On Quasi Generalized Topological Simple Groups

*C. Selvi, R. Selvi

Research scholar, Department of mathematics, Sriparasakthi college for women, India.
Assistant Professor, Department of mathematics, Sriparasakthi college for women, India.
Corresponding Author: C. Selvi, R. Selvi

Abstract: In this paper we introduce the concept of quasi \mathcal{G}-topological simple group. Also some basic properties, theorems and examples of a quasi \mathcal{G}-topological simple groups are investigated. Moreover we studied the important result, If the mapping between two quasi \mathcal{G}-topological simple groups is \mathcal{G}-contious at the identity element, then f is \mathcal{G}-continuous.

Keywords: Quasi topological group, \mathcal{G}-open set, \mathcal{G}-continuous, Quasi \mathcal{G}-topological simple group.

Date of Submission: 16-08-2017 Date of acceptance: 05-09-2017

I. Introduction

Csaszar[6], Introduced the notion of generalized neighbourhood system and generalized topological space. Also Csaszar[6], Investigated the generalized continous mappings. In this paper we introduce the new concept of quasi \mathcal{G}-topological simple group. Quasi \mathcal{G}-topological simple group have both topological and algebraic structures such that the translation mappings and the inversion mapping are \mathcal{G}-continuous with respect to the generalized topology. Also some basic results studied and discussed.

II. Preliminaries

Definition 2.1 [3] Let X be any set and let $\mathcal{G} \subseteq P(X)$ be a subfamily of power set of X. Then \mathcal{G} is called a generalized topology if $\emptyset \in \mathcal{G}$ and for any index set $I, \bigcup_{i \in I} O_i \in \mathcal{G}, O_i \in \mathcal{G}, i \in I$.

Definition 2.2 [3] The elements of \mathcal{G} are called \mathcal{G}-open sets. Similarly, generalized closed set (or) \mathcal{G}-closed, is defined as complement of a \mathcal{G}-open set.

Definition 2.3 [3] Let X and Y be two \mathcal{G}-topological space. A mapping $f: X \to Y$ is called a \mathcal{G}-contious on X if for any \mathcal{G}-open set O in Y, $f^{-1}(O)$ is \mathcal{G}-open in X.

Definition : 2.4 [3] The bijective mapping f is called a \mathcal{G}-homeomorphism from X to Y if both f and f^{-1} are \mathcal{G}-continuous. If there is a \mathcal{G}-homeomorphism between X and Y, then they are said to be \mathcal{G}-homeomorphic. It is denoted by $X \cong_\mathcal{G} Y$.

Definition : 2.5 [3] Collection of all \mathcal{G}-interior points of $A \subseteq X$ is called \mathcal{G}-interior of A. It denoted by $\text{Int}_\mathcal{G}(A)$. By definition it obvious that $\text{Int}_\mathcal{G}(A) \subseteq A$.

Note: 2.6 [3] (i) \mathcal{G}-interior of A, $\text{Int}_\mathcal{G}(A)$ is equal to union of all \mathcal{G}-open sets contained in A.

(ii) \mathcal{G}-closure of A as intersection of all \mathcal{G}-closed sets containing A. It is denoted by $\text{Cl}_\mathcal{G}(A)$.

Definition: 2.7 [3] Let (G, \ast) is a group and given $x \in G, L_x: G \to G$ defined by $L_x(y) = x \ast y$ and $R_x: G \to G$ defined by $R_x(y) = y \ast x$, denote left and right translation by x, respectively.

Definition: 2.8 [1] A quasi topological group G, is a group which is also a topological space if the following conditions are satisfied,
On Quasi Generalized Topological Simple Groups

(i). Left translation $L_x: G \to G$, $x \in G$ and right translation $R_x: G \to G$, $x \in G$ are continuous and
(ii). The inverse mapping $i: G \to G$ defined by $i(x) = x^{-1}, x \in G$ is continuous.

Definition: 2.9 [20] A group G is called a simple group if it has no nontrivial normal subgroup of G.

III. Quasi Generalized Topological Simple Groups

Definition: 3.1 A quasi G-topological simple group G, is a simple group which is also a G-topological space if the following conditions are satisfied,

(i). Left translation $L_x: G \to G$, $x \in G$ and Right translation $R_x: G \to G$, $x \in G$ are G-continuous and
(ii). The inverse mapping $i: G \to G$ defined by $i(x) = x^{-1}, x \in G$ is G-continuous.

Example: 3.2 Any group of prime order with indiscrete or discrete G-topology is a quasi G-topological simple group.

Example: 3.3 Let $G = \{(0, 0, 0)\}$ be a trivial simple group under addition and we define a generalized topology on G by $G = \{(0, 0, 0)\}$. Clearly $(G, +, G)$ quasi G-topological simple group.

Example: 3.4 $G = \{1, w, w^2\}$, where $w^3 = 1$, is a simple group under multiplication. Now we define a generalized on G by $G = \{\phi, G, \{0\}\}$. Then the inverse mapping i is G-continuous at the points $1, w^2$ and not G-continuous at the point w. In right translation mapping, R_1 is G-continuous at each point of G, R_w is G-continuous at the points w, w^2 and not G-continuous at the point 1 and $R_{w^{-1}}$ is G-continuous at the point $1, w$ and not G-continuous at the point w^2. Similarly we can prove left translation(L_x).

Theorem: 3.5 Let (G, \ast, G) be a quasi G-topological simple group and β_e be the collection of all G-open neighbourhood at identity e of G. Then

(i). For every $U \in \beta_e$, there is an element $V \in \beta_e$ such that $V^{-1} \subseteq U$.

(ii). For every $U \in \beta_e$, there is an element $V \in \beta_e$ such that $V \ast x \subseteq U$ and $x \ast V \subseteq U$, for each $x \in U$.

Proof: (i). Since (G, \ast, G) is a quasi G-topological simple group. Therefore, for every $U \in \beta_e$, there exists $V \in \beta_e$ such that $i(V) = V^{-1} \subseteq U$, because the inverse mapping $i: G \to G$ is G-continuous.

(ii). Since (G, \ast, G) is a quasi G-topological simple group. Thus for each G-open set U containing x, there exists $V \in \beta_e$ such that $R_x(V) = V \ast x \subseteq U$. Similarly, $L_x(V) = x \ast V \subseteq U$.

Theorem: 3.6 Let G be a quasi G-topological simple group and g be any element of G. Then the right translation(R_g) and left translation(L_g) of G by g is a G-homeomorphism of the space G onto itself.

Proof: First we prove that R_g is surjective. Assume that $y \in G$, then the element yg^{-1} maps to y. Therefore R_g is surjective.

Assume that $R_g(x) = R_g(y).

\Rightarrow xg = yg.

\Rightarrow x = y$. Hence R_g is 1-1. Since G is a quasi G-topological simple group, R_g is G-continuous.

Consider R_g^{-1} which maps xg to x, this is equivalent to the map from x to xg^{-1}. Therefore $R_g^{-1}(x) = R_g^{-1}(x)$. Since $R_g^{-1}(x)$ is G-continuous, $R_g^{-1}(x)$ is G-continuous. Similarly we will prove that the left translation (L_g). Hence the theorem.

Theorem: 3.7 Let G be a quasi G-topological simple group and U be any G-open set in G. Then

(i). $a \ast U$ and $U \ast a$ is G-open in G for all $a \in G$.

(ii). For any subset A of G, the sets $U \ast A$ and $A \ast U$ are G-open in G.

DOI: 10.9790/5728-1304024347 www.iosrjournals.org 44 | Page
Proof: Let \(x \in U \ast a \). We want to show that \(x \) is a \(G \)-interior point of \(U \ast a \). Let \(x = u \ast a \) for some \(u \in U = U \ast a \ast a^{-1} \). Then \(u = x \ast a^{-1} \). We know that \(R_{a^{-1}}: G \to G \) is \(G \)-continuous. Then for every \(G \)-open set containing \(R_{a^{-1}}(x) = x \ast a^{-1} = u \), there exists a \(G \)-open set \(M_x \) containing \(x \) such that \(R_{a^{-1}}(M_x) \subseteq U \).
\[
\Rightarrow M_x \ast a^{-1} \subseteq U.
\]
\[
\Rightarrow x \in M_x \subseteq U \ast a.
\]
\[
\Rightarrow x \text{ is a } G\text{-interior point of } U \ast a. \text{ Therefore } U \ast a \text{ is } G\text{-open in } G. \text{ Similarly we can prove that } a \ast U \text{ is } G\text{-open in } G.
\]

(ii). By above result, \(U \ast a \) is \(G \)-open, for all \(a \in G \). Then \(U \ast A = \bigcup_{a \in A} U \ast a \) also \(G \)-open in \(G \). Similarly we can prove that \(A \ast U \) is \(G \)-open in \(G \).

Theorem 3.8 Suppose that a subgroup \(H \) of a quasi \(G \)-topological simple group \(G \) contains a non-empty \(G \)-open subset of \(G \). Then \(H \) is \(G \)-open in \(G \).

Proof: Let \(U \) be a non-empty \(G \)-open subset of \(G \) with \(U \subseteq H \). For every \(g \in H \), the set \(L_g(U) = U \ast g \) is \(G \)-open in \(G \), then \(H = \bigcup_{g \in H} U \ast g \) is \(G \)-open in \(G \).

Theorem 3.9 Every quasi \(G \)-topological simple group \(G \) has \(G \)-open neighbourhood at the identity element \(e \) consisting of symmetric \(G \)-neighbourhoods.

Proof: For an arbitrary \(G \)-open neighbourhood \(U \) of the identity \(e \), if \(V = U \cap U^{-1} \), then \(V = V^{-1} \), the set \(V \) is an \(G \)-open neighbourhood of \(e \), which implies that \(V \) is a symmetric \(G \)-neighbourhood and \(V \subseteq U \).

Theorem 3.10 Let \(f: G \to H \) be a homomorphism of quasi \(G \)-topological simple groups. If \(f \) is \(G \)-continuous at the neutral element \(e_G \) of \(G \), then \(f \) is \(G \)-continuous.

Proof: Let \(x \in G \) be arbitrary and suppose that \(W \) is an \(G \)-open neighbourhood of \(y = f(x) \) in \(H \). Since the left translation \(L_y \) in \(H \) is a \(G \)-continous mapping, there exists an \(G \)-open neighbourhood \(V \) of the neutral element \(e_H \) in \(H \) such that \(L_y(V) = yV \subseteq W \). Since \(f \) is \(G \)-continuous at \(e_G \) of \(G \), then \(f(U) \subseteq V \), for some \(G \)-open neighbourhood \(U \) of \(e_G \) in \(G \). Since \(L_y: G \to G \) is \(G \)-continuous, then \(xU \) is an \(G \)-open neighbourhood of \(x \) in \(G \).

Now we have \(f(xU) = f(x)f(U) = yf(U) \subseteq yV \subseteq W \). Hence \(f \) is \(G \)-continuous at the point \(x \in G \).

Theorem 3.11 Suppose that \(G, H \) and \(K \) are quasi \(G \)-topological simple groups and that \(\phi: G \to H \) and \(\psi: G \to K \) are homomorphisms. Such that \(\psi(G) = K \) and \(\text{Ker } \psi \subseteq \text{Ker } \phi \). Then there exists homomorphism \(f: K \to H \) such that \(\phi = f \circ \psi \). In addition, for each \(G \)-neighbourhood \(U \) of the identity element \(e_H \) in \(H \), there exists a \(G \)-neighbourhood \(V \) of the identity element \(e_K \) in \(K \) such that \(\psi^{-1}(V) \subseteq \phi^{-1}(U) \), then \(f \) is \(G \)-continuous.

Proof: Algebraic part of the theorem is well known. Suppose \(U \) is a \(G \)-neighbourhood of \(e_H \) in \(H \). By assumption, there exists a \(G \)-neighbourhood \(V \) of the identity element \(e_K \) in \(K \) such that, \(W = \psi^{-1}(V) \subseteq \phi^{-1}(U) \).
\[
\Rightarrow \phi(W) = \phi(\psi^{-1}(V)) \subseteq \phi(\phi^{-1}(U))
\]
\[
\Rightarrow \phi(W) = f(V) \subseteq U. \text{ Hence } f \text{ is } G\text{-continuous at the identity element of } K. \text{ Therefore by above theorem, } f \text{ is } G\text{-continuous.}
\]

Corollary 3.12 Let \(\phi: G \to H \) and \(\psi: G \to K \) be \(G \)-continuous homomorphism of a quasi \(G \)-topological simple groups \(G, H \) and \(K \). Such that \(\psi(G) = K \) and \(\text{Ker } \psi \subseteq \text{Ker } \phi \). If the homomorphism \(\psi \) is \(G \)-open, then there exists a \(G \)-continuous homomorphism, \(f: K \to H \) such that \(\phi = f \circ \psi \).

Proof: The existence of a homomorphism \(f: K \to H \) such that \(\phi = f \circ \psi \). Take an arbitrary \(G \)-open set \(V \) in \(H \). Then \(f^{-1}(V) = \psi(\phi^{-1}(V)) \). Since \(\phi \) is \(G \)-continuous and \(\psi \) is an \(G \)-open map, \(f^{-1}(V) \) is \(G \)-open in \(K \). Therefore \(f \) is \(G \)-continuous.

Theorem 3.13 Let \(G \) be a quasi \(G \)-topological simple group and \(H \) is a normal subgroup of \(G \). Then \(H \) also a normal subgroup of \(G \).

DOI: 10.9790/5728-1304024347 www.iosrjournals.org 45 | Page
Proof: Now we have to prove that \(ghg^{-1} \in H \ \forall \ g \in G \).

Since \(H \) is a normal subgroup of \(G \), \(ghg^{-1} \in H \ \forall \ g \in G \).

Now \(ghg^{-1} \subseteq H \ \forall \ g \in G \).

\[\Rightarrow ghg^{-1} \subseteq H \ \forall \ g \in G. \]

\[\Rightarrow ghg^{-1} \in H, \forall g \in G. \] Therefore \(H \) is a normal subgroup of \(G \).

Corollary: 3.14 Let \(G \) be a quasi \(G \)-topological simple group and \(Z(G) \) be the centre of \(G \). Then \(Z(G) \) is a normal subgroup of \(G \).

Proof: proof follows from the above theorem.

Corollary: 3.15 Let \(G \) and \(H \) be a quasi \(G \)-topological simple groups. If \(f: G \rightarrow H \) is a homomorphism mapping \(x \), then \(ker f \) is a normal subgroup of \(G \).

Theorem: 3.16 Let \(G \) and \(H \) be quasi \(G \)-topological simple groups with neutral elements \(e_G \) and \(e_H \), respectively, and let \(p \) be a \(G \)-continuous homomorphism of \(G \) onto \(H \) such that, for some non-empty subset \(U \) of \(G \), the set \(p(U) \) is \(G \)-open in \(H \) and the restriction of \(p \) to \(U \) is an \(G \)-open mapping of \(U \) onto \(p(U) \). Then the homomorphism \(p \) is \(G \)-open.

Proof: It suffices to show that \(x \in G \), where \(W \) is an \(G \)-open neighbourhood of \(x \) in \(G \), then \(P(W) \) is a \(G \)-open neighbourhood of \(p(x) \) in \(H \). Fix a point \(y \) in \(U \), and let \(L \) be the left translation of \(G \) by \(xy^{-1} \). Then \(L \) is a \(G \)-homeomorphism of \(G \) onto itself such that,

\[
L_{xy^{-1}}(x) = yx^{-1}x = y.
\]

So \(V = U \cap L(W) \) is an \(G \)-open neighbourhood of \(y \) in \(U \). Then \(p(V) \) is \(G \)-open subset of \(H \). Consider the left translation \(h \) of \(H \) by the inverse to \(p(xy^{-1}) \).

Now clearly, \((h o p o l)(x) = h(p(l(x))) = h(p(y)) = p(xy^{-1})p(y) = p(xy^{-1}y) = p(y) = p(x)\).

Hence \(h(p(l(W))) = p(W) \). Clearly \(h \) is a \(G \)-homeomorphism of \(H \) onto itself. Since \(p(V) \) is \(G \)-open in \(H \), \(h(p(V)) \) is \(G \)-open in \(H \). Therefore \(p(W) \) contains the \(G \)-neighbourhood \(h(p(V)) \) of \(p(x) \) in \(H \). Hence \(p(W) \) is a \(G \)-open neighbourhood of \(p(x) \) in \(H \).

Definition: 3.17 Let \(H \) be a subgroup of quasi \(G \)-topological simple group \(G \). Then \(H \) is called neutral in \(G \) if every \(G \)-neighbourhood \(U \) of the identity \(e_G \) in \(G \), there exists a \(G \)-neighbourhood \(V \) of \(e_G \) such that \(VH \subset HU \).

Theorem: 3.18 Let \(H \) be a subgroup of quasi \(G \)-topological simple group \(G \). Suppose that, for every \(G \)-open neighbourhood \(U \) of the identity \(e_G \) in \(G \), there exists an \(G \)-open neighbourhood \(V \) of \(e_G \) in \(G \) such that \(xVx^{-1} \subseteq U \) whenever \(x \in G \). Then \(H \) is neutral in \(G \).

Proof: Given a \(G \)-neighbourhood \(U \) of \(e_G \) in \(G \). Take an \(G \)-open neighbourhood \(V \) of \(e_G \) satisfying,

\[
xVx^{-1} \subseteq U, \forall \ x \in G
\]

\[
\Rightarrow xV \subseteq Ux, \forall \ x \in G
\]

\[
\Rightarrow HV \subseteq UH, \forall \ x \in G. \] Then \(H \) is neutral in \(G \).

References

On Quasi Generalized Topological Simple Groups

[16]. Morris Kline, Mathematical Thought from Ancient to modern times, Oxford University Press(1972).