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Abstract: We present a novel method to fit a possibility distribution on a continuous stream data system and 

hence fitting a restriction on the same by using mode of the data. This method is an extension of Zadeh’s 

restriction centered theory of information. The proposed method is suitable to measure and analyse information 

in complex or hybrid systems, where data sufficiency is never fulfilled and approximate reasoning is required.  

This method mimics the perception calculation technique, which is deeply ingrained in human mind, by which it 

gathers and analyse information in natural language. A method to precisiate the restriction on the basis of 

difference between probability and possibility summation is also proposed. 
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I. Introduction 

In 1949 W. Weaver [8] presented his ideas on problems of communication by classifying them in three 

categories, namely technical, semantic and control.  Technical aspects concern with the coding, decoding and 

compression of symbols, texts, message and hence information, while semantic aspects deal with the meaning 

of the message or information communicated. The third class became a distinct discipline in which various 

types of control systems (human, ma- chine and hybrid) are studied. The first class is concerned with the sender 

of the message while second class is concerned with the receiver of the message.  All three classifications one 

way or another covers every subject in which information/communication is important, for example Tele-

communication engineering, Computer Networks, Economics, Psychology, Artificial Intelligence, Decision 

theory etc. 

Recent literature pertaining to information theory shows the interest in search of a theory which will 

enable us to understand information/ message or meaning of the communication [4, 10, 14,15,17,18,19].  The 

meaning part becomes essential when we consider various human - human or human - machine systems, for 

example economic activity, which is regulated by financial / economic data and its interpretations by economic 

agents. There are many theories to define and quantify semantic content of information or propose changes in 

mathematical information theory to make it more accommodating for meaning part. Measuring information 

through possibility distribution is a prominent theory for the same. 

 

II. Possibility Distributions 
Zadeh defined theory of possibility on the basis of fuzzy sets and related it to information measurement 

[13].  Successive improvements were made by Klir and Higashi [6], Dubois & Prade [1, 2, 5, 3], Yager [ 9, 11] 

and many more. However the term possibility was coined by Shackle in 1950 in Economics as the potential 

surprise of an event. In information theory the application of possibility theory was first recognized by 

Dampster and Shafer [7] in their theory of evidence, which uses pair of dual measures of possibility and 

necessity to define information. 

A possibility distribution or measure Π on a set X is defined by a mapping π : P (X ) → [0, 1], where P (X ) 

being power set of X , with the following properties - 

1. π () = 0 

2. AB   ⇒ π (A) ≤  π (B) 

3. π (AB) = max{π(A), π(B)}, where A ∩ B =  

Following points are important in the context of possibility, for AiX 

● Normalization - A possibility distribution is said be normal if π (Ai) = 1 for at least one  AiX . 

● Complete Knowledge – When  (Ai) = 1 and  (Aj ) = 0 for i ≠ j 
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● Complete Ignorance - When (Ai ) = 1, for  i.  

● When 0 ≤  (A) ≤ 1, for AX, then A is possibly uncertain. 

● The dual of possibility, known as necessity is defined as  (A) = 1 -  (A 
c
), where A 

c
 is complement of A 

X 

A possibility distribution is characterized by a function  f  : X → [0, 1] 

   xfA
Ax

 sup , A ⊂ X     (1) 

A more informative possibility distribution follows minimum specificity criterion. [2, 5, 9]  

 

2.1   Relation to Probability 

According to Zadeh [13], if P (Ai ) is the probability and π(Ai ) is the possibility of AiX , then P (Ai) ≤ π(Ai ), 

which is termed as "what is probable, that is possible”. The difference between a possibility distribution and a 

probability distribution is that probability distribution satisfies additivity condition P (AB)  = P (A) + P (B),  

while possibility is non-additive and satisfies maximality condition π(A∪B) = Max{π(A), π(B)}.  There is also a 

possibility - probability consistency principle which states that, for a constant C –  

    CAAP i

n

i

i      
1




      (2) 

A possibilistic restriction “X is A” represents a possibilistic distribution defined by π (X = u) = µA (u), where A 

is a fuzzy set defined by a membership function μ A  in set of discourse U . The information I (p) conveyed by a 

restriction “X is A” is equivalent to the possibility distribution Π (p) = π (X = u) = µA (u). 

Hence we can write I  (p) ≡ Π (p), thus the possibility distribution is another method to denote and measure 

information [12, 13]. 

 A more informative possibility distribution follows minimum specificity criterion. [2, 5, 9]  

 

2.2   Information as Restrictions 

Recently Zadeh proposed the Information Principle [20], according to which information is 

communicated as restrictions. A restriction is a generalized constraint which restricts the values of a variable. 

Let X be a variable and R be a set of values then a restriction is defined by “XisrR”, where isr, read as “izar”, is 

the restriction type.  All of the entities X , R and r can be n-arry. When r is blank, i.e. the constraint is “X is R” is 

known as a Possibilistic Restriction. Similarly we can define probabilistic restriction “X isp P” or a bimodal 

restriction, which is combination of probabilistic and possibilistic restriction. 

In most cases X and R are defined in natural language and hence the possibilistic restriction becomes 

fuzzy possibilistic restriction. If the set R is crisp and singular it becomes an equation, however when R is non-

singular (and fuzzy) the possibilistic restriction implies uncertainty, hence it can represents information. A more 

restricted restriction represents more information (minimum specificity). Since the variables are defined in 

natural language, possibilistic restrictions are best way to capture and analyse semantic information i.e. meaning 

and information [15-20]. We make above definitions clear by examples - 

•  X is an even number. 

•  X is a small even number. 

•  I usually reach to my home from my office in half an hour 

•  In heavy traffic it takes a long time to reach railway station. 

 

The first example denotes a crisp possibilistic restriction, because a crisp rule (division by two) defines 

the set of even numbers. The second example is a fuzzy possibilistic restriction because being small integer is a 

fuzzy characteristic and it is a matter of graded membership in the set of small even number. The third example 

shows how possibilistic restriction represents information. The term usually denoted fuzziness. Similarly the 

last example denotes information stated in natural language through possibilistic restriction. 

Finding a suitable possibilistic distribution to represent the restriction is known as precisiation of the 

restriction. Human mind has a remarkable ability to precisiate possibilistic restriction and make decisions on the 

available partial information, a process  known as Natural Language Computation[16].We claim that to capture 

semantic information from any data, first we have to convert it into a possibilistic distribution, hence a 

restriction and on the basis of this distribution, decisions can be made. This method is suitable for human - 

machine hybrid systems, artificial intelligence and various other fields in which data, information and meaning 

all are important. 
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III. New Method to Measure Information 
As it is clear from above discussion restrictions defined in natural language conveys information with 

meaning (semantic information), however formulation of a mechanical system which will read data and convert 

it into semantic information is difficult due to following reasons - 

• Fitting a possibility distribution on empirical data is not easy as fitting a probability distribution. 

• The precisiation of a restriction is tough when the data set is given. 

• For a system generating data and information continuously (any man - machine system), defining a 

restriction in natural language is easy but its precisiation is not so easy. 

• The process of precisiation of restriction is equivalent to finding a less specific possibility distribution that is 

represented by the restriction, however there are no formal techniques to select a less specific possibility 

distribution or to precisiate the restriction. 

 

In view of above problems we propose a new measure of information through re-defining the 

possibility function on the basis of mode. A mode is the observation which has the maximum frequency. The 

modal element has a unique property that it is both the most possible element and most probable element of a 

population. In following argument we will define measure based on mode and prove that it satisfies the 

conditions of a possibility distribution. 

Let there be a man – machine system with an observation set X = {x1, x2, … xn} and corresponding frequency 

set denoted by F = {f1, f2, … fn}. Let the set X be uni-modular, with x Mbe the mode and f Mbe the modular 

frequency. We define the probability of an observation x r by –  

    
N

f
xP r

r   where  



n

i

ifN
1

     (3) 

We also define a map πM : (X, F) → [0,1], by  
M

r
r

f

f
x        (4) 

 

Theorem1 - We claim that the measure defined by equation (4) is a possibility distribution for observation set 

  X = {x1, x2, … xn} and frequency set denoted by F = {f1, f2, … fn},   under the following 

conditions 

1. Observation set X is uni-modular, where (x M , f M) is the modal observation and modal frequency pair. 

2. The modal frequency is relatively high from any other frequency i.e. fM>>>fi. 

Proof - We shall show that equation (4) satisfies the properties of possibility distribution -  

Nullity – If for any observation x j the frequency is zero f j = 0, then by definition  πM (xj) = 0. 

Subset –  If for observation pair x i and x j, f i≤  f j, then by definition πM(x i) ≤ πM (x j). 

Normality – By definition   1
M

M
MM f

f
x , thus for atleast one observation x M, π M(x M) = 1. 

Probability – Possibility relation – Since 







 



n

i

iM fNf
1

, therefore
M

ii

f
f

N
f

 , and hence we can 

write π M (x i) ≤ P (x i) (what is probable, that is possible). 

Maximality – Let f i j denotes the frequency of x i ∨  x j , while frequency of  x i ∧  x j is zero.  

By definition we can write  
M

ji

jiM
f

f
xx

 
  

Now by set theory f i j = f i + f j, provided frequency of  x i ∧  x j is zero, hence above equation is changed into 

   
M

j

M

i

M

ji

jiM
f

f

f

f

f

ff
xx 


  

Now by condition (2) , the modal frequency is very high than any other frequency, fM>>>fi, for any other 

(xi,fi)∈ (X, F).Therefore in above equation the smallest of the ratios  
M

i

f
f

or 
M

j

f

f
becomes negligible. Thus 

in this condition the maximum of π M(x i) or π M(x j) will be significant, hence we can write  

 π M(x i∨  x j) = max {π M(x i), π M(x j)}, while π M(x i∧  x j) = 0   (6) 

This concludes our proof.         ◊ 

3.1   Significance of the Condition fM>>>fi 
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Mode is the most possible and most probable observation of any data set. Hence for any system or 

scenario which generates continuous data or information, one can expect the modal element to be in any 

sample. Thus the modal frequency will become higher and higher and relatively the frequencies of other 

observations will be small, hence the condition fM>>>fi. Also in communication, particularly in human 

communication often information is propagated in unimodular fashion. Therefore Data-Frequency pair (X, F) 

becomes a possibility distribution defined by equation (4), with probability distribution defined by equation (3). 

The Data-Frequency pair (X, F), works as what Zadeh termed an explanatory database (ED)[19,20]. The ED is 

a set which contains values of the variable which helps in precisiation of the restriction or the possibility 

distribution. For this process, we define the following - 

Given observation set X = {x1, x2 … xn} and its frequency set F = {f1, f2 … fn},   be the constituents of ED (X, 

F).  

Let the probability and possibility duo are defined by equations (3) and (4) respectively. We calculate  

           nM

n

i

iM xxxxx          MM2M1M

1

 


  

           Mn xxxx          MM2M1M     

Now by normality condition   1
M

M
MM f

f
x , above equation changes into –  

            1       M2M1M

1 




n

n

i

iM xxxx    

By the property of probability   1
1 




n

i

ixP , hence -  

             



n

i

in

n

i

iM xPxxxx
1

M2M1M
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          

 Or            n

n

i

i

n

i

iM xxxxPx           M2M1M

1 1 

  


  

     
M

n

MM f
f

f
f

f
f

       21    

     

M

n

f

fff 


21
, where the sum does not contains f M 

Let us denote the sum f 1 + f 2 + . . . + f n by N , i.e. NfN M   hence we get –  

      
M

n

i

i

n

i

iM
f

N
xPx  

 1 1 

           (7) 

 

The L.H.S. of above equation is the difference between a possibility distribution and a probability 

distribution for an ED (X, F), and the R.H.S. gives us the difference between”What is possible?” and ”What is 

probable?”.  Since the RHS is always positive (being the sum of positive values), this result also reconfirms that 

P (Ai) ≤ π(Ai ).Thus equation (7) becomes a measure of relative vagueness and uncertainty associated with an 

ED (X, F). 

 

3.2   Proposed Method 

In view of above discussion and Zadeh’s theory of RCT [19], we propose the following novel method to 

measure information through restriction - 

Step - I - To measure the information, we construct the set X based on the focal element(s).  For example, in 

driving a car the focal element or observation will be traffic density or/and speed.  There can be more than one 

focal element and hence the set X can be multi- dimensional. 

Step - II - Next, for given observation set X we define Explanatory Database (X, F), consisting of continuous 

observation set and their respective frequencies F. 

Step - III - We define the measures by equations (3), (4) and the difference by equation (7).These equations help 

us to precisiate the restriction and fit a possibility distribution on the given ED (X, F). 
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The composition of (X, F) changes as the system progresses through time. For example the observations which 

are older can be removed and then new observations are added. Thus the problem of fitting a possibility 

distribution on a continuous stream of data can be solved by fitting a possibility distribution ΠM  and a 

possibility restriction precisiated by equation (7). 

 

IV. Conclusion and Further Work 
In above discussion we have proposed a method to measure information and meaning of a continuous 

data stream system. Various existing methods lack on the capability of approximate reasoning and decision 

making when information is either vague or insufficient. The method is very akin to the process of human mind 

analysing sensory inputs which are continuous and more often never sufficient. The method is extension of 

Zadeh’s newly proposed Information principle (Information = Restriction), and it uses the restriction by mode 

(highest frequency observation). In further work we shall establish other results on possibility distribution and 

find representation of multi-mode systems. 
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