A Study on the Rate of Convergence of Chlodovsky-Durrmeyer Operator and Their Béziers Variant

S. K. Tiwari¹, V.K. Gupta², Yogita Parmar³

¹: Department of Mathematics, School of Studies in mathematics, Vikram University, Ujjain (M.P.)
²: Department of Mathematics, Govt. Madhav Science College Ujjain (M.P.)
³: Presearch Scholar, School of Studies in mathematics, Vikram University, Ujjain (M.P.)

Abstract: In this paper, we have studied the Bézier variant of Chlodovsky-Durrmeyer operators $D_{m,\theta}$ for function f measurable and locally bounded on the interval $[0,\infty)$. In this we improved the result given by Ibikl E. And Karshi H. [14]. We estimate the rate of pointwise convergence of $(D_{m,\theta}f)(x)$ at those $x > 0$ at which the one-sided limits $f(x+), f(x-)$ exist by using the Chanturia modulus of variation. In the special case $\theta = 1$ the recent result of Ibikl E. And Karshi H. [14] concerning the Chlodovsky-Durrmeyer operators D_m is essentially improved and extended to more general classes of functions.

Keywords: Rate of convergence, Chlodovsky-Durrmeyer operator, Bézier basis, Chanturia modulus of variation, p-th power variation.

I. Introduction

For a function the classical Bernstein-Durrmeyer operators (see [7]) M_n applied to f are defined as

$$(M_m f)(x) = (m + 1) \sum_{i=0}^{m} p_m(x) \int_{0}^{x} f(t) p_{m,i}(t) dt, \quad x \in [0,1]$$

where $p_{m,i}(x) = \binom{m}{i} x^i (1-x)^{m-i}$.

Several researchers have studied approximation properties of the operators M_n ([8], [10]) for function of bounded variation defined on the interval $[0, 1]$. After that Zeng and Chen [22] defined the Bézier variant of Durrmeyer operators as

$$(M_{m,\theta} f)(x) = (m + 1) \sum_{i=0}^{m} Q_{m,i}^{(\theta)}(x) \int_{0}^{t} f(t) p_{m,i}(t) dt,$$

where $Q_{m,i}^{(\theta)}(x) = \frac{\theta}{\theta + 1} f(x) - \frac{1}{\theta + 1} f(x+1)$ and $f_i(x) = \sum_{j=0}^{1} p_{m,i}(x)$ for $i = 0, 1, 2, \ldots, m$.

Recently Agratini [1], Anioli and Pych-Taberska [3], Pych-Taberska [20], and Gupta [11, 12] have investigated the rate of pointwise convergence for Kantorovich and Durrmeyer Type Baskakov–Bézier and Bézier operators using a different approach. They have proved their theorems in terms of the Chanturia modulus of variation, which is a generalization of the classical Jordan variation. It is useful to point out that a deeper analysis of the Chanturia modulus of variation can be found in [6], but actually the modulus of variation was introduced for the first time by Langrange [18]. Although the Chanturia modulus of variation was defined as a
generalization of the classical variation nearly four decades years ago, it was not used to a sufficient extent to solve the problem mentioned above.

The paper is concerned with the rate of pointwise convergence of the operators (5) when \(f \) belongs to \(X_{loc}(0, \infty) \). Using the Chanturia modulus of variation defined in [6], we examine the rate of pointwise convergence of \((D_{m, \beta}(x))\) at the points of continuity and at the first kind discontinuity points of \(f \).

For some important papers on different operators related to the present study we refer the readers to Gupta et. Al. [9, 21] and Zeng and Piriou [23]. It is necessary to point out that in the present paper we extend and improve the result of Ibikili E. and Karshi H.[14] for Chlodowsky-Durrmeyer operators.

We being by giving

Definition 1.1 Let \(f \) be a bounded function on a compact interval \(I = [a, b] \). The modulus of variation \(\mu_m(f; [a, b]) \) of a function \(f \) is defined for nonnegative integers \(m \) as

\[
\mu_m(f; [a, b]) = \sup_{x_m} \sum_{i=0}^{m-1} |f(x_{2i+1}) - f(x_{2i})|,
\]

where \(\pi_m \) is an arbitrary system of \(m \) disjoint intervals \((x_{2i}, x_{2i+1}) \), \(i = 0, 1, ..., m-1 \), i.e.,

\[
a \leq x_0 < x_1 \leq x_2 < x_3 \leq \cdots \leq x_{2m-2} < x_{2m-1} \leq b.
\]

The modulus of variation of any function is a non-decreasing function of \(m \). Some other properties of this modulus can be found in [6].

If \(f \in BV_p(I) \), \(p \geq 1 \), i.e., if \(f \) of \(p \)-th bounded power variation on \(I \), then for every \(i \in \mathbb{N} \),

\[
\mu_i(f; I) \leq l^{1-1/p}V_p(f, I),
\]

where \(V_p(f, I) \) denotes the total \(p \)-th bounded power variation of \(f \) on \(I \), defined as the upper bound of the set of numbers \(\left\{ \sum |f(i_j) - f(l_j)|^p \right\}^{1/p} \) over all finite systems of non-overlapping intervals \((i_j, l_j) \subset I \).

We also consider the class \(BV_{loc}^p(0, \infty) \), \(p \geq 1 \), consisting of all function of bounded \(p \)-th power variation on every compact interval \(I \subset [0, \infty) \).

In the sequel it will be always assumed that the sequence \((a_m) \) satisfies the fundamental conditions (4). The symbol \([a] \) will be denote the greatest integer not greater than \(a \).

Remark. Now, let us consider the special case \(\beta = 1, p = 1 \), and let us suppose that function \(f \) is of bounded variation in the Jorden sense on the whole interval \([0, \infty)\)

\((f \in BV[0, \infty)) \). Then, for all integers \(m \) such that \(a_m > 2x \) and \(4a_m \leq m \), we have the following estimation for the rate of convergence of the Chlodowsky-Durrmeyer operators (3):

\[
\left| (D_{m, \theta}(x)) - \frac{f(x) + f(x-)}{2} \right| \leq 2V \left(g; H(xa_m/m) \right) + \frac{2l^{m/a_m}x}{m} \sum_{i=0}^{m} V \left(g; H(xa_m/m) \right) + \frac{4M}{m} \sum_{i=0}^{m} V \left(g; H(xa_m/m) \right) \leq 2V \left(g; H(xa_m/m) \right),
\]

where \(M = \sup_{0 \leq x < \infty} |f(x)| \) and \(V(g; H) \) denotes the Jordan variation of \(g \) on the interval \(H \).

The above estimation is essentially better than the estimation presented in [14]. Namely, it is easy to see that the right-hand side of the main inequality given in Theorem 1.1 in [14] is not convergent to zero for all function \(f \in BV[0, \infty) \) and for all sequences \((a_m) \) satisfying (4).

II. Auxiliary Result

In this section we give certain results, which are necessary to prove the main result.

For this, let us introduce the following notation. Given any \(x \in [0, a_m] \) and any non-negative integer \(q \), we write

\[
W^{q}_{m,q}(x) := (D_{m, \theta}^q(x)) \equiv \frac{m + 1}{a_m} \sum_{l=0}^{m} P_{m,l} \left(\frac{x}{a_m} \right) [(t - x)^q dt.
\]

Lemma 2.1 If \(m \in \mathbb{N}, x \in [0, a_m] \), then

\[
W_{m,0}(x) = 1, \quad W_{m,1}(x) = \frac{a_m - 2x}{m + 2}.
\]

DOI: 10.9790/5728-1302030108 www.iuosjournals.org 2 Page
and, for \(q > 1 \),

\[
W_{m,2q}(x) = \frac{a_m}{m} \sum_{j=0}^{q} \beta_{j,q}(\frac{x - x}{a_m})^{q-j} \left(\frac{a_m}{m} \right)^j,
\] \((8) \)

where \(\beta_{j,q} \) are real numbers independent of \(x \) and bounded uniformly in \(m \). Moreover, for \(m \geq 2 \)

\[
W_{m,2q}(x) \leq 2 \frac{a_m}{m} \left(1 - \frac{x}{a_m} \right) + \frac{a_m}{m}
\]

and, for \(q > 1 \),

\[
W_{m,2q}(x) \leq c_q \left(\frac{a_m}{m} \right)^q \left(1 - \frac{x}{a_m} \right) + \frac{a_m}{m} q,
\] \((10) \)

where \(c_q \) is a positive constant depending only on \(q \).

Proof. Formulas for \(W_{m,0}, W_{m,1}, W_{m,2} \) and inequality (9) follow by simple calculation. Suppose \(q > 1 \) and put \(y := x/a_m \). Then \(y \in [0,1] \) and

\[
W_{m,2q}(x) = \frac{m+1}{a_m} \sum_{i=0}^{m} P_{m,i}(y) \int_0^{a_m} (t - ya_m)^{2q} P_{m,i} \left(\frac{t}{a_m} \right) dt
\]

\[
= (m+1)a_m^{2q} \sum_{i=0}^{m} P_{m,i}(y) \int_0^{1} (s - y)^{2q} P_{m,i}(s) ds = a_m^{2q} (M_m \psi_q^2)(y),
\] \((11) \)

where \(M_m \) is the classical Bernstein-Durrmeyer operator (1).

The representation formula (8) follows at once from the known identity

\[
(M_m \psi_q^2)(y) = \sum_{j=0}^{q} \beta_{j,q,m} \left(\frac{y(1-y)}{m} \right)^{q-1} m^{-2j},
\]

where \(\beta_{j,q,m} \) are real numbers independent of \(y \) and bounded uniformly in \(m \) (see [13]). Lemma 4.8 with \(c = -1 \). Now, let us observe that for \(y \in [0,1/m] \), \(y \in \left[1 - \frac{1}{m}, 1 \right], m \geq 2 \), one has \(y(1-y) \leq \frac{m-1}{m^2} \) and

\[
(M_m \psi_q^2)(y) = \sum_{j=0}^{q} \beta_{j,q,m} \left(\frac{m-1}{m^3} \right)^{j-1} m^{-2j} \leq \sum_{j=0}^{q} \eta_{j,q} m^{-2q},
\]

where \(\eta_{j,q} \) are non-negative numbers depending only on \(j \) and \(q \). If \(y \in \left[\frac{1}{m}, 1 - \frac{1}{m} \right] \), then \(\frac{1}{my(1-y)} \leq \frac{m-1}{m^2} \leq 2 \) and

\[
(M_m \psi_q^2)(y) = \left(\frac{y(1-y)}{m} \right)^{q} \sum_{j=0}^{q} \beta_{j,q,m} \left(\frac{1}{my(1-y)} \right)^{j},
\]

\[
\leq \left(\frac{y(1-y)}{m} \right)^{q} \sum_{j=0}^{q} \eta_{j,q} 2^{j}.
\]

Consequently,

\[
(M_m \psi_q^2)(y) \leq C_q \left(\frac{y(1-y)}{m} + \frac{1}{m} \right)^{q} \text{ with } C_q = \sum_{j=0}^{q} \eta_{j,q} 2^{j}.
\]

Taking in (11) and in the above inequality \(y = x/a_m \) we easily obtain estimation (10).

Lemma 2.2 Let \(x \in (0, \infty) \) and let

\[
K_{m,\varphi} \left(\frac{x}{a_m}, \frac{t}{a_m} \right) := \frac{m+1}{a_m} \sum_{i=0}^{m} P_{m,i} \left(\frac{x}{a_m} \right) \left(\frac{t}{a_m} \right)
\]

Then

\[
\int_{0}^{a_m} K_{m,\varphi} \left(\frac{x}{a_m}, \frac{u}{a_m} \right) du \leq \frac{\varphi}{(t-x)^2} W_{m,2}(x) \text{ if } x < t \]

\((12) \)

and

\[
\int_{0}^{t} K_{m,\varphi} \left(\frac{x}{a_m}, \frac{u}{a_m} \right) du \leq \frac{\varphi}{(x-t)^2} W_{m,2}(x) \text{ if } 0 < t < x,
\] \((13) \)
where $W_{m,2}(x)$ is given by (7) (with $q = 2$).

Proof. As is known $Q_{m,j}^{(0)}(x) \leq \partial P_{m,j}(x)$ for $\partial \geq 1$. Hence, if $x < t$, then

$$
\int_{t}^{q_{m}} K_{\partial,\partial} \left(\frac{x}{a_{m}}, \frac{t}{a_{m}} \right) dt \leq \frac{1}{(t-x)^{2}} \int_{t}^{q_{m}} (u-x)^{2}K_{\partial,\partial} \left(\frac{x}{a_{m}}, \frac{u}{a_{m}} \right) du
$$

$$
\leq \frac{1}{(t-x)^{2}} (D_{\partial,\partial} \frac{1}{2})(x) \leq \frac{\partial}{(t-x)^{2}} W_{m,2}(x).
$$

The proof of (13) is similar.

In order to formulate the next lemma we introduce the following intervals. If $x > 0$, we write

$$
I_{x}(u) := [x + u, x] \cap [0, \infty) \text{ if } u < 0
$$

$$
I_{x}(u) := [x, x + u] \text{ if } u > 0
$$

Lemma 2.3 Let $f \in \mathcal{A}_{1,1}[0, \infty)$ and let the one-sided limits $f(x +), f(x -)$ exist at a fixed point $x \in (0, \infty)$. Consider the function g_{x} defined by (6) and write $d_{m} = \sqrt{a_{m} / m}$. If $h = -x$ or $h = x$, then for all integers m such that $d_{m} \leq 1/2$ we have

$$
\left| \int_{I_{x}(t)} g_{x}(t)K_{\partial,\partial} \left(\frac{x}{a_{m}}, \frac{t}{a_{m}} \right) dt \right| \leq v_{1}(g_{x}; I_{x}(h d_{m}))
$$

$$
+ 8\partial W_{m,2}(x) \sum_{j=1}^{n} \frac{v_{j}(g_{x}; I_{x}(j h d_{m}))}{n^{2}} + v_{n}(g_{x}; I_{x}(0) h d_{m})
$$

where $n = [1/d_{m}]$ and $W_{m,2}(x)$ is estimated in (9).

Proof. Restricting the proof to $h = -x$ we define the point $t_{j} = x + j h d_{m}$ for $j = 1, 2, 3, ..., n + 1$ and we denote $t_{n+1} = 0$. Put $T_{j} = [t_{j}, x]$ for $j = 1, 2, 3, ..., n + 1$ and we have

$$
\left| \int_{I_{x}(t)} g_{x}(t)K_{\partial,\partial} \left(\frac{x}{a_{m}}, \frac{t}{a_{m}} \right) dt \leq \int_{t_{1}}^{x} (g_{x}(t) - g_{x}(x))K_{\partial,\partial} \left(\frac{x}{a_{m}}, \frac{t}{a_{m}} \right) dt
$$

$$
+ \sum_{j=1}^{n} \left(g_{x}(t_{j}) - g_{x}(t_{j-1}) \right) K_{\partial,\partial} \left(\frac{x}{a_{m}}, \frac{t}{a_{m}} \right)
$$

Clearly,

$$
|I_{1}(m, x)| \leq \int_{t_{1}}^{x} \left| (g_{x}(t) - g_{x}(x))K_{\partial,\partial} \left(\frac{x}{a_{m}}, \frac{t}{a_{m}} \right) dt
$$

By the Abel lemma on summation by parts and by (13) we have

$$
|I_{2}(m, x)| \leq \left| g_{x}(t_{1}) \right| \int_{0}^{t_{1}} K_{\partial,\partial} \left(\frac{x}{a_{m}}, \frac{t}{a_{m}} \right) dt + \sum_{j=1}^{n-1} \left| g_{x}(t_{j}) - g_{x}(t_{j-1}) \right| \int_{0}^{t_{j+1}} K_{\partial,\partial} \left(\frac{x}{a_{m}}, \frac{t}{a_{m}} \right) dt
$$

$$
\leq \frac{\partial W_{m,2}(x)}{h^{2} d_{m}^{2}} \left(\left| g_{x}(t_{1}) - g_{x}(x) \right| + \sum_{j=1}^{n-1} \left| g_{x}(t_{j+1}) - g_{x}(t_{j}) \right| \frac{1}{(j+1)^{2}} \right)
$$

$$
= \frac{\partial W_{m,2}(x)}{h^{2} d_{m}^{2}} \left(\left| g_{x}(t_{1}) - g_{x}(x) \right| + \sum_{j=1}^{n-1} \sum_{i=1}^{j} \left| g_{x}(t_{i+1}) - g_{x}(t_{i}) \right| \frac{1}{(j+1)^{2}} - \frac{1}{(j+2)^{2}} \right)
$$

$$
+ \frac{1}{n^{2}} \sum_{j=1}^{n} \left| g_{x}(t_{j+1}) - g_{x}(t_{j}) \right|
$$

$$
\leq \frac{\partial W_{m,2}(x)}{h^{2} d_{m}^{2}} \left(v_{1}(g_{x}; T_{1}) + 2 \sum_{j=1}^{n-2} v_{j+1}(g_{x}; T_{j+1}) + v_{n}(g_{x}; T_{n}) \right)
$$
Substituting this in (13) we get
\[|I_3(m,x)| \leq \sum_{j=1}^{n} v_j(g_x;[t_{j+1},t_j]) \int_{t_{j+1}}^{t_j} K_m,\delta \left(\frac{x}{a_m}, \frac{t}{a_m} \right) dt, \]
Next, in view of (13) and the Abel transformation,
\[
|I_3(m,x)| \leq \frac{\vartheta W_{m,2}(x)}{h^2 d_m^2} \sum_{j=1}^{n} v_j(g_x;[t_{j+1},t_j]) \left[\frac{1}{j^2 - \frac{1}{(j+1)^2}} \right].
\]

Combining the result and observing that \(T_i = I_x(jhd_m) \) we get the desired estimation for \(h = -x \). In the case of \(h = x \) the proof runs analogously; we use inequality (12) instead of (13).

III. Main Results

In this section we prove our main theorems.

Theorem 3.1 Let \(f \in \mathcal{H}_{loc}[0,\infty) \) and let the one-sided limits \(f(x), f(x-) \) exist at a fixed point \(x \in (0,\infty) \). Then, for all integers \(m \) such that \(a_m > 2x \) and \(4a_m \leq m \) one has
\[
\left[(D_{m,\delta} f)(x) - \frac{f(x+)}{\vartheta + 1} + \frac{f(x-)}{\vartheta + 1} \right] \leq 2\mu_1 \left(g_x; x\sqrt{a_m/m} \right)
\]
\[
+ \frac{32\vartheta}{x^2} \left[1 - \frac{x}{a_m} \right] + \frac{a_m}{m} \left[\sum_{j=1}^{n-1} \frac{\mu_j(g_x; H_x(j\sqrt{a_m/m} + \mu_j(g_x; H_x(x)) \right) \right]
\]
\[
+ \frac{2\vartheta c_q}{x^q} (a_m/m)^{q/2} \left[1 - \frac{x}{a_m} \right] + \frac{a_m}{m} \right)^q + \frac{2\vartheta |f(x+)| - |f(x-)|}{\sqrt{a_m(1 - x/m)}}.
\]

where \(n = \sqrt{m/a_m} H_x(u) = [x - u, x + u] \) for \(0 \leq u \leq x, \varphi(a; f) = \sup_{0 \leq t \leq h} |f(t)| \)
\[
g_x(t) = \begin{cases} f(t) - f(x+) & \text{if } t > x, \\ 0 & \text{if } t = x, \\ f(t) - f(x-) & \text{if } 0 \leq t < x, \end{cases}
\]
\[
g_x(t) \quad (14)
\]

where \(q \) is an arbitrary positive integer and \(c_q \) a positive constant depending only on \(q \).

Proof. We decompose \(f(t) \) into four parts as
\[
f(t) = \frac{f(x+)}{\vartheta + 1} + \frac{f(x+) - f(x-)}{\vartheta + 1} \left[\text{sgn}_x(t) + \frac{\vartheta - 1}{\vartheta + 1} \right] + g_x(t)
\]

where \(g_x(t) \) is defined as (14) and \(\text{sgn}_x(t) := \text{sgn}(t - x), \)
\[
g_x(t) = \begin{cases} 1, & \text{if } x = t, \\ 0, & \text{if } x \neq t. \end{cases}
\]

From (15) we have
\[
(D_{m,\delta} f)(x) = \frac{f(x+)}{\vartheta + 1} + \left(D_{m,\delta} g_x \right)(x) + \frac{f(x+) - f(x-)}{\vartheta + 1} \left[\text{sgn}_x(t) + \frac{\vartheta - 1}{\vartheta + 1} \right] + \left[f(x) - \frac{f(x+)}{\vartheta + 1} \right] (D_{m,\delta} \delta_x)(x).
\]

For operators \(D_{m,\delta} \) using (16) we can observe that the last term on the right hand side vanishes. In addition it is obvious that \((D_{m,\delta} 1)(x) = 1 \). Hence we have
In order to prove our theorem we need the estimates for $(D_{m,\theta}g_\ast)(x)$ and $(D_{m,\theta}sgn_\ast)(x)+\frac{\vartheta-1}{\vartheta+1}$.

To estimate $(D_{m,\theta}g_\ast)(x)$ with the help of the fixed points x and $2x$, we decompose it into three parts as follows:

$$
\left|\int_0^x g_x(t)K_{m,\theta}(\frac{x}{a_m}, \frac{t}{a_m}) dt \right| \leq \int_0^x g_x(t)K_{m,\theta}(\frac{x}{a_m}, \frac{t}{a_m}) dt + \int_{2x}^x g_x(t)K_{m,\theta}(\frac{x}{a_m}, \frac{t}{a_m}) dt + \int_{2x}^{2x} g_x(t)K_{m,\theta}(\frac{x}{a_m}, \frac{t}{a_m}) dt
$$

$$
= |E_{1,\theta}(m,x)| + |E_{2,\theta}(m,x)| + |E_{3,\theta}(m,x)|,
$$

where $K_{m,\theta}(\frac{x}{a_m}, \frac{1}{a_m})$ is defined in Lemma 2.2.

The estimations for $|E_{1,\theta}(m,x)|$ and $|E_{2,\theta}(m,x)|$ are given in Lemma 2.3 in which we put $h = -x$ and $h = x$, respectively. Using the obvious inequality

$$
\|g_x(i_x(\ast))\| \leq 2\|g_x(H_x(u))\|, \
$$

where $H_x(u) = [x - u, u + x]$, $0 \leq u \leq x$, we obtain

$$
|E_{1,\theta}(m,x)| + |E_{2,\theta}(m,x)| \leq 2\|g_x(H_x(x\sqrt{a_m/m}))\| + 16\vartheta W_{m,2}(x)m
\sum_{j=1}^{n-1} \|g_x(H_x(jx\sqrt{a_m/m}))\| + \frac{\|g_x(H_x(x))\|}{n^2}.
$$

(19)

Now, we estimate $|E_{3,\theta}(m,x)|$. Clearly, given any $q \in \mathbb{N}$, we have

$$
|E_{3,\theta}(m,x)| \leq 2\varphi(a_m;f) \frac{m+1}{a_m} \sum_{i=0}^{m} Q_{m,i}(\frac{x}{a_m}) \int_{0}^{2x} p_{m,q}(\frac{t}{a_m}) dt
$$

$$
\leq 2\varphi(a_m;f) \frac{m+1}{a_m} \sum_{i=0}^{m} Q_{m,i}(\frac{x}{a_m}) \int_{0}^{2x} (t-x)^{2q} p_{m,q}(\frac{t}{a_m}) dt
$$

$$
\leq 2\varphi(a_m;f) \frac{m+1}{a_m} \sum_{i=0}^{m} P_{m,q}(\frac{x}{a_m}) \int_{0}^{2x} (t-x)^{2q} p_{m,q}(\frac{t}{a_m}) dt
$$

$$
= 2\varphi(a_m;f) \frac{m+1}{a_m} \sum_{i=0}^{m} P_{m,q}(\frac{x}{a_m}) \int_{0}^{2x} (t-x)^{2q} p_{m,q}(\frac{t}{a_m}) dt
$$

(20)

Finally, replacing x by x/a_m in the result of X. M. Zeng and W. Chen [22] (sect. 3, pp. 9-11) we immediately get

$$
\left|\left(D_{m,\theta}sgn_\ast\right)(x) + \frac{\vartheta-1}{\vartheta+1}\right| \leq \frac{4\vartheta}{|x - \frac{x}{a_m}|}
$$

Putting (18), (19), (20) and (21) into (17), we get the required result. Thus the proof of Theorem 1 is complete.

From Theorem 3.1 and inequality (6) we get

Theorem 3.2 Let $f \in BV_{loc}^p[0,\infty), p \geq 1$ and let $x \in (0,\infty)$. Then, for all integers m such that $a_m > 2x$ and $4a_m \leq m$ we have

$$
\left|\left(D_{m,\theta}f\right)(x) - \frac{f(x^+) + \vartheta f(x^-)}{\vartheta+1}\right| \leq 2W_p(g_x; H_x(x\sqrt{a_m/m}))
$$

$$
+ \frac{2^{q+1/p}\vartheta}{x^{2q+1/p}} \frac{n_{q-1}^2 - 1}{m} \sum_{i=1}^{m} \left(\frac{x}{a_m} + \frac{a_m}{m}\right) \int_{0}^{2x} (t-x)^{2q} p_{m,q}(\frac{t}{a_m}) dt
$$

DOI: 10.9790/5728-1302030108
\[
+ \frac{2\vartheta C_q}{x^{2q}} \varphi(a_m; f) \left(\frac{a_m}{m} \right)^q \left(x \left(1 - \frac{x}{a_m} \right) + \frac{a_m}{m} \right)^q + \frac{2\vartheta |f(x+) - f(x-)|}{\sqrt{a_m} \left(1 - \frac{x}{a_m} \right)}.
\]

In order to show this it is necessary to prove that the right-hand sides of the inequalities mentioned in the hypotheses of the theorems tend to zero as \(m \to \infty \). In view of (4) we have \(n = \left[\sqrt{m/a_m} \right] \to \infty \) as \(m \to \infty \). So, in Theorem 1 it is enough to consider only the term
\[
\Lambda_n(x) = \sum_{j=1}^{n-1} \frac{\mathbb{V}_l(g_{j}; H_x((j+1)d_m))}{j^2}, \quad \text{where} \quad d_m = \sqrt{a_m/m}.
\]

Clearly,
\[
\Lambda_n(x) = \sum_{j=1}^{n-1} \frac{\mathbb{V}_l(g_{j}; H_x((j+1)d_m))}{j^2} \leq 4d_m \int_{1}^{n/\sqrt{d_m}} \frac{\mathbb{V}_l(g_{j}; H_x(x))}{x^2} \, dx \leq 4 \sum_{i=1}^{n} \frac{\mathbb{V}_l(g_{j}; H_x(x))}{x^2}.
\]

Since the function \(g_x \) is continuous at \(x \) and \(\mathbb{V}_l(g_{j}; H_x(x)) \) denotes the oscillation of \(g_x \) on the interval \(H_x(\frac{x}{\sqrt{d_m}}) \), we have
\[
\lim_{n \to \infty} \frac{\mathbb{V}_l(g_{j}; H_x(x))}{x^2} = 0
\]
and consequently,
\[
\lim_{n \to \infty} \Lambda_n(x) = 0
\]

As regards Theorem 3.2, it is easy to verify that in view of the continuity of \(g_x \) at \(x \),
\[
\lim_{n \to \infty} \frac{1}{n^{1+1/p}} \sum_{i=1}^{n^2-1} \frac{1}{(\sqrt{d_m})^{1-1/p}} \mathbb{V}_p(g_{j}; H_x(x)) = 0.
\]

Thus we get the following approximation theorem.

Proof. Let \(f \in BV_{10}^p(0, \infty), p \geq 1 \). In view of (6) and the notation \(d_m = \sqrt{a_m/m} \), \(n = \left[\sqrt{m/a_m} \right] \), we have
\[
\sum_{j=1}^{n-1} \frac{\mathbb{V}_l(g_{j}; H_x((j+1)d_m))}{j^{2+1/p}} \leq \sum_{j=1}^{n-1} \mathbb{V}_p(g_{j}; H_x((j+1)d_m)) \leq (2d_m)^{2+1/p} \int_{1}^{n/\sqrt{d_m}} \frac{\mathbb{V}_p(g_{j}; H_x(x))}{x^{2+1/p}} \, dx \leq (2d_m)^{2+1/p} \int_{1}^{\sqrt{n}} \frac{\mathbb{V}_p(g_{j}; H_x((x+\sqrt{n}))}{(\sqrt{n})^{2+1/p}} \, dx \leq (2d_m)^{2+1/p} \int_{1}^{\sqrt{n}} \frac{\mathbb{V}_p(g_{j}; H_x((x+\sqrt{n})))}{(\sqrt{n})^{2+1/p}} \, dx
\]

and
\[
\mathbb{V}_n(g_{j}; H_x(x)) \leq \mathbb{V}_p(g_{j}; H_x(x)) \leq \mathbb{V}_p(g_{j}; H_x(x))
\]

and
\[
\mathbb{V}_n(g_{j}; H_x(x)) \leq \mathbb{V}_p(g_{j}; H_x(x)) \leq \mathbb{V}_p(g_{j}; H_x(x))
\]

moreover,
\[
\mathbb{V}_n(g_{j}; H_x(x)) \leq \mathbb{V}_p(g_{j}; H_x(x)) \leq \mathbb{V}_p(g_{j}; H_x(x))
\]

The estimation given in Theorem 3.2 now immediately follows from Theorem 3.1.

Corollary. Suppose that \(f \in X_{10}(0, \infty) \) (in particular, \(f \in BV_{10}^p(0, \infty), p \geq 1 \)) and that there exists a positive integer \(q \) such that
\[
\lim_{m \to \infty} \frac{d_m}{m}^q \varphi(a_m; f) = 0.
\]

Then at every point \(x \in [0, \infty) \) at which the limits \(f(x+), f(x-) \) exist we have
\[
\lim_{m \to \infty} (P_{m, \vartheta} f)(x) = \frac{f(x+)}{\vartheta + 1} + \frac{f(x-)}{\vartheta + 1}
\]

Obviously, the above relations hold true for every measurable function \(f \) bounded on \([0, \infty)\), in particular for every function \(f \) of bounded \(p \)-th power variation \((p \geq 1) \) on the whole interval \([0, \infty)\).

DOI: 10.9790/5728-1302030108 www.iiosrjournals.org 7 | Page
References

