On Quasi Generalized Topological Simple Groups

*C. Selvi, R. Selvi

Research scholar, Department of mathematics, Sriparasakthi college for women, India.
Assistant Professor, Department of mathematics, Sriparasakthi college for women, India.
Corresponding Author: C. Selvi, R. Selvi

Abstract: In this paper we introduce the concept of quasi G-topological simple group. Also some basic properties, theorems and examples of a quasi G-topological simple groups are investigated. Moreover we studied the important result, If the mapping between two quasi G-topological simple groups is G-continous at the identity element, then f is G-continous.

Keywords: Quasi topological group, G-open set, G-continous, Quasi G-topological simple group.

Date of Submission: 16-08-2017 Date of acceptance: 05-09-2017

I. Introduction

Csaszar[6], introduced the notion of generalized neighbourhood system and generalized topological space. Also Csaszar[6], investigated the generalized continuous mappings. In this paper we introduce the new concept of quasi G-topological simple group. Quasi G-topological simple group have both topological and algebraic structures such that the translation mappings and the inversion mapping are G-continous with respect to the generalized topology. Also some basic results are studied and discussed.

II. Preliminaries

Definition: 2.1[3] Let X be any set and let $G \subseteq P(X)$ be a subfamily of power set of X. Then G is called a generalized topology if $\emptyset \in G$ and for any index set I, $\bigcup_{i \in I} G_i \in G$, $\emptyset \in G$, $i \in I$.

Definition: 2.2[3] The elements of G are called G-open sets. Similarly, generalized closed set (or) G-closed, is defined as complement of a G-open set.

Definition: 2.3[3] Let X and Y be two G-topological space. A mapping $f: X \rightarrow Y$ is called a G-continous on X if for any G-open set O in Y, $f^{-1}(O)$ is G-open in X.

Definition: 2.4[3] The bijective mapping f is called a G-homeomorphism from X to Y if both f and f^{-1} are G-continous. If there is a G-homeomorphism between X and Y, then they are said to be G-homeomorphic. It is denoted by $X \cong_g Y$.

Definition: 2.5[3] Collection of all G-interior points of $A \subseteq X$ is called G-interior of A. It denoted by $Int_G(A)$. By definition it obvious that $Int_G(A) \subseteq A$.

Note: 2.6[3] (i) G-interior of A, $Int_G(A)$ is equal to union of all G-open sets contained in A.

(ii) G-closure of A as intersection of all G-closed sets containing A. It is denoted by $Cl_G(A)$.

Definition: 2.7[3] Let (G, \ast) is a group and given $x \in G, L_x: G \rightarrow G$ defined by $L_x(y) = x \ast y$ and $R_x: G \rightarrow G$ defined by $R_x(y) = y \ast x$, denote left and right translation by x, respectively.

Definition: 2.8[1] A quasi topological group G, is a group which is also a topological space if the following conditions are satisfied.

(i) Left translation $L_x: G \rightarrow G, x \in G$ and right translation $R_x: G \rightarrow G, x \in G$ are continous and

(ii) The inverse mapping $i: G \rightarrow G$ defined by $i(x) = x^{-1}, x \in G$ is continous.

Definition: 2.9[20] A group G is called a simple group if it has no nontrivial normal subgroup of G.

III. Quasi Generalized Topological Simple Groups

Definition: 3.1 A quasi G-topological simple group G, is a simple group which is also a G-topological space if the following conditions are satisfied.

(i) Left translation $L_x: G \rightarrow G, x \in G$ and Right translation $R_x: G \rightarrow G, x \in G$ are G-continous and

(ii) The inverse mapping $i: G \rightarrow G$ defined by $i(x) = x^{-1}, x \in G$ is G-continous.

Example: 3.2 Any group of prime order with indiscrete or discrete G-topology is a quasi G-topological simple group.
Example: 3.3 Let $G = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ be a trivial simple group under addition and we define a generalized topology on G by $G = \left\{ \phi, \left(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right) \right\}$. Clearly $(G, +, G)$ quasi G-topological simple group.

Example: 3.4 $G = \{1, w, w^2\}$, where $w^3 = 1$, is a simple group under multiplication. Now we define a generalized on G by $G = \{G, \{w\}\}$. Then the inverse mapping i is G-continuous at the points $1, w^2$ and not G-continuous at the point w. In right translation mapping, R_1 is G-continuous at each point of G, R_w is G-continuous at the points w, w^2 and not G-continuous at the point 1 and R_{w^2} is G-continuous at the point 1, w and not G-continuous at the point w^2. Similarly we can prove left translation(L_w).

Theorem: 3.5 Let $(G, *, G)$ be a quasi G-topological simple group and β_e be the collection of all G-open neighbourhood at identity e of G. Then

(i) For every $U \in \beta_e$, there is an element $V \in \beta_e$ such that $V^{-1} \subseteq U$.

Proof: (i). Since $(G, *, G)$ is a quasi G-topological simple group, G is G-continuous.

(ii) For every $U \in \beta_e$, there is an element $V \in \beta_e$ such that $V \times x \subseteq U$ and $x \times V \subseteq U$, for each $x \in U$.

Proof: (ii). Since $(G, *, G)$ is a quasi G-topological simple group. Therefore, for every $U \in \beta_e$, there exists $V \in \beta_e$ such that $i(V) = V^{-1} \subseteq U$, because the inverse mapping $i: G \rightarrow G$ is G-continuous.

Theorem: 3.6 Let G be a quasi G-topological simple group and g be any element of G. Then the right translation(R_g) and left translation(L_g) of G by g is a G-homeomorphism of the space G onto itself.

Proof: First we prove that R_g is a bijection. Assume that $y \in G$, then the element yg^{-1} maps to y. Therefore R_g is surjective.

Assume that $R_g(x) = R_g(y)$.

$\Rightarrow xyg = yg$.

$x = y$. Hence R_g is 1-1. Since G is a quasi G-topological simple group, G is G-continuous.

Consider R_g^{-1} which maps xyg to x, this is equivalent to the map from x to xyg^{-1}. Therefore $R_g^{-1}(x) = R_g^{-1}(y)$. Since $R_g^{-1}(x)$ is G-continuous, $R_g^{-1}(y)$ is G-continuous. Similarly we will prove that the left translation (L_g). Hence the theorem.

Theorem: 3.7 Let G be a quasi G-topological simple group and U be any G-open set in G. Then

(i) $a * U$ and $U * a$ is G-open in G for all $a \in G$.

(ii) For any subset A of G, the sets $U * A$ and $A * U$ are G-open in G.

Proof: Let $x \in U * a$. We want to show that x is a G-interior point of $U * a$. Let $x = u * a$ for some $u \in U = U * a * a^{-1}$. Then $u = x * a^{-1}$. We know that $R_{a^{-1}}: G \rightarrow G$ is G-continuous. Then for every G-open set containing $R_{a^{-1}}(x) = x * a^{-1} = u$, there exists a G-open set M_x containing x such that $R_{a^{-1}}(M_x) \subseteq U$.

$\Rightarrow M_x \subseteq U * a$.

$\Rightarrow x$ is a G-interior point of $U * a$. Therefore $U * a$ is G-open in G.

Similarly we can prove that $a * U$ is G-open.

(iii) By above result, $U * a$ is G-open, for all $a \in G$. Then $U * A = \bigcup_{a \in A} U * a$ also G-open in G.

Theorem: 3.8 Suppose that a subgroup H of a quasi G-topological simple group G contains a non-empty G-open subset of G. Then H is G-open in G.

Proof: Let U be a non-empty G-open subset of G with $U \subseteq H$. For every $g \in H$, the set $L_g(U) = U * g$ is G-open in G, then $H = \bigcup_{g \in H} U * g$ is G-open in G.

Theorem: 3.9 Every quasi G-topological simple group G has G-open neighbourhood at the identity element of G consisting of symmetric G-neighbourhoods.

Proof: For an arbitrary G-open neighbourhood U of the identity e, if $V = U \cup U^{-1}$, then $V = U^{-1}$, the set V is an G-open neighbourhood of e. But V is a symmetric G-neighbourhood and $V \subseteq U$.

Theorem: 3.10 Let $f: G \rightarrow H$ be a homomorphism of quasi G-topological simple groups. If f is G-continuous at the neutral element e_G of G, then f is G-continuous.

Proof: Let $x \in G$ be arbitrary and suppose that W is an G-open neighbourhood of $y = f(x)$ in H. Since the left translation L_x in H is a G-continuous mapping, there exists an G-open neighbourhood of V of the neutral element e_H in H such that $L_x(V) = xV \subseteq W$. Since f is G-continuous at e_G of G, then $f(V) \subseteq V$, for some G-open neighbourhood U of e_G in G. Since $L_x: G \rightarrow H$ is G-continuous, then xU is an G-open neighbourhood of x in G. Now we have $f(xU) = f(x)f(U) = yf(U) \subseteq yV \subseteq W$. Hence f is G-continuous at the point $x \in G$. DOI: 10.9790/5728-1304035760 www.iosrjournals.org 58 | Page
Theorem: 3.11 Suppose that \(G, H \) and \(K \) are quasi \(G \)-topological simple groups and that \(\phi: G \to H \) and \(\psi: G \to K \) are homomorphism. Such that \(\psi(G) = K \) and \(\text{Ker } \psi \subset \text{Ker } \phi \). Then there exists homomorphism \(f: K \to H \) such that \(\phi = f \circ \psi \). In addition, for each \(G \)-neighbourhood \(U \) of the identity element \(e_H \) in \(H \), there exists a \(G \)-neighbourhood \(V \) of the identity element \(e_K \) in \(K \) such that \(\psi^{-1}(V) \subset \phi^{-1}(U) \), then \(f \) is \(G \)-continuous.

Proof: Algebraic part of the theorem is well known. Suppose \(U \) is a \(G \)-neighbourhood of \(e_H \) in \(H \). By assumption, there exists a \(G \)-neighbourhood \(V \) of the identity element \(e_K \) in \(K \) such that \(W = \psi^{-1}(V) \subset \phi^{-1}(U) \).

\[\Rightarrow f(W) = \phi(\psi^{-1}(V)) \subset \phi(\phi^{-1}(U)) \]
\[\Rightarrow f(W) = f(V) \subset U. \]

Hence \(f \) is \(G \)-continuous at the identity element of \(K \). Therefore by above theorem, \(f \) is \(G \)-continuous.

Corollary: 3.12 Let \(\phi: G \to H \) and \(\psi: G \to K \) be \(G \)-continous homomorphism of a quasi \(G \)-topological simple groups \(G, H \) and \(K \) such that \(\psi(G) = K \) and \(\text{Ker } \psi \subset \text{Ker } \phi \). If the homomorphism \(\psi \) is \(G \)-open, then there exists a \(G \)-continous homomorhism, \(f: K \to H \) such that \(\phi = f \circ \psi \).

Proof: The existence of a homomorphism \(f: K \to H \) such that \(\phi = f \circ \psi \). Take an arbitrary \(G \)-open set \(V \) in \(H \). Then \(f^{-1}(V) = \phi(\psi^{-1}(V)) \). Since \(\phi \) is \(G \)-continous and \(\psi \) is an \(G \)-open map, \(f^{-1}(V) \) is \(G \)-open in \(K \). Therefore \(f \) is \(G \)-continous.

Theorem: 3.13 Let \(G \) be a quasi \(G \)-topological simple group and \(H \) is a normal subgroup of \(G \). Then \(H \) also a normal subgroup of \(G \).

Proof: Now we have to prove that \(gHg^{-1} \in H \forall g \in G \).

Since \(H \) is a normal subgroup of \(G \), \(gHg^{-1} \in H \forall g \in G \).

Now \(gHg^{-1} \in H \forall g \in G \).

\[\Rightarrow gHg^{-1} \in H, g \in G. \]
\[\Rightarrow gHg^{-1} \in H, g \in G. \]

Therefore \(H \) is a normal subgroup of \(G \).

Corollary: 3.14 Let \(G \) be a quasi \(G \)-topological simple group and \(Z(G) \) be the centre of \(G \). Then \(Z(G) \) is a normal subgroup of \(G \).

Proof: proof follows from the above theorem.

Corollary: 3.15 Let \(G \) and \(H \) be a quasi \(G \)-topological simple groups. If \(\phi: G \to H \) is a homomorphism mapping \(. \)then \(\text{Ker } \phi \) is a normal subgroup of \(G \).

Theorem: 3.16 Let \(G \) and \(H \) be quasi \(G \)-topological simple groups with neutral elements \(e_G \) and \(e_H \), respectively, and let \(p \) be a \(G \)-continous homomorphism of \(G \) onto \(H \) such that, for some non-empty subset \(U \) of \(G \), the set \(p(U) \) is \(G \)-open in \(H \) and the restriction of \(p \) to \(U \) is an \(G \)-open mapping of \(U \) onto \(p(U) \). Then the homomorphism \(p \) is \(G \)-open.

Proof: It suffices to show that \(x \in G \), where \(W \) is an \(G \)-open neighbourhood of \(x \) in \(G \), then \(p(W) \) is a \(G \)-open neighbourhood of \(p(x) \) in \(H \). Fix a point \(y \) in \(U \), and let \(L \) be the left translation of \(G \) by \(xy^{-1} \). Then \(L \) is a \(G \)-homeomorphism of \(G \) onto itself such that \(L_{xy^{-1}}(x) = yx^{-1} \) and \(= y \).

So \(V = U \cap L(W) \) is an \(G \)-open neighbourhood of \(y \) in \(U \). Then \(p(V) \) is \(G \)-open subset of \(H \).

Consider the left translation \(h \) of \(H \) by the inverse to \(p(xy^{-1}) \).

Now clearly, \((h \circ p \circ l) = h(p(l(x))) = h(p(y)) = p(xy^{-1})p(y) = p(xy^{-1}y) = p(x) \).

Hence \(h \left(p(l(W)) \right) = p(W) \). Clearly \(h \) is a \(G \)-homeomorphism of \(H \) onto itself. Since \(p(V) \) is \(G \)-open in \(H \), \(h(p(V)) \) is also \(G \)-open in \(H \). Therefore \(p(W) \) contains the \(G \)-open neighbourhood \(h(p(V)) \) of \(p(x) \) in \(H \). Hence \(p(W) \) is a \(G \)-open neighbourhood of \(p(x) \) in \(H \).

Definition: 3.17 Let \(H \) be a subgroup of quasi \(G \)-topological simple group \(G \). Then \(H \) is called neutral in \(G \) if every \(G \)-neighbourhood \(U \) of the identity \(e_G \) in \(G \), there exists a \(G \)-neighbourhood \(V \) of \(e_G \) such that \(VH \subset HU \).

Theorem: 3.18 Let \(H \) be a subgroup of quasi \(G \)-topological simple group \(G \). Suppose that, for every \(G \)-open neighbourhood \(U \) of the identity \(e_G \) in \(G \), there exists an \(G \)-open neighbourhood \(V \) of \(e_G \) in \(G \) such that \(xVx^{-1} \subset U \) whenever \(x \in G \). Then \(H \) is neutral in \(G \).

Proof: Given a \(G \)-neighbourhood \(U \) of \(e_G \) in \(G \). Take an \(G \)-open neighbourhood \(V \) of \(e_G \) satisfying, \(xVx^{-1} \subset U, \forall x \in G \).

\[\Rightarrow xV \subset Ux, \forall x \in G \]
\[\Rightarrow HV \subset UH, \forall x \in G. \]

Then \(H \) is neutral in \(G \).
On Quasi Generalized Topological Simple Groups

References

[16]. Morris Kline, Mathematical Thought from Ancient to modern times, Oxford University Press(1972).