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Abstract: In the presence of outliers least square estimation is insufficient and can be biased. Adaptive 

estimation is robust estimation that can be used to improve the accuracy of the estimate by reducing the 

influence of outliers. Adaptive estimators can be effective in achieving low mean squared error for a variety of 

non normal distributions of errors. M estimation is the extension of the maximum likelihood estimation and is 

also a robust estimation. In this paper, comparison is made between OLS Estimation, Adaptive estimation and 

M estimation under a particular situation (An example).  
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I. Introduction 

 Adaptive estimation is a robust estimation. The objective of adaptive estimation is to improve the 

accuracy of the estimate by reducing the influence of outliers. When some observations are adaptively 

downweighted, the influence of outliers is greatly reduced and then adaptive estimation can be considered. M 

estimation is the extension of the maximum likelihood estimation. It is also a robust estimation. 

 

1.1 Objectives of Adaptive Estimation: 

Our objective in Adaptive regression is to develop an estimator that 

1. uses information from all the data points if the error distribution appears to be non normal. 

2. effectively downweights outliers so that their influence is limited . 

3. is robust in the sense that small changes in the data will not greatly change the estimates. 

4. can be computed easily. 

  

1.2 The multiple Linear Regression Model: 

In this section for the estimation of parameters in a linear model a WLS approach will be used.  

The multiple regression model is  

                                              for i= 1,2,...,n 

In matrix form 

Y=X +  

Where Y is the n   vector containing the dependent variable, X is an n (p+1) matrix containing the 

independent variables,   is the (p+1)   vector of parameters to be estimated and   is the n  vector of errors. 

 

1.3 Adaptive Estimation: 

We begin the adaptive estimation by comparing the standardised deleted residuals 

      
     

             
  

               for i= 1,2,...,n 

Where   is the ordinary residual,     is the ith diagonal element of the hat matrix      
 
     

 
 and SSE is the 

usual sum of squared residuals from the regression based on the n observations in the reduced model. 

 We will use all p+1 independent variables in this model. We will weight the observations so that the c.d.f of the 

studentised deleted residuals, after weighting, will approximate the c.d.f of the t distribution with v= n-(p+1)-1 

=n-p-2 df , which will be denoted by             

We then smooth the c.d.f of these standardized deleted residuals byusing a normal kernel with a bandwith of h= 

1.587         , as suggested by Polansky (1998). Since the observations are studentised the variance should not 

depart too much from        so a value of h=1.587      is used to obtain the smoothed distribution function.  

Let D={          } be the set of studentised deleted residuals. The smoothed c.d.f. at point d over the set of 

all studentised deleted residuals (D) is computed as 
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Where      is the c.d.f. of the standard normal distribution. After the smoothed c.d.f. of these studentized 

deleted residuals is obtained, we centre the studentised deleted residuals by subtracting   the estimated median 

    which is determined by a search process so that  

               The centered studentised deleted residuals are calculate as  

           for i= 1,...,n and will be called the residuals. The set of residuals will be denoted by    

            } and we will let          
                  to weight the observations we use 

   
  

    
    for i= 1,...,n. If the error terms are normally distributed, then smoothed c.d.f. of the centered 

studentised deleted residuals should approximate the c.d.f. of the t distribution with v=n-p-2 degrees of freedom 

and the weights should approximate one. If the ith observation is an outlier, then      will be large relative to     
so that the ith observation will be given a small weight.  After we have computed the weights wi for i= 1,2,...,n, 

they can be used as the diagonal elements in the weighing matrix W with zero off- diagonal elements. We 

perform the WLS regression by premultiplying both sides of the model by W to obtain 

WY=WX +W  

This can be written as the transformed model 

      +   
Where                        then we will use the OLS method to compute the parameter 

estimates.  

 

1.5 M Estimation 

M estimation is a robust estimation and is a estimation of maximum likelihood type. 

If estimator at M estimation is                                            then 

E[              ] =                        ...                                                      (1) 

Equation (1) shows that the estimator                    unbiased and 

has minimum variance, so M-estimator has the smallest variance estimator 

compared to other estimators of variance: 

var(     
      

   
 

  
          

 
 

where     is the other linear and unbiased estimator of    M estimation is an extension of the maximum likelihood 

estimate method and a robust estimation. In this method it is possible to eliminate some of the data , which in 

some cases is not always appropriate to do especially if it is eliminated is an important data or seed, whose case 

often encountered in agriculture. M estimation principle is to minimize the residual function  : 

 

                   
 
          (2) 

We have to solve  

                
  

 
  

          
         

 
   

 

 
   

 
   ) 

To obtain (2) and we set estimator for  : 

   
   

     
 

                     

     
 

For   function we use Tukey’s bisquare objective function: 

      
  
 

 
 

  
 

   
 

  
 

   
       |      

          =  
   

 
          

Furthermore we look for first partial derivative    to   so that  

      
         

 
   

  

 
                                                      (3) 

Where          is the ith observation on the jth independent variable and       

Draper and Smith give a solution for equation (3)by defining a weighted function  

W(    
  

        
 
   

  
 

        
 
   

  

                                                                  (4) 

Because    
  

  
 , we can rewrite equation (4) with 

       
  

 
         ,     c 

     =0                       |      

We take c= 4.685 for Tukey’s bisquare weighted function. So equation (3) becomes 
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           j=0,1,2,...,k    (5) 

Equation (5) can be solved by iteratively reweighted least squares method. In this method we assume that there 

is an initial estimate     and     is a scale estimate. If j is the number of parameters then 

      
      

    
                      

   
 
       (6) 

In matrix notation, equation (6)can be written as  

             

Where    is a n   matrix with its diagonal elements are weighted. Equation (7) is known as weighted least 

square equation. Solution for this equation gives an estimator for    i.e.           
  
           

Algorithm: 

1. Estimate regression coefficients on the data using OLS. 

2. Test assumptions of the regression model. 

3. Detect the presence of outliers in the data. 

4. Calculate estimated parameter      with OLS. 

5. Calculate residual value           
6. Calculate value               

7. Calculate value    
  

   
 

8. Calculate the weighted value  

       
  

     
 
 

 
 

  ,  |          

     =  0                       ,  |          

9. Calculate      using weighted least squares (WLS) method with weighted     

10. Repeat steps 5-8 to obtain a convergent value of      
11. Test to determine whether independent variables have significant effect on the dependent variable. 
 

1.5 Example:  

The data shown in the table below are from a study by Coleman et al. (1966) has concerned the 

relationship of several factors to the mean verbal test scores of sixth graders(y). The data, which were also 

analysed by Mosteller and Tukey(1977) and by Rousseeuw and Leroy (1987), include staff salaries per pupil 

(x1), percent of white collar fathers (x2), socioeconomic status composite deviation (x3), mean of teachers’ 

verbal test scores (x4), and mean of mothers’ educational level (x5). 
 

Table: Data on the mean verbal scores of sixth graders in 20 schools. 
School Y x1 x2 x3 x4 x5 

1 37.01 3.83 28.87 7.2 26.6 6.19 

2 26.51 2.89 20.1 -11.71 24.4 5.17 

3 36.51 2.86 69.05 12.32 25.7 7.04 

4 40.7 2.92 65.4 14.28 25.7 7.1 

5 37.1 3.06 29.59 6.31 25.4 6.15 

6 33.9 2.07 44.82 6.16 21.6 6.41 

7 41.8 2.52 77.37 12.7 24.9 6.86 

8 33.4 2.45 24.67 -0.17 25.01 5.78 

         9 41.01 3.13 65.01 9.85 26.6 6.51 

10 37.2 2.44 9.99 -0.05 28.01 5.57 

11 23.3 2.09 12.2 -12.86 23.51 5.62 

12 35.2 2.52 22.55 0.92 23.6 5.34 

13 34.9 2.22 14.3 4.77 24.51 5.8 

14 33.1 2.67 31.79 -0.96 25.8 6.19 

15 22.7 2.71 11.6 -16.04 25.2 5.62 

16 39.7 3.14 68.47 10.62 25.01 6.94 

17 31.8 3.54 42.64 2.66 25.01 6.33 

18 31.7 2.52 16.7 -10.99 24.8 6.01 

19 43.1 2.68 86.27 15.03 25.51 7.51 

20 41.01 2.37 76.73 12.77 24.51 6.96 

 

The estimated parameters are: 
Parameters OLS estimation M Estimation Adaptive Estimation 

   19.89 19.60 19.90 

   -1.791 -1.793 -1.790 

   .04362 0.04650 0.04360 

   .5561 .5570 .5556 

   1.12 1.12 1.11 

   -1.812 -1.79 -1.81 
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The estimated regression line under OLS estimation is  

Y=19.89-1.791x1+.04362x2+.5561x3+1.12x4-1.812x5 

The estimated regression line under M estimation is  

Y=19.60-1.793x1+.04658x2+.5570x3+1.12x4-1.79x5 

The estimated regression line under Adaptive estimation is 

Y=19.90-1.790x1+.04360x2+.5556x3+1.11x4-1.81x5 

 

The MSE under OLS estimation is 4.354214 

The MSE under M estimation is 4.351321 

The MSE under Adaptive estimation is 4.30 

 

1.6 Example: 

The data given below was collected by Haith (1976) on water quality and land use in 20 river basins in 

New York State. These data, which are listed in the yable below , have been analysed by several authors, 

including Simpson et al. (1992) and Ryan(1997). The data include the nitrogen concentration (mg/L) of river 

water and several land use variables. The nitrogen concentration will be used as the dependent variable. The 

independent variables are the percentages of commercial, agricultural, forest, and residential land in river basin.    

 

Table: the New York rivers data set. 
 River basin Y(Nitrogen) x1(Commercial) x2(Agric.) x3(Forest) x4(Res.) 

1 Olean 1.10 0.29 26 63 1.2 

2 Cassadaga 1.01 0.09 29 57 0.7 

3 Oatka 1.90 0.58 54 26 1.8 

4 Neversink 1.00 1.98 2 84 1.9 

5 Hackensack 1.99 3.11 3 27 29.4 

6 Wappinger 1.42 0.56 19 61 3.4 

7 Fishkill 2.04 1.11 16 60 5.6 

8 Honeoye 1.65 0.24 40 43 1.3 

9 Susquehanna 1.01 0.15 28 62 1.1 

10 Chenango 1.21 0.23 26 60 0.9 

11 Tioughnioga 1.33 0.18 26 53 0.9 

12 West Canada 0.75 0.16 15 75 0.7 

13 East Canada 0.73 0.12 6 84 0.5 

14 Saranac 0.80 0.35 3 81 0.8 

15 Ausable 0.76 0.35 2 89 0.7 

16 Black 0.87 0.15 6 82 0.5 

17 Schohari 0.80 0.22 22 70 0.9 

18 Raquette 0.87 18.00 4 75 0.4 

19 Oswegatchie 0.66 13.00 21 56 0.5 

20 Cohocton 1.25 0.13 40 49 1.1 

 

Table: The estimated parameters are: 
Parameters OLS estimation M Estimation Adaptive Estimation 

   4.01 4.012 3.950 

   -.0323 -0.0324 -0.0328 

   -0.02310 -0.02309 -0.02401 

   -0.03610 -0.03607 -0.03680 

   -0.0245 -0.0239 -0.0247 

 

The estimated regression line under OLS estimation is  

Y=4.01-.0323 X1-.02310 X2-.03610 X3 -.0245 X4 

The estimated regression line under M estimation is  

Y=4.012-.0324 X1 -.02309 X2-.03607 X3-.0239 X4 

The estimated regression line under Adaptive estimation is 

Y=3.950-.0328X1-.02401X2-.03680X3-.0247X4 

 

The MSE under OLS estimation is 0.07277 

The MSE under M estimation is 0.072877 

The MSE under Adaptive estimation is 0.092212 
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II. Conclusion 

In the first example it can be observed that MSE of the regression model under Adaptive estimation is 

smaller than the OLS estimation and M estimation. So according to this result the Adaptive estimation is 

suitable for the data. But in the second example the MSE under Adaptive estimation is greater than the OLS and 

M estimation, so either OLS or M estimation is applicable to the data. 
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