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Abstract: Decades after its discussion in (Koenker and Bassett, 1978), quantile regression (QR) has been the 

topic of great practical applications in many areas:   economics, ecology, biology and so on. In this paper, we 

present Bayesian quantile regression using two level prior distributions. Specifically, we assume that the prior 

distribution of each regression coefficient is a zero mean normal prior distribution with unknown variance. 

Then, we assign noninformative Jeffreys prior distributions for the variances assuming they are independent. A 

Gibbs sampler algorithm is developed for the posterior inference. The new method is illustrated   via 

simulations and a real dataset. 

Keywords: Bayesian, Jeffreys prior, Noninformative, MCMC. 

 

I. Introduction 

Decades after its discussion in (Koenker and Bassett, 1978), QR has been the topic of great practical 

applications in many areas: economics, ecology, biology and so on (Cade and Noon, 2003). Suppose that we 

have a sample of observations                      where    is a k × 1 vector of predictors. Then, the linear QR 

model for the τth quantile (0 < τ < 1) is      
     , where   is a k × 1 vector of regression coefficients and 

  ’s are independent with τth quantile equal to zero.  According to Koenker and Bassett (1978), QR estimation 

for   proceeds by 

            
 

 

   

                                                           

where  ρτ (.) is the empirical check function defined by ρτ(z) = z{τ − I(z < 0)}, and I(.) denotes the usual 

indicator function. This empirical check function is not differentiable at 0.  Thus, a closed-form solution is not 

available for the QR coefficients vector β (Koenker and Bassett, 1978). However, the minimization of (1) can be 

achieved through an algorithm suggested by Koenker and D’Orey (1987). Alternatively, Koenker and Machado 

(1999) observed that minimizing the empirical loss function of Koenker and Bassett (1978) is closely related to 

maximising the likelihood of the Asymmetric Laplace Distribution (ALD) and consequently the vector   can be 

estimated through exploiting this link. Yu and Moyeed (2001) and Yu and Stander (2007) proposed a Bayesian 

formulation of QR using the ALD for the errors and sampling β from its posterior distribution using a random 

walk Metropolis- Hastings algorithm. Recently, Kozumi and Kobayashi (2011) developed a Gibbs sampler 

method to estimate the vector β. Specifically, by expressing the ALD as a location-scale mixture of normals and 

by data augmentation; they propose a Gibbs sampler algorithm which converges to the joint posterior 

distribution of all unknowns (parameters and latent variables). This approach has been used in a large number of 

studies (see for example, Li et al., 2010; Khare et al., 2011; Alhamzawi et al., 2011; Lubrano and Ndoye, 2012; 

Kurose and Omori, 2012; Alhamzawi and Yu, 2013; Wichitaksorn and Tsurumi, 2013; Hu et al., 2013; Benoit et 

al., 2013; Sriram et al., 2013; Alhamzawi, 2014; Huang and Chen, 2015; Hashem et al., 2015; Alhamzawi, 

2015; Alshaybawee et al., 2016; Huang et al., 2016; Alhamzawi and Ali, 2017). 

The density of the ALD for the error term (  ) is written explicitly as 

      
      

 
        

  
 
                                                                     

Under the above density, the joint distribution of              given             is  

            
      

 
           

     
  

 
 

 

   

                                 

Recent numerical studies (see for example, Yang et al., 2015; Sriram et al., 2013) support the utilize of ALD 

even though it may fail to exactly represent the actual underlying distribution for the errors. 

Under the model        
     , it is assumed that only an unknown subset of the covariates is important in the 

regression, so that the variable selection problem is to identify this important subset of covariates. Many 

methods for selecting the important variables in linear regression models have been proposed over the recent 

years. Among these, two-level hierarchical Bayesian models have been shown to be effective in linear 
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regression in improving the prediction accuracy (see for example, Bae and Mallick, 2004; Alhamzawi, 2015; 

Benoit et al., 2013; Alhamzawi and Yu, 2015). 

According to Kozumi and Kobayashi (2011), the joint density of y|X, β, σ in Eq (3) is given by:  

                     
 
 
 

 

   

       
      

       
 

    
  

      

 

 

   

                      

where,     is a mixing variable and   = 1 − 2τ. In this paper, we present a Bayesian regression model and specify 

prior distributions that favor sparseness in terms of number of predictors used. Our model involves a zero mean 

normal prior distributions for the unknown regression coefficients β with unknown variances. Then we assign 

noninformative Jeffreys prior distributions for the variances assuming they are independent. 

 

II. Methods 

2.1. Priors 

In this paper, we assume that the prior distribution of each β j is a zero mean normal prior distribution with 

unknown variance, i.e. β j ∼ N(0, σλ j ). Then, we assign a non informative Jeffreys prior for λ j takes the form of 

p(λ j )   1/λj. We further assign a non informative Jeffreys prior for the scale parameter σ takes the form of p(σ) 

  1/σ. To summarize, our Bayesian hierarchical formulation is provided below. 

p(yi |X, β, σ, zi ) ∼ N(xiβ +  zi , 2σzi ), 

p(β) ∼          
 
   , 

                                     p(zi ) ∼ Exponential  
      

 
 ,                             (5) 

p(λ j ) ~ 1/λj 

p(σ)   1/σ. 

2.2. Gibbs sampler for Bayesian inference 

Let z = (z1 , · · · , zn ), V = diag(1/(2z1 ), · · · , 1/(2zn )) and Λ = diag(λ1 , · · · , λk ). From 

(5), we can obtain a tractable and efficient Gibbs sampler algorithm that works as follows: 

• Sample β 

The full conditional distribution of β is normal, i.e. 

β|σ, z, Λ, y, X ∼ Nk ((  VX+ Λ
-1

)
 -1  V(y -  zi), σ (  VX+ Λ

-1
)

 -1
), 

 

• Sample   
   for i = 1, · · · , n. 

The full conditional distribution of each   
  is an inverse Gaussian IG (  

    
  , where   

         
      and 

  
      . 

 

• Sample λj for j = 1, · · · , k. 

The full conditional distribution of each λj is an inverse gamma with shape parameter 

1/2 and rate parameter   
 /(2σ). 

 

• Sample σ 

The full conditional distribution of σ is an inverse gamma with shape parameter 
 

 
    and rate parameter 

 

 
                       

  
 

  

 
    . 

 

III. Simulation Studies 
In this section, we carry out simulation studies to study the performance of the proposed method with 

comparison to some Bayesian and non-Bayesian approaches. The methods in the comparison include: 

• The standard QR (referred to as “QR”). 

• Bayesian Lasso QR (referred to as “BLQR”). 

• Bayesian elastic net QR (referred to as “BENQR”). 

• The proposed method (referred to as “BQR”). 

The data in the simulations are simulated by       
     . Predictors were generated independently from a 

multivariate normal distribution N(0, Σ), where the (i, j)th element of Σ is 0.75
|i−j|

. We consider the following 

simulation studies: 

1.  β = (2, 1, 0, 0, 2, 0, 0, 0), which corresponds to the sparse case. 

2. β = (2, 0, 0, 0, 0, 0, 0, 0), which corresponds to the very sparse case. 

3. β = (0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90), which corresponds to the dense case. 

Within each simulation study, three different choices for the distribution of the error are considered: the standard 

normal distribution N(0, 1), a t(3) distribution, and a     
  distribution. We centered the response variable to have 
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mean zero, while the covariates have been standardized. For each simulation study and each choice of the error 

term, we run 100 replications. In each simulation study, we simulate a training set with 20 observations and a 

testing set with 200 observations. Methods are evaluated based on MMAD=median(     
      

       
   . 

The results are summarized in Tables 1, 2 and 3. From the tables, it can be seen that the proposed method BQR 

performs reasonably well outperforming the others (QR, BLQR and BENQR). We can see that the proposed 

method tends to produce smaller MMAD compared with other methods. From the tables 1, 2 and 3, we can also 

see that the Bayesian approaches yield similar performance and outperform the frequentist QR. 

The results are summarized in Tables 1, 2 and 3. From the tables, it can be seen that the proposed method BQR 

performs reasonably well outperforming the others (QR, BLQR and BENQR). We can see that the proposed 

method tends to produce smaller MMAD compared with other methods. From the tables 1, 2 and 3, we can also 

see that the Bayesian approaches yield similar performance and outperform the frequentist QR. 

 

Table 1: MMADs for Simulation 1. In the parentheses are standard deviations of the MADs. 

Error           Methods τ = 0.50    τ = 0.75             τ = 0.95 

ε ∼ N(0,1) BQR  0.473 (0.121) 0.502 (0.121) 0.635 (0.406) 

                           BLQR 0.463 (0.124) 0.535 (0.168) 0.664 (0.428) 

                        BENQR 0.450 (0.127) 0.539 (0.167) 0.654 (0.416) 

                                QR 0.686 (0.220) 0.727 (0.225) 0.839 (0.492) 

 

ε∼t(3)            BQR 0.583 (0.346) 0.617 (0.311) 0.671 (0.439) 

                       BLQR 0.646 (0.386) 0.665 (0.356) 0.701 (0.444) 

                    BENQR 0.648 (0.377) 0.654 (0.349) 0.717 (0.441) 

                            QR 0.791 (0.459) 0.816 (0.421) 0.898 (0.553) 

 

ε ~  
             BQR 0.666 (0.436) 0.736 (0.412) 0.824 (0.724) 

                       BLQR 0.758 (0.441) 0.799 (0.448) 0.848 (0.728) 

                    BENQR 0.751 (0.435) 0.797 (0.443) 0.854 (0.734) 

                            QR 0.970 (0.551) 1.045 (0.623) 1.089 (1.243) 

 

Table 2: MMADs for Simulation 2. In the parentheses are standard deviations of the MADs. 

Error           Methods     τ = 0.50               τ = 0.75                   τ = 0.95 

ε ∼ N(0,1)           BQR  0.485 (0.163) 0.422 (0.107) 0.446 (0.108) 

                          BLQR 0.476 (0.158) 0.476 (0.144) 0.467 (0.167) 

                       BENQR 0.474 (0.155) 0.471 (0.144) 0.448 (0.169) 

                               QR 0.864 (0.295) 0.899 (0.313) 0.857 (0.310) 

 

ε∼t(3)              BQR 0.411 (0.155) 0.467 (0.108) 0.397 (0.122) 

                         BLQR 0.445 (0.165) 0.478 (0.167) 0.487 (0.184) 

                      BENQR 0.441 (0.167) 0.474 (0.169) 0.478 (0.184) 

                             QR 0.861 (0.355) 0.908 (0.408) 0.919 (0.427) 

 

ε ~  
                  BQR 0.476 (0.236) 0.530 (0.181) 0.573 (0.276) 

                        BLQR 0.512 (0.247) 0.532 (0.263) 0.576 (0.325) 

                     BENQR 0.505 (0.247) 0.537 (0.265) 0.579 (0.324) 

                             QR 1.014 (0.478) 1.060 (0.580) 1.107 (0.670) 

 

Table 3: MMADs for Simulation 3. In the parentheses are standard deviations of the MADs. 

Error           Methods    τ = 0.50               τ = 0.75              τ = 0.95 

ε ∼ N(0,1) BQR 0.515 (0.194) 0.547 (0.134) 0.674 (0.196) 

                           BLQR 0.520 (0.188) 0.541 (0.195) 0.699 (0.253) 

                        BENQR 0.525 (0.197) 0.544 (0.196) 0.718 (0.255) 

                               QR       0.778 (0.405) 0.745 (0.344) 0.893 (0.431) 

 

  ε∼t(3)               BQR 0.655 (0.200) 0.721 (0.234) 0.733 (0.199) 

                         BLQR  0.699 (0.255) 0.733 (0.262) 0.772 (0.284) 

                      BENQR  0.696 (0.255) 0.735 (0.261) 0.782 (0.283) 

                              QR  0.980 (0.431) 1.026 (0.460) 1.150 (0.603) 
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ε ~  
             BQR 0.810 (0.216) 0.814 (0.342) 0.887 (0.410) 

                       BLQR 0.826 (0.291) 0.856 (0.336) 0.894 (0.424) 

                    BENQR 0.837 (0.291) 0.868 (0.335) 0.901 (0.418) 

                           QR 1.282 (0.688) 1.329 (0.823) 1.426 (0.966) 

 

3.1. Body dimensions data 

Here, we consider a real dataset to investigate the performance of the proposed method. We use the 

dataset on body dimensions (Heinz et al., 2003) where there are 507 observations and 24 predictors. We use a 

sub sample of 9 predictors from this data set. The data is available in the R Package Brq (Alhamzawi, 2017). 

The response of interest is the weight in kilogram. The 9 predictors are: Gender, Age in years (Age), Height in 

cm (Height), Biacromial diameter in cm (BiacSk), Biiliac diameter in cm (BiilSk), Bitrochanteric diameter in 

cm ( BitrSk), Chest depth in cm (CheDeSk ), Chest diameter in cm (CheDiSk), Elbow diameter in cm 

(ElbowSk) and Wrist diameter in cm (WristSk). We assume a QR model between the weight and the 9 

regressors. We assume that the response variable to be centered to have mean 0, while the predictors have been 

standardized. We divided the data into a training set with 107 observations and a test set with 400 observations. 

The histograms of the body dimensions data predictors based on posterior samples of 11,000 iterations are 

illustrated in Figure 1. These plots reveal that the conditional posterior distributions are the desired univariate 

normals. The Trace plot of the Gibbs sampler is shown in Figure 2 for this data set predictors. We can observe 

that for this benchmark dataset the samples traverse the posterior space very fast. Table 4 presents the mean 

squared prediction errors (MSE) based on a test set with 400 observations for τ ∈ {0.50, 0.75, 0.95}. We can see 

that the proposed method tends to produce smaller MMAD than the other methods. 

 

Table 4: Body dimensions data analysis: Mean squared prediction errors (MSE) based on a test set with 400 

observations. 

τ        Method       QR              BLQR          BENQR            BQR 

0.50    MSE       21.36089       21.33972      21.44317        21.29310 

0.75    MSE        21.44281       21.41752     21.53110         21.39221 

0.95    MSE        21.77739       21.92418      21.66234        21.56287  

 
Figure 1: Histograms based on posterior samples of body dimensions data. 
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Figure 2: Trace plots based on posterior samples of body dimensions data. 

 

IV. Conclusion 

We have proposed the Bayesian quantile regression using normal-Jeffreys prior distributions for the 

regression coefficients. Specifically, we assume that the prior distribution of each regression coefficient is a zero 

mean normal prior distribution with unknown variance. Then, we assign noninformative Jeffreys prior 

distributions for the variances assuming they are independent. We developed a new algorithm for Bayesian 

sampler from the posteriors. The proposed approach is then illustrated via simulations and a real dataset. Results 

show that the proposed approach performs very well. 
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