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Abstract: Gamma regression is a member of generalized liner models and often used when the phenomenon 

under study is skewed and the mean is proportional to the standard deviation. It can find applications in several 

areas such as life-testing problems, forecasting cancer incidences, weather extremes and quality control. Also it 

is a natural candidate when modeling the variance and it has been increasingly used over the past decade. 

paper attempts to introduce readers with the concept of the gamma regression model, in which the dependent 

variable has the gamma distribution, and the use of the paired bootstrapping resampling associated with the 

"boot" package in R program. Three confidence intervals were computed. 
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I. Introduction 

Inference procedures for regression models assume that the response variable follows the normal 

distribution. There are, however, many situations in social sciences where this assumption fails to hold. 

Common examples are count data models, qualitative response models, and duration data models (Sapra, 2005). 

The utility of the uses of gamma regression model arises in two different ways. Certainly, if we believe that the 

response variable to have a gamma distribution, the model is clearly applicable. However, the model can also be 

useful in other situations where we may be willing to think about the relationship between the mean and the 

variance of the response variable (Faraway, 2006). In the normal linear regression model, the variance of the 

response variable is constant as a function of the mean response. This is a fundamental assumption necessary for 

the optimality of least squares method (Faraway, 2006). 

The bootstrap by pairs, proposed in Freedman (1981) consists of resampling the regression and 

regressors together from the original data. Bootstrapping pairs is less sensitive to assumptions than 

bootstrapping residuals (Efron & Tibshirani, 1993). In this paper we introduce the gamma regression model and 

use the paired bootstrap, all the implementation were done using R program. 

The rest of this paper is organized as follows. Section 2 discusses the gamma regression model. Section 

3 presents the concept of bootstrap resampling and section 4 shows the bootstrap packages that in R program. 

Sections 5 and 6 show the data and the final results. Finally, section 7 concludes the paper short conclusion.   

 

II. Gamma Regression Model 
In classical models of regression the following relationship is adopted 

kjniexy ijji ,..,2,1;,..,2,1,0           …………(1) 

Where the random variables ie  are independent and have a normal distribution with mean zero and variance 

equal to 
2
e   model (1) assume that the variance of the response is constant as a function of the mean response 

(Faraway ,2006). A model of gamma regression is consider when the dependant variable iy  has a gamma 

distribution with p.d.f.  
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Where 0  is the scale parameter, 0v  is the shape parameter, and   is the gamma function. The 

expected value of y  is 


v
 and the variance is 

2

v
 (Krishnamoorthy, 2006). In gamma regression, we have 

the variance of the response variable iy  is not constant but rather is proportional to square of the mean (i.e. 
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is constant (Faraway ,2006).  

Using generalized linear model (GLM) framework the equation (2) can reparamrterize by putting 
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The canonical parameter is )
1
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 , so , the canonical link function (the reciprocal link) is (Uusipaikka, 2009)  
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The equation (4) has the drawback that it does not guarantee 0  which could cause problems and might 

require restrictions on   on the range of possible predictor values (Faraway, 2006). As well as to the link 

function in (4) , there are other two commonly used link functions, they are :  

The log link function, which is used when the effect of the predictors is suspected to be multiplicative on the 

mean 

)log()( iig                                                                    …………..(5) 

 and the identity link function  

iig  )(                                                                          …………..(6)  

The Gamma regression equations for the reciprocal and log link function respectively, are  
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III. Bootstrap Resampling 
The term bootstrap which is due to the Efron (1979) is an illusion to the expression "pulling on self up 

by one's bootstraps" meaning doing the impossible (Efron & Tibshirani, 1993). The bootstrap is a method to 

derive properties link standard error, confidence intervals, of the sampling distribution of estimators. The 

bootstrap resampling consists of n  elements that are drawn randomly from the n original data points with 

replacement (Friedl & Stampfer, 2001). 

In the term of regression analysis, we have two kind of bootstrapping, residual bootstrapping and 

paired bootstrapping.  Consider a sample with n  independent observations of the response variable y  and 

1k  explanatory variables x . A paired bootstrap sample is obtained by independently drawing rows with 

replacement from the pairs ( ii xy , ). 
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The bootstrap sample has the same number of observations, however some observations appear several time and 

others never. The bootstrap involves drawing a large number B  of bootstrap samples. An individual bootstrap 

sample is denoted (
**

, bb xy ) (Carroll & et al., 2006). 

The estimated )ˆ(Se  and the bias are: 
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and  

 ˆˆ  bbias                                                                   ……………(10) 

where 



B

b

bB
B 1

1ˆ   is the estimated bootstrap parameter . 

Three widely used bootstrap confidence intervals are: Normal theory interval, percentile interval, and bias – 

corrected accelerated ( BCa ) percentile interval. 

To construct a )%1(100   confidence interval for bB  based on the bootstrap estimator b̂  (Efron & 

Tibshirani, 1993) 
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To produce  a )%1(100   percentile interval  
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  . For more details on bias – corrected accelerated percentile 

interval see (Efron & Tibshirani, 1993). 

 

IV. Data 

In this section we present two data sets to illustrate our study. The first data set is the coalition data, 

which is a part of Zelig package (Venables & Ripley, 2002). This data set contains survival data on government 

in parliamentary democracies from the period 1945-1987. The coalition data frame has 814 observations. The 

second data set is wafer data which is a part of faraway package (Faraway, 2006). The response variable is the 

resistivity of the test wafer. 

 

V. Results 

A gamma linear regression model is fitted to the two data sets. For coalition data, we examine the influence of 

selected two covariate fract and numst2 on duration in R by using the following command: glm(duration ~ 

fract+numst2,family =Gamma ("inverse"),data =coalition)  

The results of gamma regression model are given in table (1). 

 

Table (1): Gamma regression coefficients 
Coefficient Value 

)ˆ(Se  
t- value 

Intercept -0.01296 0.0133 -0.98 

fract 0.000115 0.000017 6.67** 

numst2 -0.01738 0.0058 -2.96** 

** Significant at 01.0   

 

Dispersion parameter for gamma regression is (0.6291), the null deviance is (300.71) on (313) degrees 

of freedom, and the residual deviance is (272.19) on (311) degrees of freedom. Table (1) shows that all two 

covariates are statistically significant. The paired bootstrap step of the gamma regression model for the coalition 

data is 

coal.boot<-function(data,indices){ 



Gamma Regression Model Estimation Using Bootstrapping Procedure  

DOI: 10.9790/5728-1303031723                                        www.iosrjournals.org                                      20 | Page 

+ data<-data[indices,]                         # select observation 

+gam<-glm(duration~fract+ umst2,family=Gamma("inverse"),data=data) 

+coefficients(gam)                             # return coefficient vector       

+ }                       

coalboot<-boot(coalition, coal.boot, R=10000)  

 

Table (2): Shows the results of the bootstrapped gamma regression for coalition data : 
Coefficient 

)ˆ(Se  
bias 

Intercept 0.0135 -0.00132 

fract 0.0000174 0.000002 

numst2 0.0062 -0.00031 

 

Based on 10000B  bootstrap replication the confidence intervals showed in table (3). 

boot.ci (coalboot, type=c ("norm","prec","bca"), index=1) is the confidence interval for the intercept, by 

changing the index into index=2 and index=3 we can get confidence interval for fract and numst2 covariates. 

  

Table (3): 95% confidence intervals for parameters 
Coefficient Normal Percentile BCa 

Intercept (-0.0382,0.0149) (-0.043,0.0109) (-0.0408,0.0131) 

fract (-0.000,0.0001) (0.0001,0.0002) (0.0001,0.0002) 

numst2 (-0.0293,-0.0048) (-0.0307,-0.0062) (-0.0304,-0.006) 

  

Figure 1-3 show the histograms and the normal quantile plot for bootstrap replication of the intercept (Figure 1), 

fract (Figure 2), and numst2 (Figure 3). 

 
Figure(1): The histogram and the normal quantile 

plot for the intercept 

Figure(2): The histogram and the normal  

quantile plot for the fract 
 

 
Figure(3): The histogram and the normal  quantile 

plot for the numst2 

 

Now, the results of fitted gamma regression model for the wafer data set, table (4) shows the results. glm (resist 

~ 4321 XXXX   family = Gamma ("log") , data =wafer) 
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Table (4): Fitted Gamma regression model: 
Coefficient Value 

)ˆ(Se  
t- value 

Intercept 5.502 0.1593 34.54** 

1X  
0.1211 0.0523 2.313* 

2X  
-0.3004 0.0523 -5.736** 

3X  
0.1797 0.0523 3.432** 

4X  
-0.057 0.0523 -1.099 

(**) significant at 01.0  , (*) significant at 05.0         
 

The dispersion parameter taken to be (0.0109), the null deviance (0.6978) on d.f =15, and the residual deviance 

(0.1241) on d.f=11. Table (5) shows the paired bootstrap gamma regression for the wafer data in R. 

wafer.boot<-function(data,indices){ 

+ data<-data[indices,] 

+ gam<-glm(resist ~ x1+ x2+ x3+ x4),family=Gamma("log"),data=data) 

+ coefficients(gam) 

+ } 

waferboot <- boot(data=wafer, wafer.boot, R=10000) 
 

Table (5): bootstrapped standard error and Bias 
Coefficient 

)ˆ(Se  
bias 

Intercept 0.2168 0.000764 

1X  
0.057 -0.0000103 

2X  
0.0569 -0.000469 

3X  
0.0614 -0.000971 

4X  
0.0583 0.0001616 

 

The bootstrapped confidence interval is showed in table (6) and it implemented in R by boot.ci(waferboot, 

type=c("norm","prec","bca"),index=1) 
 

Table (6): 95% confidence intervals for parameters 
Coefficient Normal Percentile Bca 

Intercept (5.077,5.927) (5.117,5.59) (5.06,5.912) 

1X  
(0.0093,0.233) (0.0145,0.235) (0.0184,0.2408) 

2X  
(-0.4117,-0.1883) (-0.414,-0.188) (-0.4126,-0.1866) 

3X  
(0.0607,0.3003) (0.055,0.3018) (0.0627,0.3087) 

4X  
(-0.172,0.054) (-0.168,0.056) (-0.1686,0.0559) 

 

Figure (4-8) show the histograms and the normal quantile plots for bootstrap replication. 
 

 
Figure(4): The histogram and the normal quantile 

plot for the intercept 

Figure(5): The histogram and the normal quantile 

plot for the 1X  
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Figure(6): The histogram and the normal quantile 

plot for the 2X  

Figure(7): The histogram and the normal  

quantile plot for the 3X  

 
Figure(8): The histogram and the normal   quantile 

plot for the 4X  

 

VI. Conclusion 

In this article we have used the gamma regression model to fit the coalition and wafer data. All figures 

with the histogram and normal quantile plot show asymptotic normal theory. So, it may be conclude that the 

bootstrap by pairs could potentially be applied. 
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