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Abstract 
Based on the Bayesian adaptive Lasso quantile regression (Alhamzawi et al., 2012), we propose the iterative 

adaptive Lasso quantile regression, which is an extension to the Expectation Conditional Maximization (ECM) 

algorithm (Sun et al., 2010). The proposed method is demonstrated via simulation studies and a real data set. 

Results indicate that the new algorithm performs quite good in comparison to the other existing methods. 
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I. Introduction 

Quantile regression (QRe) of Koenker and Bassett (1978) has appeared as a useful supplement to 

standard regression. It can be applied for inference about the relationship between quantiles of the outcome of 

interest and a set of predictors. This technique provides a more complete picture than standard regression due to 

a group of quantiles of the outcome distribution offers a more complete description of the outcome distribution 

than the center. Median regression is a special case of QRe. QRe puts very minimal assumptions on the error 

term and therefore is able to use in the case of non-normal error terms, which are popular in many real world 

applications. A comprehensive review of the QRe and its current applications is introduced by Al-Hamzawi 

(2013) and Koenker (2005). 

Suppose that yi denote the response variable, and suppose that xi denote the corresponding predictor 

vector, for i = 1, ..., n. Then, the pth quantile regression (QRe) model (Qyi|xi(p)) is given by 

      
      

                                                                

According to Koenker and Bassett (1978), the unknown quantity            can be evaluated by 

minimizing  

       

 

   

      
                                                                      

where   (ε) = ε{p − I(p ≤ 0)} is the Check Function (CF) of Koenker and Bassett (1978). 

Equivalently, we may write the CF as 

      
           

 
                                                                

 
Figure 1: The panel shows the check function at p = 0.30. 

 

Figure 1 shows the CF at p = 0.30. Since the CF is not differentiable at zero, a closed form solution is 

not available for the the unknown quantity β (Koenker and Bassett, 1978). However, the minimisation of the CF 

can be achieved via an algorithm proposed by Koenker and d’Orey (1987). From a computational perspective, 

many statistical softwares such as R, Matlab STATA and SAS can be used to estimate the QRe coefficients. The 
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CF (3) is closely related to the skewed Laplace Distribution (LD); see Yu and Moyeed (2001). The density 

function of a skewed LD is given by 

     
      

 
                                                              

According to Yu and Moyeed (2001), minimizing the CF in (3) is equvelent to maximizing the 

likelihood of the skewed LD in (4). This relationship between the CF and the skewed LD can be employed to 

rewrite the QRe technique in the usual likelihood framework. One of the attractive features of the skewed LD is 

that it can be reformulated as a location-scale mixture of normals (Kozumi and Kobayashi, 2011). This idea 

links the QRe model for response variable to the standard mean regression model. In addition, under this link, 

all the parameters of the model have desirable conjugacy features for building a simple MCMC algorithm for 

fitting the model to the data. This algorithm is implemented in an R package called bayesQR (Benoit et al., 

2011). According to Kozumi and Kobayashi (2011), if              , where θ = 1 − 2p and    is a mixing 

latent variable, then the skewed LD for    arises when     Exp(p(1 − p)). This formulation appears in papers by 

Benoit et al. (2013), Waldmann et al. (2013) Hashem et al. (2015) and Nassiri and Loris (2014). 

One important issue in constructing a multiple QRe model is the selection of active regressors in the regression. 

The prediction accuracy and model stability can be increased by selecting an active set of predictors. However, 

classical model selection approaches, such as AIC (Akaike, 1998) and BIC (Schwarz, 1978) are consuming alot 

of time and often instability. Recently, there has been promise research on regularization in linear regression. 

See for example, Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), and group-Lasso (Yuan and Lin, 2006). 

With regard to QRe, Wang and Leng (2012) proposed the least absolute deviation method, Zou and Yuan (2008) 

proposed composite QRe, Li and Zhu (2008) presented the QRe with l1 penalty and Wu and Liu (2009) 

developed QRe employing the SCAD. Recently, from a Bayesian point of view, Li et al. (2010) proposed 

Bayesian Lasso QRe and Alhamzawi et al. (2012) suggested the adaptive Lasso QRe. In this paper, based on the 

Bayesian adaptive Lasso QRe (Alhamzawi et al., 2012), I propose the iterative adaptive Lasso QRe, which is an 

extension to the Expectation Conditional Maximization algorithm (Sun et al., 2010). The proposed method is 

demonstrated via simulation studies and a real data set. Results indicate that the new algorithm performs quite 

good in comparison to the other existing methods. 

 

II. Bayesian Adaptive Lasso Qre 
In this section, we briefly summarize the Bayesian adaptive Lasso QRe reported in Alhamzawi et al. (2012). The 

Lasso method of Li and Zhu (2008) is defined as 

          

 

   

  
                                                          

where         is the    penalty. From a Bayesian point of view, Alhamzawi et al. (2012) put a Laplace prior on 

  takes the form 

 
which can be reformulated as 

 
Then, the authors assign an inverse gamma prior on the regularization parameter   

 with shape parameter    and 

scale parameter  . Here,   and   are positive hyperparameters and p(ι, ς) ∝ ι
−1

 . The authors also assume that the 

prior of τ is gamma with shape parameter a01 = 0.1 and rate parameter a02 = 0.1. 

To summarise, the Bayesian hierarchical model of Alhamzawi et al. (2012) is given by 
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III. Bayesian Iterative Adaptive Lasso Qre 
One shortcoming of the Bayesian regularization techniques is that no point mass at zero is assigned in 

the Bayesian regularization techniques, thus updating the insignificant coefficients from the conditional 

distribution are never set exactly to zero. Therefore, some ad hoc techniques should be used to find the active 

coefficients in the regression. To overcome this shortcoming in linear regression models, Sun et al. (2010) 

suggested the iterative adaptive Lasso. In this paper, we use the same hierarchical model of Alhamzawi et al. 

(2012) and propose the iterative adaptive Lasso QRe, which is an ECM algorithm. In this paper, we set τ = 1 and 

ι = ς = 0.1, (i.e., we treat ι and ς as fixed values) . The iterative adaptive Lasso QRe is implemented as follows: 

• Fix the quantile level so that the pth quantile is modelled. 

• Generate initial values for  

• Sample βj by using a conditional maximization step: 

The full conditional distribution of each   

 
• Updating    

   

The full conditional distribution of each   
   is an inverse Gaussian IG   

    
   wher

 
• Updating    

  

The full conditional distribution of    
 is an inverse Gamma InvGa     

  

 
   . 

• Updating    
   

The full conditional distribution of each   
   is IG   

     , where   
        

      and         

 

IV. Simulation Studies 
In this section, we carry out Monte Carlo simulations to study the performance of the proposed method 

(BIAL) with comparison to the standard frequentist QRe using the rq function (RQ) and the Bayesian Lasso 

QRe method (BLQ). Methods are evaluated based on median of mean absolute deviations (MMAD), i.e. 

MMAD=median(      
      

            
   ), where the median is taken over the 100 simulations. 

 

4.1 Simulation 1 

In this simulation study, we consider a very sparse model with k = 8 covariates from samples of size nt 

= {30, 60, 120} for the training set and 100 for the testing set. Predictors were generated independently from a 

multivariate normal distribution N(0, Σ), where the (i, j)th element of Σ is 0.5
|i−j|

. Data are simulated from the 

model 

            
where            with σ = {2, 4}. Thus the true regression coefficients, are β = 

(3, 0, 0, 0, 0, 0, 0, 0). We centered the response variable to have mean zero, while the covariates have been 

standardized. The proposed MCMC algorithm is run for 17000 iterations, after a burn-in period of 1000 

iterations. The results are summarized in Table 1 which clearly suggest that the proposed method outperforms 

the other methods in terms of prediction accuracy. 

 

4.2 Simulation 2 

In this simulation, the setup is the same as the Simulation 1, except we set β =(0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 

0.85, 0.85) so that the outcome of interest was simulated according to the model 

     
       

The results are summarized in Table 2. From Table 2, the performance of our proposed method appears quite 

good compared to the other two methods. We can observe that the BIAL tends to produce lower MMAD and 

standard deviations than the other methods. 
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Table 1: MMADs for Simulation 1. In the parentheses are standard deviations of the MMADs obtained by 500 

bootstrap resampling. 

 
 

Table 2: MMADs for Simulation 2. In the parentheses are standard deviations of the MMADs obtained by 500 

bootstrap resampling. 

 
 

4.3 Simulation 3 

In this simulation, the setup is the same as the Simulation 1, except we set β =(1, 1, 0, 0, 1, 0, 0, 0) so that the 

outcome of interest was simulated according to the model 

     
       

The results are summarized in Table 3. Table 3 summarizes our experimental results for this example. It can be 

seen from the table that the proposed method outperform the other methods. 

 

Table 3: MMADs for Simulation 3. In the parentheses are standard deviations of the MMADs obtained by 500 

bootstrap resampling. 

 
 

V. Stack Loss Data 
In this paper, the popular data of Brownlee and Brownlee (1965), previously analysed by Yu and 

Moyeed (2001) and Reed (2011), is considered to demonstrate the performance of the new method. This data 

from the operation of a plant for the oxidation of ammonia to nitric acid. The data consists of 3 predictors and 

one outcome of interest. For each of these variables there are 21 observations. The three predictors are air flow 

(x1), temperature of the cooling water (x2) and acid concentration (x3). The third variable (x3) has been shown as 

inactive variable in the regression by many authors. The outcome of interest is the percentage of ammonia lost 

and is called “stack loss”. Owing to the presence of outliers on this dataset, this dataset is of specific interest to 

us. 

Table 4: Estimates and 95% intervals for QRe coefficients of the stack loss data, when p   {0.50, 0.75, 

0.95}. The proposed method (BIAL) is compared with the frequentist QRe approach (RQ) and the Bayesian 

Lasso QRe approach (BLQ). 
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The proposed MCMC algorithm is run for 17000 iterations, after a burn-in period of 1000 iterations. In 

Table 4, we compare three methods: the standard frequentist QRe using the rq function, the Bayesian Lasso QRe 

method, and our approach. The methods are evaluated based on 95% intervals for p   {0.50, 0.75, 0.95}. It can 

be observed that our QRe coefficients estimates are close to the standard QRe estimated and our credible 

intervals are much narrower than the intervals given by RQ and BLQ. In addition, it can be seen from the table 

that the third variable (x3 ) has been ranked to zero using our method, while the other two approaches have 

different performance. Thus, the performance of our method consists with the literature. 

 

VI. Summary 

Using the skewed Laplace distribution, which offers a mechanism for Bayesian quantile regression, we 

propose a fully Bayesian method for variable selection and estimation in quantile regression. We designed a 

simple and efficient algorithm for inference and illustrated the performance of the proposed approach compared 

with other existing approaches. Results show that our approach performs well compare to the other approaches. 
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