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I. Introduction 

Inverse spectral analysis has been an important research topic in mathemetical physics. Inverse 

problems of spectral analysis involve reconstruction of a linear operator from its spectral characteristics [1,3-9]. 

For inverse Sturm-Liouville problems, such characteristics are two spectra for different boundary condiyions, 

one spectrum and normalizing constants, spectral functions, scattering data, Weyl function [1,3-18]. An early 

important result in this direction, which gave vital imputes for the further development of inverse problem 

theory, was obtained in [2]. Inverse problem for interior spectral data of the differential operator lies in 

reconstructing this operator by some eigenvalues and information on eigenfunctions at some an internal point in 

the interval considered. The similar problems for the Sturm-Liouville and diffusion operator was studied in 

[1925]. 

Consider the following singular Sturm-Liouville operator L satisfying (1)-(3)  
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with boundary conditions 
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where q(x) is summable,  any positive number, H finite real number and  spectral parameter. The operator L is 

self adjoint on the 
2

( , 0 )L   and with (2), (3) boundary conditions has a discrete spectrum { }
n

. 

Let us introduce the second singular Sturm-Liouville operator L satisfying 
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subject to the same boundary conditions (2), (3) where ( )q x is summable. The operator L  is self adjoint on 

the 
2

( , 0 )L   and with (2), (3) boundary conditions has a discrete spectrum   .
n

  

 

II. Main Results 
The Legendre equation is 
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where  1 .n n    For 0 < < x <  and n sufficiently large, we conclude that Legendre functions 

are [18], 
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Solution of the equation (1)-(3) satisfying (0 , ) 0   , (0 , ) 1
ı

    boundary conditions is  
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Eigenvalues of the problem (1)-(3) are the roots of the (3). These spectral characteristics and eigenfunctions 

satisfy the following asymptotic expression, respectively 
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( )c H q t d t





 
  

 
  [18]. 

When 
2

b


  we get the following uniqueness Theorem 2.1 

Theorem 2.1  If for every nN we have  
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then  

 ( ) ( )q x q x   a.e on the interval (0 , ) .  

In the case 
2

b


  the uniqueness of q(x) can be proved if we require the knowledge of a part of the 

second spectrum. 

Let m(n) be a sequence of natural numbers with a property 
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Lemma 2.1 Let m(n) be a sequence of natural numbers satisfying (9) and 
2

(0 , )b


  are so chosen that 

2 b


  . If for any nN 
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 (10) 

then ( ) ( )q x q x  a.e on (0 , ]b   

Let l(n) and r(n) be a sequence of natural numbers such that 

 

 
1

1, 1 1,
( ) (1 ), 0 1, 0

n

n n
l n


        (11) 

 

 
2

2 , 2 2 ,
( ) (1 ), 0 1, 0

n

n n
r n


        (12) 

and let 
n

 be the eigenvalues of the problem (1), (2) and (13) and 
n

  be the eigenvalues of the problem (4), 

(2) and (13) 

 

 ( , ) ( , ) 0
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Using Mochizuki and Trooshin’s method from Lemma 2.1 and Theorem 2.1, we will prove that the following 

Theorem 2.2 holds. 
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Theorem 2.2 Let l(n) and r(n) be a sequence of natural numbers satisfying (11) and (12), and 
2

b
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then  

 ( ) ( )q x q x  a.e on (0 , ) .  

 

 

III. Proof of the Main Results 
Proof of Theorem 2.1Error! Reference source not found. Before proving the Theorem 2.1,we will mention 

some results, which will be needed later. We get the initial value problems 
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It can be shown that there exists a kernel ( , )K x t   ( , )K x t  continuous on (0 , ) x (0 , )  such that 

by using the transformation operator every solution of equations (15), (16) and (17), (18) can be expressed in the 

form  

 

 

0

s in s in
( , ) ( , ) ( ) ,

rz

x

e
x x

y x K x t d t


 
 

 
    (19) 

 

 

0

s in s in
( , ) ( , ) ( ) ,

rz

x

e
x x

y x K x t d t


 
 

 
  

  (20) 

respectively, where = | |Im  and the kernel ( , )K x t   ( , )K x t  is the solution of the equation 
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subject to the boundary conditions 
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Multiplying (15) by ( , )y x   and (17) by ( , )y x  , subtracting and integrating from 0 to 
2

  we obtain  
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             (21) 

The functions ( , )y x   and ( , )y x   satisfy the same initial conditions (16) and (18), i.e.,  
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If the properties of ( , )y x   and ( , )y x   are considered, the function H ( )  is an entire function. 

Therefore the condition of the Theorem 2.1 imply, 

 

 
2 2 2 2

( , ) ( , ) ( , ) ( , ) 0
ı ı

n n n n
y y y y

          

and hence 

 

 ( ) 0 , .
n

H n N    

In addition, using (19) and (23) for 0 < x < , 

 

 
2

( ) , Im ,H M b b x
    (24) 

where M is constant. 

Introduce the function 
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ı
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The zeros of  ( )  are the eigenvalues of L and hence it has only simple zeros 
n

  because of the seperated 

boundary conditions. By using the asymptotic forms of ( , )y x  and ( , )
ı

y x  , we obtain 
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From 26,  ( )  is an entire function of order 1

2
 of . Since the set of zeros of the entire function  ( )  is 

contained in the set of zeros ( )H   we see that the function 
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is an entire function. From (24) (26) and (27), we get  
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It was proved in[18] that there exists absolutely continuous function ( , )K x t
  such that we have  
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We are now going to show that Q(x) = 0 a.e. on 
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( 0 , )
  From (23) and (28), we have  
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This can be written as  
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Let     along the real axis, By the Riemann-Lebesgue lemma, we should have  
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Thus from the completeness of the functions c o s ( 2 )t  it follows that  
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Thus we have obtained  
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almost everywhere on 
2
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To prove that ( ) 0q x   on 
2

[ , )
   almost everywhere, we should repeat arguments for the 

supplementary problem 
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subject to the boundary conditions 
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Consequently 

 

 ( ) ( )q x q x  a.e on the interval (0 , )  

Therefore Theorem 2.1 is proved. 

Proof of Lemma 2.1 . As in the proof of  Theorem 2.1 we can show that  
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together with the initial condition at 0 it follows that, 
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Next, we will show that ( ) 0G   on the whole  plane. 

From (32), we see that the entire function G() is a function of exponential type 2b. One has 
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Define the indicator of function G() by;  
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Since Im s in , a rgr       from (33) and (34) it follows that 
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According to the [26] set of zeros of every entire function of the exponential type, not identically zero, satisfies 

the inequality: 
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where n(r) is the number of zeros of G() in the disk .r   By (35),  
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From the assumption and the known asymptotic expression (6) of the eigenvalues 
n

  we obtain; 
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The inequalities (36) and (37) imply that  ( ) 0G r    on the whole  plane. 

Similar to the proof of the Theorem 2.1 we have 

 

 ( ) ( )q x q x  a.e on the interval (0 , )b  
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This completes the proof of Lemma 2.1. 

Proof of Theorem 2.2. From  
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where r(n) satisfies (12) and 2

2
2

b


    according to Lemma 2.1 we get 
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Repeating the last part of the proof of Lemma 2.1, and considering the condition 2

1
1

b


    , we can 

demonstrate that ( ) 0G    identically on the whole -plane which implies that  

 

 ( ) ( )q x q x  a.e on (0 , ]b  

and consequently   

 ( ) ( )q x q x   a.e on (0 , ]  
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