On Supra Bitopological Spaces

R. Gowri¹ and A.K.R. Rajayal²

¹ Assistant Professor, Department of Mathematics, Government College for Women (Autonomous), Kumbakonam, India
² Research Scholar, Department of Mathematics, Government College for Women (Autonomous), Kumbakonam, India

Corresponding Author: R.GOWRI

Abstract: The aim of this paper is to introduce the concept of supra bitopological spaces and discuss the fundamental properties of separation axioms in supra bitopological spaces.

Mathematics Subject Classification: 54D05, 54D10, 54D08, 54D20

Keywords: supra topological spaces, supra bitopological spaces, supra pairwise T₀-space, supra pairwise T₁-space, supra pairwise T₂-space.

I. Introduction

The concept of bitopological spaces was introduced by J.C.Kelly[7]. A set equipped with two topologies is called a bitopological spaces. In 1980, R.C. Jain[6] was introduced separation axioms in bitopological spaces. The supra topological spaces have been introduced by A.S. Mashhour at[9] in 1983. In topological space the arbitrary union condition is enough to have a supra topological space. Here every topological space is a supra topological space but the converse is not always true. Then the authors S.P.Arav and T.M. Nour[1] was discussed some higher separation axioms in bitopological spaces. In this paper we introduce and study the concept of supra bitopological spaces and investigate some new separation axioms called supra pairwise T₀, supra pairwise T₁ and supra pairwise T₂ spaces. Also we study some of their basic properties in supra bitopological spaces.

II. Preliminaries

Definition 2.1 [9] \((X, \tau)\) is said to be a supra topological space if it is satisfying these conditions:
(1) \(X, \emptyset \in \tau\)
(2) The union of any number of sets in \(\tau\) belongs to \(\tau\).

Definition 2.2 [9] Each element \(A \subseteq \tau\) is called a supra open set in \((X, \tau)\), and its compliment is called a supra closed set in \((X, \tau)\).

Definition 2.3 [9] If \((X, \tau)\) is a supra topological spaces, \(A \subseteq X\), \(A \neq \emptyset\), \(\tau_A\) is the class of all intersection of \(A\) with each element in \(\tau\), then \((A, \tau_A)\) is called a supra topological subspace of \((X, \tau)\).

Definition 2.4 [9] The supra closure of the set \(A\) is denoted by supra cl\(A\) and is defined as supra cl\(A\) = \(\bigcap \{B : B \text{ is a supra closed and } A \subseteq B\}\).

Definition 2.5 [9] The supra interior of the set \(A\) is denoted by supra int\(A\) and is defined as supra int\(A\) = \(\bigcup \{B : B \text{ is a supra closed and } B \subseteq A\}\).

III. Supra Bitopological Spaces

Definition 3.1 If \(\tau_1\) and \(\tau_2\) are two supra topologies on a non-empty set \(X\), then the triplet \((X, \tau_1, \tau_2)\) is said to be a supra bitopological space.

Definition 3.2 Each element of \(\tau_i\) is called a supra \(\tau_i\)-open sets in \((X, \tau_1, \tau_2)\) for \(i=1, 2\). Then the complement of supra \(\tau_i\)-open sets are called a supra \(\tau_i\)-closed sets.
Definition 3.3 If (X, τ_1, τ_2) is a supra bitopological space, $Y \subseteq X$, $Y \neq \emptyset$ then (Y, τ'_1, τ'_2) is a supra bitopological subspace of (X, τ_1, τ_2) if

\[
\tau'_1 = \{ U \cap Y \mid U \text{ is a supra } \tau_1 \text{-open in } X \} \quad \text{and} \quad \tau'_2 = \{ V \cap Y \mid V \text{ is a supra } \tau_2 \text{-open in } X \}.
\]

Definition 3.4 The supra τ_1-closure of the set A is denoted by supra τ_1-cl(A) and is defined as supra τ_1-cl$(A) = \bigcap \{ B : B \text{ is a supra } \tau_1 \text{-closed and } A \subseteq B \text{ for } i = 1, 2 \}$.

Definition 3.5 The supra τ_1-interior of the set A is denoted by supra τ_1-int(A) and is defined as supra τ_1-int$(A) = \bigcup \{ B : B \text{ is a supra } \tau_1 \text{-open and } B \subseteq A \text{ for } i = 1, 2 \}$.

IV. A New Classes Of Supra Pairwise Separation Axioms

Definition 4.1 A supra bitopological space (X, τ_1, τ_2) is called a supra pairwise T_0 if for each pair of distinct points $x, y \in X$, $x \neq y$, there is a supra τ_1-open set U and a supra τ_2-open set V such that $x \in U$, $y \notin V$ or $y \in V$, $x \notin U$.

Example 4.2 Let $X = \{ a, b, c \}$

$\tau_1 = \{ \emptyset, X, \{ a \}, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ a, c \}, \{ b, c \}, \{ a, c \} \} \quad \text{and} \quad \tau_2 = \{ \emptyset, X, \{ b \}, \{ b, c \}, \{ a \} \}$

Let $a, b \in X$. Then there is a supra τ_1-open set $U = \{ a, c \}$ and a supra τ_2-open set $V = \{ b, c \}$ such that $a \in U$, $a \notin V$ or $b \in V$, $b \notin U$.

Let $b, c \in X$. Then there is a supra τ_1-open set $U = \{ a, b \}$ and a supra τ_2-open set $V = \{ a, c \}$ such that $b \in U$, $b \notin V$ or $c \in V$, $c \notin U$.

Let $a, c \in X$. Then there is a supra τ_1-open set $U = \{ a, b \}$ and a supra τ_2-open set $V = \{ b, c \}$ such that $a \in U$, $a \notin V$ or $c \in V$, $c \notin U$.

Therefore (X, τ_1, τ_2) is a supra pairwise T_0-space.

Theorem 4.3 If (X, τ_1, τ_2) is a supra pairwise T_0-space and (Y, τ'_1, τ'_2) is a supra bitopological subspace of (X, τ_1, τ_2) then (Y, τ'_1, τ'_2) is also a supra pairwise T_0-space.

Proof: Suppose $x, y \in Y$, $x \neq y$. Since $Y \subseteq X$, $x, y \in X$. Since (X, τ_1, τ_2) is a supra pairwise T_0-space, there exist a supra τ_1-open set U and a supra τ_2-open set V such that $x \in U$, $y \notin V$ or $y \in V$, $x \notin U$. Then $U \cap Y$, $V \cap Y$ are τ'_1, τ'_2 supra open sets in Y respectively such that $x \in U \cap Y$, $y \notin U \cap Y$ or $y \in U \cap Y$, $x \notin U \cap Y$.

Hence (Y, τ'_1, τ'_2) is a supra pairwise T_0-space.

Theorem 4.4 If (X, τ_1, τ_2), (X', τ'_1, τ'_2) are two supra bitopological spaces, (X, τ_1, τ_2) is a supra pairwise T_0-space and f is a supra open function and bijective then (X', τ'_1, τ'_2) is also a supra pairwise T_0-space.

Proof: Suppose that (X, τ_1, τ_2) is a supra pairwise T_0-space. Let $x, y \in X \times X$, $x \neq y$, since f is bijective function then there exist $x, y \in X$ such that $x' = f(x)$, $y' = f(y)$ and $x \neq y$. Since (X, τ_1, τ_2) is a supra pairwise T_0-space then there exist a supra τ_1-open set U and a supra τ_2-open set V such that $x \in U$, $y \notin V$ or $y \in V$, $x \notin U$.

Clearly $f(U) \subseteq X$ and $f(V) \subseteq X$ since f is a supra open function, $f(U)$ is a supra τ_1-open set and $f(V)$ is a supra τ_2-open set in X'. Also $f(x) \in f(U)$, $f(y) \notin f(U)$ or $f(y) \in f(V)$, $f(x) \notin f(V)$.

Hence (X', τ'_1, τ'_2) is a supra pairwise T_0-space.

Theorem 4.5 If (X, τ_1, τ_2), (X', τ'_1, τ'_2) are two supra bitopological spaces where (X', τ'_1, τ'_2) is a supra pairwise T_0-space and $f : X \to X'$ is a bijective continuous function then (X, τ_1, τ_2) is a supra pairwise T_0-space.

Proof: Let $x, y \in X$, $x \neq y$, since f is bijective then there exist $x', y' \in X \times X', x' \neq y'$ such that $x' = f(x)$, $y' = f(y)$ since X' is a supra pairwise T_0-space then there exist a supra τ_1-open set U and a supra τ_2-open set V such that $x \in U$, $y \notin V$ or $y \in V$, $x \notin U$.

Since f is continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are supra τ_1-open set, supra τ_2-open set respectively in X. Also $f(x) \in U$ implies $x \notin f^{-1}(U)$, $y \notin f^{-1}(U)$ or $x \notin f^{-1}(V)$, $y \notin f^{-1}(V)$.

Hence (X, τ_1, τ_2) is a supra pairwise T_0-space.

Remark 4.6 Every pairwise T_0-space is a supra pairwise T_0-space, but the converse is not true as shown in the following example.
Example 4.7 Let $X = \{a, b, c\}$
$\tau_1 = \{\emptyset, X, \{b\}, \{a, c\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{a\}, \{c\}, \{b, c\}\}$
Therefore (X, τ_1, τ_2) is a supra pairwise T_0-space but not a pairwise T_0-space

Definition 4.8 A supra bitopological space (X, τ_1, τ_2) is called a supra pairwise T_1 if for each pair of distinct points $x, y \in X$, $x \neq y$ there is a supra τ_1-open set U and a supra τ_2-open set V such that $y \in U$, $y \notin V$ and $y \notin V$, $x \notin V$.

Example 4.9 Let $X = \{a, b, c\}$
$\tau_1 = \{\emptyset, X, \{b\}, \{a, c\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{a\}, \{c\}, \{b, c\}\}$
Let $a, b \in X$. Then there is a supra τ_1-open set $U = \{a, c\}$ and a supra τ_2-open set $V = \{b, c\}$ such that $a \in U$, $b \notin U$ and $b \in V$, $a \notin V$.
Let $a, c \in X$. Then there is a supra τ_1-open set $U = \{a, b\}$ and a supra τ_2-open set $V = \{a, c\}$ such that $b \in U$ and $c \notin U$, $a \notin V$.
Let $b, c \in X$. Then there is a supra τ_1-open set $U = \{a\}$ and a supra τ_2-open set $V = \{a, c\}$ such that $b \notin U$ and $c \in V$, $b \notin V$.
Therefore (X, τ_1, τ_2) is a supra pairwise T_1-space.

Theorem 4.10 If (X, τ_1, τ_2) is a supra pairwise T_1-space and (Y, τ_1', τ_2') is a supra bitopological subspace of (X, τ_1, τ_2) then (Y, τ_1', τ_2') is also a supra pairwise T_1-space.

Proof: suppose $x, y \in Y$, $x \neq y$. Since $Y \subseteq X$, $x, y \in X$. Since (X, τ_1, τ_2) is a supra pairwise T_1-space, there exist two supreme τ_1-open sets U and a supra τ_2-open set V such that $x \in U$, $y \notin U$, $y \notin V$, $x \notin V$. Then $U \cap Y, V \cap Y$ are τ_1', τ_2' supra open sets in Y respectively such that $x \in U \cap Y$, $y \notin U \cap Y$ and $y \notin V \cap Y$, $x \notin V \cap Y$. Hence (Y, τ_1', τ_2') is a supra pairwise T_1-space.

Theorem 4.11 If (X, τ_1, τ_2), (X', τ_1', τ_2') are two supra bitopological spaces, (X, τ_1, τ_2) is a supra pairwise T_1-space and f is a supra open function and bijective then (X', τ_1', τ_2') is a supra pairwise T_1-space.

Proof: Suppose that (X, τ_1, τ_2) is a supra pairwise T_1-space. Let $x', y' \in X$, $x' \neq y'$, since f is bijective there exist $x, y \in X$ such that $f(x) = x'$, $f(y) = y'$ and $x \neq y$.
Since (X, τ_1, τ_2) is a supra pairwise T_1-space, there exist two supreme τ_1-open set U and a supra τ_2-open set V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$. Clearly $f(U) \subseteq X'$
and $f(V) \subseteq X'$ since f is a supra open function, $f(U)$ is a supra τ_1'-open set and $f(V)$ is a supra τ_2'-open set in X'. Also $f(x) \in U$, $f(y) \notin U$ and $f(x) \notin V$.
Hence (X', τ_1', τ_2') is a supra pairwise T_1-space.

Remark 4.12 Every supra T_1-space is a supra T_0-space but the converse is not true as shown in the following example.

Example 4.13 Let $X = \{a, b, c\}$
$\tau_1 = \{\emptyset, X, \{b\}, \{a, c\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{a\}, \{c\}, \{b, c\}\}$
Here (X, τ_1, τ_2) is a supra pairwise T_0-space but not a supra pairwise T_1-space

Definition 4.14 A supra bitopological space (X, τ_1, τ_2) is called a supra pairwise T_2 (or supra pairwise Hausdorff space) if for each pair of distinct points $x, y \in X$, $x \neq y$, there is a supra τ_1-open set U and a supra τ_2-open set V such that $x \in U$ and $y \notin V$, $U \cap V = \emptyset$.

Example 4.15 Let $X = \{a, b, c\}$
$\tau_1 = \{\emptyset, X, \{b\}, \{a\}, \{a, b\}, \{a, c\}\}, \tau_2 = \{\emptyset, X, \{c\}, \{a, b\}, \{b, c\}\}$
Let $a, b \in X$. Then there is a supra τ_1-open set $U = \{a\}$ and a supra τ_2-open set $V = \{b, c\}$ such that $a \in U$ and $b \notin U$, $U \cap V = \emptyset$.
Let $b, c \in X$. Then there is a supra τ_1-open set $U = \{b\}$ and a supra τ_2-open set $V = \{c\}$ such that $b \notin U$ and $c \in V$, $U \cap V = \emptyset$. DOI: 10.9790/5728-1305025558 www.iorsjournals.org 57 | Page
Let $a, c \in X$. Then there is a supra τ_1-open set $U = \{a\}$ and a supra τ_2-open set $V = \{c\}$ such that $a \in U$ and $c \in V$. $U \cap V = \emptyset$.

Therefore (X, τ_1, τ_2) is a supra pairwise T_2-space.

Theorem 4.16 If (X, τ_1, τ_2) is a supra pairwise T_2-space and (Y, τ_1', τ_2') is a supra bitopological subspace of (X, τ_1, τ_2) then (Y, τ_1', τ_2') is also a supra pairwise T_2-space.

Proof: Suppose $x, y \in Y$, $x \neq y$. Since $Y \subseteq X$, $x, y \in X$. Since (X, τ_1, τ_2) is a supra pairwise T_2-space, there exist a supra τ_1-open set U and a supra τ_2-open set V such that $x \in U$, $y \in V$, $U \cap V = \emptyset$. Then $U \cap Y, V \cap Y$ are τ_1', τ_2' supra open sets in Y respectively such that $x \in U \cap Y, y \notin U \cap Y$ and $y \in V \cap Y, x \notin V \cap Y$.

$U \cap V = (U \cap Y) \cap (V \cap Y)$

$= (U \cap Y) \cap Y$

$= \emptyset \cap Y$

$= \emptyset$. Hence (Y, τ_1', τ_2') is a supra pairwise T_2-space.

Theorem 4.17 If (X, τ_1, τ_2) and (X', τ_1', τ_2') are two supra bitopological spaces,

(X, τ_1, τ_2) is a supra pairwise T_2-space and f is a supra open function and bijective then (X', τ_1', τ_2') is a supra pairwise T_2-space.

Proof: Suppose that (X, τ_1, τ_2) is a supra pairwise T_2-space. Let $x', y' \in X'$, $x' \neq y'$, since f is bijective there exist $x, y \in X$ such that $f(x') = x'$, $f(y') = y'$ and $x \neq y$.

Since (X, τ_1, τ_2) is a supra pairwise T_2-space, there exist a supra τ_1-open set U and a supra τ_2-open set V such that $x \in U$ and $y \notin U$, $\emptyset \neq V \cap Y = \emptyset$. Clearly $f(U) \subseteq X'$ and $f(V) \subseteq X'$, since f is a supra open function, $f(U)$ is a supra τ_1'-open set and $f(V)$ is a supra τ_2'-open set in X'. Also $f(x) \notin f(U)$ and $f(y) \notin f(V)$, $f(U) \cap f(V) = \emptyset$.

Hence (X', τ_1', τ_2') is a supra pairwise T_2-space.

Remark 4.18 Every supra pairwise T_2-space is a supra pairwise T_1-space but the converse is not true such as shown in the following example.

Example 4.19 Let $X = \{a, b, c\}$

$\tau_1 = \emptyset, X, \{a, b\}, \{a, c\}, \{b, c\}\}$. $\tau_2 = \emptyset, X, \{a\}, \{a, c\}, \{b, c\}$.

Here (X, τ_1, τ_2) is a supra pairwise T_1-space but not a supra pairwise T_2-space.

V. Conclusion

In this paper, basic concepts of supra bitopological spaces are introduced and also separation axioms of supra bitopological spaces are analysed.

References

