for radio transmitters [4]. Chartrand et al. investigated the upper bound for the radio number of path P_{n}. The exact value for the radio number of path was given by Liu and Zhu [2]. A wireless network is composed of a set of stations (or transmitters) on which appropriate channels are assigned. The task is to assign a channel to each station such that the interference which is caused by the geographical distance between stations is avoided. The span of a labeling h is the greatest integer in the range of h. The minimum span taken over all radio labelings of the graph is called radio number of G, denoted by $\mathrm{rn}(\mathrm{G})$. For standard terminology and notations we follow Harary [5] and Gallian [6].

Definition 1.1 A Radio labeling of a connected graph G is an injective map $h: V(G) \rightarrow\{0,1,2, \ldots, N\}$ such that for every two distinct vertices x and y of G, $d(x, y)+|h(x)-h(y)| \geq 1+\operatorname{diam}(G)$. The span of a labeling h is the greatest integer in the range of h. The minimum span taken over all radio labelings of the graph is called radio number of G, denoted by $\mathrm{rn}(\mathrm{G})$.

Definition 1.2[3] The distance $d(u, v)$ from a vertex u to a vertex v in a connected graph G is the minimum of the lengths of the $u-v$ paths in G.
Definition 1.3[3] The eccentricity $\mathrm{e}(\mathrm{v})$ of a vertex v in a connected graph G is the distance between v and a vertex farthest from v in G.
Definition 1.4[3] The diameter $\operatorname{diam}(\mathrm{G})$ of G is the greatest eccentricity among the vertices of G .
Definition 1.5 A graph obtained from a path P_{n} by attaching a pendant edges to every internal vertices of the path is called Hurdle graph with $\mathrm{n}-2$ hurdles and is denoted by Hd_{n}.
Definition 1.6 The status of a vertex v in a graph G denoted by $S_{G}(v)$ or $S(v)$ is the sum of the distance between v and every other vertex in G. That is $S(v)=\sum_{u \in V_{(G)}} d(u, v)$.
Definition 1.7 For a graph G, the median $M(G)$ is the set of vertices with minimum status. A vertex v with minimum status is said to be a median vertex. The minimum status of a graph is denoted as $\mathrm{S}(\mathrm{G})=\min \{\mathrm{S}(\mathrm{v}) / \mathrm{v} \in \mathrm{V}(\mathrm{G})\}$.
Definition 1.8 [3] A tree in which one vertex is distinguished from all the others is called a rooted tree and the vertex is called the root of the tree.
Definition 1.9 A biregular rooted tree is a tree in which every two vertices on the same side of the partition have same degree as each other.
Existing result 1.10[1] Let T be a tree with n vertices and diameter d. Then
$\mathrm{rn}(\mathrm{T}) \geq(\mathrm{n}-1)(\mathrm{d}+1)+1-2 \mathrm{~S}(\mathrm{~T})$. Moreover, the equality holds if and only for every weight center v^{*} there exists a radio labeling h with $h\left(w_{1}\right)=0<h\left(w_{2}\right)<\ldots . .<h\left(w_{n-1}\right)$ for which all following properties hold, for every j with $1 \leq \mathrm{j} \leq \mathrm{n}-1$,
(1) w_{j} and w_{j+1} belong to different branches, unless one of them is v^{*}.
(2) $\left\{w_{1}, w_{n}\right\}=\left\{v^{*}, u\right\}$ where $u \in V(T)$ such that $d\left(v^{*}, u\right)=1$
(3) $\mathrm{h}\left(\mathrm{w}_{\mathrm{j}+1}\right)=\mathrm{h}\left(\mathrm{w}_{\mathrm{j}}\right)+\mathrm{d}+1-\mathrm{d}\left(\mathrm{v}^{*}, \mathrm{w}_{\mathrm{j}}\right)-\mathrm{d}\left(\mathrm{v}^{*}, \mathrm{w}_{\mathrm{j}+1}\right)$.

Observation 1.11 Let $S\left(B R_{n, m}\right)$ be the status of the graph $B R_{n, m}$. Then
$S\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right)= \begin{cases}\frac{\mathrm{n}^{2}}{4}(\mathrm{~m}-1)+\mathrm{n}(\mathrm{m}-1)+1 \\ \frac{(\mathrm{n}-1)^{2}}{4}(m-1)+3\left(\frac{\mathrm{n}-1}{2}\right)(m-1)+m & \text { if } n \text { is even } \\ & \end{cases}$
Observation1.12 Let $\mathrm{BR}_{\mathrm{n}},{ }_{m}$ denote the biregular rooted tree in which it consists of a path of order n and
degree m. Then $r n\left(B R_{n, m}\right) \geq \begin{cases}(n-1)(d+1)+1-2 S\left(B R_{n, m}\right) & \text { if } n \text { is even } \\ (n-1)(d+1)+1-2 S\left(B R_{n, m}\right)+1 & \text { if } n \text { is odd }\end{cases}$

II. Main Results

Theorem 2.1 Let Hd_{n} be a hurdle graph on n vertices. Then $r n\left(H d_{n}\right)=n^{2}-3 n+3$ if n is even, $n \geq 2$. Proof Let h be an optimal radio labeling for Hd_{n} and $\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ be the ordering of $V\left(\operatorname{Hd}_{n}\right)$ such tha $0=\mathrm{h}\left(\mathrm{x}_{1}\right)<\mathrm{h}\left(\mathrm{x}_{2}\right)<\ldots<\mathrm{h}\left(\mathrm{x}_{\mathrm{p}}\right)$. Then $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)+\left|\mathrm{h}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right| \geq 1+\operatorname{diam}\left(\mathrm{Hd}_{\mathrm{n}}\right)=\mathrm{n}, 1 \leq \mathrm{i} \leq \mathrm{p}-1$. Let $\mathrm{n}=2 \mathrm{a}, \mathrm{a} \geq 2$. In this case diameter $\mathrm{d}=2 \mathrm{a}-1$ and $\mathrm{p}=2 \mathrm{n}-2$.
Let $v_{1}, v_{2}, \ldots, v_{n}$ denote the vertices of P_{n} from which the Hurdle graph Hd_{n} is obtained, by v_{i-1}^{\prime} the terminal vertex of the pendent edges attached to v_{i} for $2 \leq \mathrm{i} \leq \mathrm{a}$ and by $\mathrm{v}_{\mathrm{i}+1}^{\prime}$ the terminal vertex of the pendent edges attached to v_{i} for $a+1 \leq i \leq 2 a-1$.
By result (1.10), $\mathrm{rn}\left(\mathrm{Hd}_{\mathrm{n}}\right) \geq(\mathrm{p}-1)(\mathrm{d}+1)+1-2 \mathrm{~S}\left(\mathrm{Hd}_{\mathrm{n}}\right)$.
First we compute the status function of Hd_{n}. In this case Hd_{n} has two weight centres namely v_{a} and $\mathrm{v}_{\mathrm{a}+1}, a \geq 2$.
we have $\mathrm{S}\left(\mathrm{Hd}_{\mathrm{n}}\right)=\mathrm{S}_{\mathrm{Hd}_{\mathrm{n}}}\left(\mathrm{v}_{\mathrm{a}}\right)$

$$
\begin{align*}
& =\underset{u \in V\left(H d_{n}\right)}{\sum} d\left(u, v_{\mathrm{a}}\right) \\
& =3.1+4(2+\ldots+\mathrm{a}-1)+2 . \mathrm{a} \\
& =3+4\left(\frac{\mathrm{a}(\mathrm{a}-1)}{2}-1\right)+2 \mathrm{a} \\
& =2 \mathrm{a}^{2}-1=2\left(\frac{\mathrm{n}}{2}\right)^{2}-1 \\
& =\frac{\mathrm{n}^{2}-2}{2} \tag{2.1.2}
\end{align*}
$$

Substituting (2.1.2) in (2.1.1) we get

$$
\begin{aligned}
\operatorname{rn}\left(\mathrm{Hd}_{n}\right) & \geq(p-1)(d+1)+1-2\left(\frac{n^{2}-2}{2}\right) \\
& =(2 n-2-1)(n-1+1)+1-2\left\{\frac{n^{2}-2}{2}\right) \\
& =(2 n-3)(n)+1-\left(n^{2}-2\right) \\
& =n^{2}-3 n+3
\end{aligned}
$$

Therefore $\mathrm{rn}\left(\mathrm{Hd}_{\mathrm{n}}\right) \geq \mathrm{n}^{2}-3 \mathrm{n}+3$
Let $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}\right\}$ be the ordering of the vertices of $\operatorname{Hd}_{\mathrm{n}}$.
Label the vertices $x_{1}, x_{2}, \ldots, x_{\mathrm{p}}$ as in the following procedure

Define a function $\mathrm{h}: \mathrm{V}\left(\mathrm{Hd}_{\mathrm{n}}\right) \rightarrow\left\{0,1,2, \ldots, \mathrm{n}^{2}-3 \mathrm{n}+3\right\}$ by $\mathrm{h}\left(\mathrm{x}_{1}\right)=0$ and
$\mathrm{h}\left(\mathrm{x}_{\mathrm{i}+1}\right)=\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{d}+1-\mathrm{d}\left(\mathrm{x}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{p}-1$
Thus it is possible to assign labels to the vertices of Hd_{n} with span equal to the lower bound.
Therefore $\mathrm{rn}\left(\mathrm{Hd}_{\mathrm{n}}\right) \leq \mathrm{n}^{2}-3 \mathrm{n}+3$
Hence $\mathrm{rn}\left(\mathrm{Hd}_{\mathrm{n}}\right)=\mathrm{n}^{2}-3 \mathrm{n}+3, \mathrm{n}=2 \mathrm{a}, \mathrm{a} \geq 2$
Example 2.1 In Table 1, Figure 1, Figure 2 and Figure 3 an ordering of the vertices, ordering version, renamed version and optimal radio labeling for Hd_{8} are shown.

Table 1

$$
\mathrm{v}_{4} \rightarrow \mathrm{v}_{8} \rightarrow \mathrm{v}_{3} \rightarrow \mathrm{v}_{7} \rightarrow \mathrm{v}_{2}
$$

$$
\begin{aligned}
& \mathrm{v}_{6}^{\prime} \rightarrow \mathrm{v}_{1} \rightarrow \mathrm{v}_{8} \rightarrow \mathrm{v}_{3}^{\prime} \\
& \mathrm{v}_{7} \rightarrow \mathrm{v}_{2}^{\prime} \rightarrow \mathrm{v}_{6} \rightarrow \mathrm{v}_{1}^{1}
\end{aligned}
$$

$$
\mathrm{v}_{5}
$$

Figure 1

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{a}} \rightarrow \mathrm{v}_{2 \mathrm{a}} \rightarrow \mathrm{v}_{\mathrm{a}-1} \rightarrow \mathrm{v}_{2 \mathrm{a}-1} \rightarrow \mathrm{v}_{\mathrm{a}-2} \\
& \mathrm{v}_{2 \mathrm{a}-2}^{\prime} \rightarrow \mathrm{v}_{\mathrm{a}-3} \rightarrow \mathrm{v}_{2 \mathrm{a}-3}^{\prime} \rightarrow \mathrm{v}_{\mathrm{a}-4} \\
& \mathrm{v}_{2} \rightarrow \mathrm{v}_{\mathrm{a}+2} \rightarrow \mathrm{v}_{1} \rightarrow \mathrm{v}_{2 \mathrm{a}} \rightarrow \mathrm{v}_{\mathrm{a}-1} \\
& \mathrm{v}_{2 \mathrm{a}-1} \rightarrow \mathrm{v}_{\mathrm{a}-2}^{\prime} \rightarrow \mathrm{v}_{2 \mathrm{a}-2} \rightarrow \mathrm{v}_{\mathrm{a}-3}^{\prime} \\
& \mathrm{v}_{2 \mathrm{a}-3} \rightarrow \ldots \rightarrow \mathrm{v}_{1} \rightarrow \mathrm{v}_{\mathrm{a}+1} .
\end{aligned}
$$

Figure 2

Figure 3
Theorem 2.2 Let Hd_{n} be a hurdle graph on n vertices. Then $\mathrm{rn}\left(\mathrm{Hd}_{\mathrm{n}}\right)=\mathrm{n}^{2}-3 \mathrm{n}+4$ if n is odd, $\mathrm{n} \geq 5$.
Proof. Let h be an optimal radio labeling for Hd_{n} and $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}\right\}$ be the ordering of $\mathrm{V}\left(\mathrm{Hd}_{\mathrm{n}}\right)$ such that $0=\mathrm{h}\left(\mathrm{x}_{1}\right)<\mathrm{h}\left(\mathrm{x}_{2}\right)<\ldots<\mathrm{h}\left(\mathrm{x}_{\mathrm{p}}\right)$. Then $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)+\left|\mathrm{h}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right| \geq 1+\mathrm{d}, 1 \leq \mathrm{i} \leq \mathrm{p}-1$
Let $\mathrm{n}=2 \mathrm{a}+1, \mathrm{a} \geq 2$. In this case diameter $\mathrm{d}=2 \mathrm{a}$ and $\mathrm{p}=2 \mathrm{n}-2$.
Let $v_{1}, v_{2}, \ldots, v_{n}$ denote the vertices of P_{n} from which the Hurdle graph Hd_{n} is obtained by $v_{i}{ }^{\prime}$, the terminal vertex of the pendent edges attached to $\mathrm{v}_{\mathrm{i}}, 2 \leq \mathrm{i} \leq 2 \mathrm{k}$.
By result (1.10), $\mathrm{rn}\left(\mathrm{Hd}_{\mathrm{n}}\right) \geq(\mathrm{p}-1)(\mathrm{d}+1)+1-2 \mathrm{~S}\left(\mathrm{Hd}_{\mathrm{n}}\right)$
First we compute the status function of Hd_{n}. In this case Hd_{n} has one weight centre $\mathrm{v}_{\mathrm{a}+1}$.
We have $\mathrm{S}\left(\mathrm{Hd}_{\mathrm{n}}\right)=\mathrm{S}_{\mathrm{Hd}_{\mathrm{n}}}\left(\mathrm{v}_{\mathrm{a}+1}\right)$

$$
\begin{align*}
& =\underset{\mathrm{u} \in \mathrm{~V}\left(\mathrm{Hd} \mathrm{~m}_{\mathrm{n}}\right)}{\sum} \mathrm{d}\left(\mathrm{u}, \mathrm{v}_{\mathrm{a}+1}\right) \\
& =3.1+4(2+\ldots+\mathrm{a}) \\
& =3+4\left(\frac{\mathrm{a}(\mathrm{a}+1)}{2}-1\right) \\
& =2 \mathrm{a}^{2}+2 \mathrm{a}-1 \\
& =2\left(\frac{\mathrm{n}-1}{2}\right)^{2}+2\left(\frac{\mathrm{n}-1}{2}\right)-1 \\
& =\frac{\mathrm{n}^{2}-3}{2} \tag{2.2.2}
\end{align*}
$$

Substituting (2.2.2) in (2.2.1) we get

$$
\begin{aligned}
\operatorname{rn}\left(\mathrm{Hd}_{\mathrm{n}}\right) & \geq(\mathrm{p}-1)(\mathrm{d}+1)+1-2\left(\frac{\mathrm{n}^{2}-3}{2}\right) \\
& =(2 \mathrm{n}-2-1)(\mathrm{n}-1+1)+1-2\left(\frac{\mathrm{n}^{2}-3}{2}\right) \\
& =(2 \mathrm{n}-3) \mathrm{n}+1-\left(\mathrm{n}^{2}-3\right) \\
& =\mathrm{n}^{2}-3 n+4
\end{aligned}
$$

Therefore $\mathrm{rn}\left(\mathrm{Hd}_{\mathrm{n}}\right) \geq \mathrm{n}^{2}-3 \mathrm{n}+4$
Let $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}\right\}$ be the ordering of the vertices of $\operatorname{Hd}_{\mathrm{n}}$.
Label the vertices $x_{1}, x_{2}, \ldots, x_{\mathrm{p}}$ as in the following procedure

$$
\mathrm{v}_{\mathrm{a}+1} \rightarrow \mathrm{v}_{1} \rightarrow \mathrm{v}_{\mathrm{a}+1} \rightarrow \mathrm{v}_{2 \mathrm{a}} \rightarrow \mathrm{v}_{\mathrm{a}}
$$

$$
\mathrm{v}_{2 \mathrm{a}-1}^{\prime} \rightarrow \mathrm{v}_{\mathrm{a}-1}^{\prime} \rightarrow \mathrm{v}_{2 \mathrm{a}-2}^{\prime} \rightarrow \mathrm{v}_{\mathrm{a}-2}^{\prime}
$$

$$
\mathrm{v}_{\mathrm{a}+2}^{\prime} \rightarrow \mathrm{v}_{2}^{\prime} \rightarrow \mathrm{v}_{2 \mathrm{a}+1} \rightarrow \mathrm{v}_{\mathrm{a}}
$$

$$
\mathrm{v}_{2 \mathrm{a}} \rightarrow \mathrm{v}_{\mathrm{a}-1} \rightarrow \mathrm{v}_{2 \mathrm{a}-1} \rightarrow \mathrm{v}_{\mathrm{a}-2}
$$

$$
\mathrm{v}_{2 \mathrm{a}-2} \rightarrow \ldots \rightarrow \mathrm{v}_{2} \rightarrow \mathrm{v}_{\mathrm{a}+2}
$$

Define a function $\mathrm{h}: \mathrm{V}\left(\mathrm{Hd}_{\mathrm{n}}\right) \rightarrow\left\{0,1,2, \ldots, \mathrm{n}^{2}-3 \mathrm{n}+4\right\}$ by $\mathrm{h}\left(\mathrm{x}_{1}\right)=0$ and
$h\left(x_{i+1}\right)=h\left(x_{i}\right)+d+1-d\left(x_{i+1}, x_{i}\right)$ for $1 \leq i \leq p-1$.
Thus it is possible to assign labels to the vertices of Hd_{n} with span equal to the lower bound.
Therefore $\mathrm{rn}\left(\mathrm{Hd}_{\mathrm{n}}\right) \leq \mathrm{n}^{2}-3 \mathrm{n}+4$
Hence $r n\left(H_{n}\right)=n^{2}-3 n+4, n=2 a+1, a \geq 2$.
Example 2.2 In Table 2, Figure 4, Figure 5 and Figure 6 an ordering of the vertices, ordering version, renamed version and optimal radio labeling for Hd_{9} are shown.

Table 2

$$
\begin{aligned}
\mathrm{v}_{5} \rightarrow \mathrm{v}_{1} & \rightarrow \mathrm{v}_{5} \rightarrow \mathrm{v}_{8} \rightarrow \mathrm{v}_{4} \\
\mathrm{v}_{7}^{\prime} & \rightarrow \mathrm{v}_{3}^{\prime} \rightarrow \mathrm{v}_{6}^{\prime} \rightarrow \mathrm{v}_{2}^{\prime} \\
\mathrm{v}_{9} & \rightarrow \mathrm{v}_{4} \rightarrow \mathrm{v}_{8} \rightarrow \mathrm{v}_{3} \\
\mathrm{v}_{7} & \rightarrow \mathrm{v}_{2} \rightarrow \mathrm{v}_{6} .
\end{aligned}
$$

Figure 4

Figure 5

Figure 6

Theorem 2.3 Let BR_{n}, m denote the biregular rooted tree in which it consists of a path of order n and degree m. Then $r n\left(B R_{n}, m\right)=\frac{1}{2}\left[n^{2}(m-1)+m+1\right]+n+1$, if n is odd and $m \geq 3$.
Proof. Let h be an optimal radio labeling for $B R_{n}, m$ and $\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ be the ordering of $V\left(B R_{n}, m\right)$ such that $0=\mathrm{h}\left(\mathrm{x}_{1}\right)<\mathrm{h}\left(\mathrm{x}_{2}\right)<\ldots<\mathrm{h}\left(\mathrm{x}_{\mathrm{p}}\right)$. Then $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)+\left|\mathrm{h}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right| \geq 1+\mathrm{d}, 1 \leq \mathrm{i} \leq \mathrm{p}-1$.
In $\mathrm{BR}_{\mathrm{n}}, \mathrm{m}$, the total number of vertices $=\mathrm{p}=\mathrm{nm}-\mathrm{n}+2$ and diameter $\mathrm{d}=\mathrm{n}+1$.
If we choose x_{1} as the median vertex then x_{p} must not be adjacent to x_{1}. Choose the vertex x_{i} such that x_{i} and x_{i+1} belong to different branches.
By (1.12), $\mathrm{rn}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right) \geq(\mathrm{p}-1)(\mathrm{d}+1)+1-2 \mathrm{~S}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right)+1$,
where $S\left(B R_{n, m}\right)$ is the status of the graph $B R_{n, m}$. From 1.11 we have
$\mathrm{S}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right)=\frac{(\mathrm{n}-1)^{2}}{4}(\mathrm{~m}-1)+3\left(\frac{\mathrm{n}-1}{2}\right)(\mathrm{m}-1)+\mathrm{m}$
Substituting (2.3.2) in (2.3.1) we get

$$
\begin{aligned}
\operatorname{rn}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{~m}}\right) & \geq(\mathrm{p}-1)(\mathrm{d}+1)+1-2\left(\frac{(\mathrm{n}-1)^{2}}{4}(\mathrm{~m}-1)+3\left(\frac{\mathrm{n}-1}{2}\right)(\mathrm{m}-1)+m\right)+1 \\
& =(\mathrm{nm}-\mathrm{n}+1)(\mathrm{n}+2)+1-2\left(\frac{(\mathrm{n}-1)^{2}}{4}(\mathrm{~m}-1)+3\left(\frac{\mathrm{n}-1}{2}\right)(\mathrm{m}-1)+m\right)+1 \\
& =\frac{1}{2}\left[\mathrm{n}^{2}(\mathrm{~m}-1)+\mathrm{m}+1\right]+\mathrm{n}+1
\end{aligned}
$$

Hence $r n\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right) \geq \frac{1}{2}\left[\mathrm{n}^{2}(\mathrm{~m}-1)+\mathrm{m}+1\right]+\mathrm{n}+1$ if n is odd.
Assume that m is odd
Define a function $\mathrm{h}: \mathrm{V}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right) \rightarrow\left\{0,1,2, \ldots, \frac{1}{2}\left[\mathrm{n}^{2}(\mathrm{~m}-1)+\mathrm{m}+1\right]+\mathrm{n}+1\right\}$ by $\mathrm{h}\left(\mathrm{x}_{1}\right)=0$ and
$h\left(\mathrm{x}_{\mathrm{i}+1}\right)=\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{d}+1-\mathrm{d}\left(\mathrm{x}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{p}-1$.
Thus it is possible to assign labels to the vertices of $\mathrm{BR}_{\mathrm{n}, \mathrm{m}}$ with span equal to the lower bound. Therefore
$\mathrm{rn}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right) \leq \frac{1}{2}\left[\mathrm{n}^{2}(\mathrm{~m}-1)+\mathrm{m}+1\right]+\mathrm{n}+1$.
Hence $r n\left(B R_{n, m}\right)=\frac{1}{2}\left[n^{2}(m-1)+m+1\right]+n+1$ when m is odd.
The case when m is even follows similarly.
Example 2.3 For the graph $\mathrm{BR}_{3,5}$ in Figure 7, $\mathrm{rn}\left(\mathrm{BR}_{3,5}\right)=25$

Figure 7
Observations (i) $\mathrm{rn}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right)=\operatorname{rn}\left(B \mathrm{R}_{\mathrm{n}, \mathrm{m}-1}\right)+5$
(ii) $\operatorname{diam}\left(B R_{n, m}\right)=\operatorname{diam}\left(B R_{n, m-1}\right)$

Theorem 2.4 Let $B R_{n},{ }_{m}$ denote the biregular rooted tree in which it consists of a path of order n and degree m. Then $r n\left(B R_{n, m}\right)=\frac{1}{2}\left[n^{2}(m-1)\right]+n+1 \quad$ if n is even and $m \geq 3$.
Proof. Let h be an optimal radio labeling for $B R_{n}, m$ and $\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ be the ordering of $V\left(B R_{n}, m\right)$ such that $0=\mathrm{h}\left(\mathrm{x}_{1}\right)<\mathrm{h}\left(\mathrm{x}_{2}\right)<\ldots<\mathrm{h}\left(\mathrm{x}_{\mathrm{p}}\right)$. Then $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)+\left|\mathrm{h}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right| \geq 1+\mathrm{d}, 1 \leq \mathrm{i} \leq \mathrm{p}-1$.
In $\mathrm{BR}_{\mathrm{n}}, \mathrm{m}$, the total number of vertices $=\mathrm{p}=\mathrm{nm}-\mathrm{n}+2$ and diameter $\mathrm{d}=\mathrm{n}+1$.
Choose the first vertex x_{1} as the median vertex. Choose the next vertex x_{2} such that x_{1} and x_{2} belongs to different branches. Proceeding like this, choose the vertex x_{p} such that $x_{\mathrm{p}-1}$ and x_{p} belongs to different branches.
By (1.12), $r n\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right) \geq(\mathrm{p}-1)(\mathrm{d}+1)+1-2 \mathrm{~S}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right)$
where $S\left(B R_{n, m}\right)$ is the status of the graph $B R_{n, m}$. From 1.11 we have
$\mathrm{S}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right)=\frac{\mathrm{n}^{2}}{4}(\mathrm{~m}-1)+\mathrm{n}(\mathrm{m}-1)+1$
Substituting (2.4.2) in (2.4.1) we get

$$
\begin{aligned}
\operatorname{rn}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{~m}}\right) & \geq(\mathrm{p}-1)(\mathrm{d}+1)+1-2\left(\frac{\mathrm{n}^{2}}{4}(\mathrm{~m}-1)+\mathrm{n}(\mathrm{~m}-1)+1\right) \\
& =(\mathrm{nm}-\mathrm{n}-1)(\mathrm{n}+2)+1-2\left(\frac{\mathrm{n}^{2}}{4}(\mathrm{~m}-1)+\mathrm{n}(\mathrm{~m}-1)+1\right) \\
& =\frac{1}{2}\left[\mathrm{n}^{2}(\mathrm{~m}-1)\right]+\mathrm{n}+1
\end{aligned}
$$

Hence $\operatorname{rn}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right) \geq \frac{1}{2}\left[\mathrm{n}^{2}(\mathrm{~m}-1)\right]+\mathrm{n}+1$
Assume that m is odd
Define a function $\mathrm{h}: \mathrm{V}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right) \rightarrow\left\{0,1,2, \ldots, \frac{1}{2}\left[\mathrm{n}^{2}(\mathrm{~m}-1)\right]+\mathrm{n}+1\right\}$ by $\mathrm{h}\left(\mathrm{x}_{1}\right)=0$ and
$\mathrm{h}\left(\mathrm{x}_{\mathrm{i}+1}\right)=\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{d}+1-\mathrm{d}\left(\mathrm{x}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{p}-1$
Thus it is possible to assign labels to the vertices of $\mathrm{BR}_{\mathrm{n}, \mathrm{m}}$ with span equal to the lower bound.
Therefore $r\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right) \leq \frac{1}{2}\left[\mathrm{n}^{2}(\mathrm{~m}-1)\right]+\mathrm{n}+1$
Hence $\mathrm{rn}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right)=\frac{1}{2}\left[\mathrm{n}^{2}(\mathrm{~m}-1)\right]+\mathrm{n}+1$ when m is odd.
The case when m is even follows similarly.
Example 2.4 For the graph $\mathrm{BR}_{4,5}$ in Figure 8, $\mathrm{rn}\left(\mathrm{BR}_{4,5}\right)=37$.

Figure 8
Observations: (i) $\mathrm{rn}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right)=\mathrm{rn}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}-1}\right)+8$ for all $\mathrm{m} \geq 3$
(ii) $\operatorname{diam}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}}\right)=\operatorname{diam}\left(\mathrm{BR}_{\mathrm{n}, \mathrm{m}-1}\right)$

References

[1]. Daphne Der-Fen Liu, Radio number of Trees, Discrete Mathematics, Vol.308, no.7, PP 1153-1164, 2008.
[2]. D. Liu and X.Zhu, multilevel distance labelings for paths and cycles, SIAM Journal on discrete mathematics, Vol.19, no.3,
[3]. pp 281-293, 2005
[4]. Gary Chartrand and Ping Zhang, Discrete Mathematics and its Applications, Series Editor Kenneth H. Rosen
[5]. Gary Chartrand, David Erwin, Ping Zhang, Frank Harary, Radio labeling of graphs, Bull. Inst. Combin. Appl. 33 (2001) 77-85
[6]. Harary F, 1988, Graph Theory, Narosa publishing House Reading, New Delhi.
[7]. J.A. Gallian, 2010, A dynamic survey of graph labeling,The electronic Journal of Combinatories 17 \# DS6.

K. Sunitha. "Radio labeling of Hurdle graph and Biregular rooted Trees." IOSR Journal of

 Mathematics (IOSR-JM), vol. 13, no. 5, 2017, pp. 37-44.