On Weak m-power Commutative Near – rings and weak (m,n) power Commutative Near – rings

G.Gopalakrishnamoorthy1, S.Geetha2 and S.Anitha3

1Sri krishnasamy Arts and Science College, Sattur Tamilnadu.

2Dept. of Mathematics, Pannai College of Engineering and Technology, Keelakkandani, Sivagangai

3Dept. of Mathematics, Raja Doraisingam Government Arts College, Sivagangai

Abstract: A right near – ring N is called weak commutative if $xyz = xyz$ for every $x,y,z \in N$ (Definition 9.4 [10]). A right near – ring N is called pseudo commutative (Definition 2.1 [11]) if $xyz = yzx$ for all $x,y,z \in N$. A right near – ring N is called quasi – weak commutative (Definition 2.1 [7]) if $xyz = yxz$ for all $x,y,z \in N$. We call a right near – ring N to be weak m – power commutative if $x^m y = y^m x$ for all $x,y,z \in N$. N is said to be weak (m,n) power commutative near – ring if $x^m y^n = x^n y^m$ for all $x,y,z \in N$. In this paper we study and establish various results of weak m – power commutative near – ring and weak (m,n) power commutative near – ring.

I. Introduction

S.Uma, R.Balakrishnan and T.Tamizhchelvam [11] called a near – ring N to be pseudo commutative if $xyz = zyx$ for every $x,y,z \in N$. G.Gopalakrishnamoorthy and S.Geetha [4] called a ring R to be m power commutative if $x^m y = y^m x$ for all $x,y \in R$ where $m \geq 1$ is a fixed integer. They also called a ring R to be (m,n) power commutative if $x^m y^n = y^n x^m$ for all $x,y \in R$ where $m \geq 1$ and $n \geq 1$ are fixed integers. G.Gopalakrishnamoorthy and R.Veega [6] called a near – ring N to be pseudo m- power commutative if $x^m y z = z y^m x$ for all $x,y,z \in N$ where $m \geq 1$ is a fixed integer. G.Gopalakrishnamoorthy, N.Kamaraj and S.Geetha [7] defined a near – ring N to be quasi – weak commutative if $xyz = yxz$ for all $x,y,z \in N$. In this paper we define weak m – power commutative near – ring and weak (m,n) power commutative near – ring and establish some results.

II. Preliminaries

Throughout this paper N denotes a near – ring with atleast two elements. For any non-empty set A $\subseteq N$, we denote $A - \{0\}$ by A^*. In this section we present some known definitions and results which are useful in the development of this paper.

2.1 Definition [10]:
A near – ring N is called weak-commutative if $xyz = zyx$ for every $x,y,z \in N$.

2.2 Definition:
A right near- ring N is called weak anti-commutative if $xyz = -zyx$ for every $x,y,z \in N$.

III. Weak m- power commutative near - rings

3.1 Definition:
Let N be a near – ring. N is said to be weak m- power commutative if $x^m y z = xz^m y$ for all $x,y,z \in N$, where $m \geq 1$ is a fixed integer.

3.2 Definition:
Let N be a near – ring. N is said to be weak m- power anti-commutative if $x^m y z = -xz^m y$ for all $x,y,z \in N$, where $m \geq 1$ is a fixed integer.

3.3 Lemma:
Let N be a distributive near – ring. If $xyz = \pm xyz$ for all $x,y,z \in N$ then N is either Weak Commutative or Weak anti – Commutative.

Proof:
For each $a \in N$, let
$C_a = \{ x \in N / xaz = xza \ \forall \ \ z \in N \}$
$A_a = \{ x \in N / xaz = -xza \ \forall \ \ z \in N \}$

By the hypothesis of the lemma,
$N = C_a \cup A_a$

We note that if $x,y \in C_a$, then $x - y \in C_a$

For $x,y \in C_a$, implies $xaz = +xza \ \forall \ \ z \in N$ and $yaz = +yza \ \forall \ \ z \in N$ → (1)

which further gives $→ (2)$
On Weak \(m \)-power Commutative Near rings and weak \((m,n)\) power Commutative Near rings

\[(x - y)az = (x - y)za \quad \forall z \in N\]

which implies \((x - y) \in C_a\).

Similarly, if \(x, y \in A_b\), then \(x - y \in A_b\).

We claim that either \(N = C_a\) or \(N = A_b\).

Suppose \(N \neq C_a\) and \(N \neq A_b\), then there are elements \(b \in C_a - A_b\) and \(d \in A_b - C_a\).

Now \(b + d \in N = C_a \cup A_b\).

If \(b + d \in C_a\) then \(d = (b + d) - b \in C_a\), a contradiction.

If \(b + d \in A_b\) then \(b = (b + d) - d \in A_b\), again a contradiction.

Hence either \(N = C_a\) or \(N = A_b\).

Let \(A = \{a \in N / C_a = N\}\) and \(B = \{a \in N / A_b = N\}\)

Clearly \(N = A \cup B\).

We note that that if \(x, y \in A\), then \(x - y \in A\).

For if \(x, y \in A\) \(\Rightarrow\) \(C_a = N\) and \(C_y = N\),

This implies \(xza = xaz\) and \(yza = yaz\) for all \(a, z \in N\),

So \((x - y)za = (x - y)az\) for all \(a, z \in N\), which proves that \(x - y \in A\).

Similarly, if \(x, y \in B\), then \(x - y \in B\).

We claim that either \(N = A\) or \(N = B\).

Suppose \(N \neq A\) and \(N \neq B\), there are elements \(u \in A - B\) and \(v \in B - A\).

Now, \(u + v \in N = A \cup B\).

If \(u + v \in A\), then \(v = (u + v) - u \in A\), a contradiction.

If \(u + v \in B\), then \(u = (u + v) - v \in B\), again a contradiction.

Hence either \(N = A\) or \(N = B\).

This proves that \(N\) is either weak commutative or weak anti–commutative.

3.4 Lemma:

Let \(N\) be a near ring (not necessarily associative). If \(x \ y^mz = \pm x \ z^n y\) for all \(x, y, z \in N\), then \(N\) is either weak \(m\)–power commutative or weak \(m\)–power anti–commutative.

Proof:

For each \(a \in N\), let \(C_a = \{x \in N / xa^m = xz^m a \quad \forall z \in N\}\)

\(A_a = \{x \in N / xa^m = xz^m a \quad \forall z \in N\}\)

By the hypothesis of the lemma, \(N = C_a \cup A_a\).

We note that, if \(x, y \in C_a\) then \(x - y \in C_a\).

For \(x, y \in C_a\) implies \(xa^m = xz^m a \quad \forall z \in N\) \(\Rightarrow \) \(1\)

and \(ya^m = yz^m a \quad \forall z \in N\) \(\Rightarrow \) \(2\)

Equation (1) \(-\) (2) gives,

\[(x - y)a^m = (x - y)z^m a \quad \forall z \in N.
\]

\(\Rightarrow (x - y) \in C_a\).

Similarly \(x, y \in A_a\) implies \(x - y \in A_a\).

We claim that either \(N = C_a\) or \(N = A_a\).

Suppose \(N \neq C_a\) and \(N \neq A_a\), there are elements \(b \in C_a - A_a\) and \(d \in A_a - C_a\).

Now, \(b + d \in N = C_a \cup A_a\).

If \(b + d \in C_a\) then \(d = (b + d) - b \in C_a\), a contradiction.

Similarly, if \(b + d \in A_a\), then \(b = (b + d) - d \in A_a\), again a contradiction.

Hence either \(N = C_a\) or \(N = A_a\).

Let \(A = \{a \in N / C_a = N\}\)

and \(B = \{a \in N / A_a = N\}\)

Clearly \(N = A \cup B\).

We note that if \(x, y \in A\) implies \(x - y \in A\).

For if \(x, y \in A\) implies \(C_a = N\) and \(C_y = N\).

This implies \(xa^m = xa^m z\) and \(yz^m a = ya^m z\) for all \(a, z \in N\).

So, \((x - y) z^m a = (x - y) a^m z\) for all \(a, z \in N\), which proves that \(x - y \in A\).

Similarly \(x, y \in B\) implies \(x - y \in B\).

We claim that either \(N = A\) or \(N = B\).

Suppose \(N \neq A\) and \(N \neq B\), there are elements \(u \in A - B\) and \(v \in B - A\).

Now, \(u + v \in N = A \cup B\).

If \(u + v \in A\), then \(v = (u + v) - u \in A\), a contradiction.
If $u + v \in B$, then $u = (u + v) - v \in B$, again a contradiction. Hence either $N = A$ or $N = B$. This proves that N is either weak m– power commutative or weak m– power anti–commutative.

3.5 Note: When $m = 1$, we get Lemma 3.3.

3.6 Definition: Let N be a near-ring and $m \geq 1$ and $n \geq 1$ be fixed integers. N is said to be weak (m,n) power commutative, if $xy^mx^n = xz^my^n$ for all $x,y,z \in N$.

3.7 Definition: Let N be a near-ring and $m \geq 1$ and $n \geq 1$ be fixed integers. N is said to be weak (m,n) power anti-commutative, if $xy^mx^n = -xz^my^n$ for all $x,y,z \in N$.

3.8 Lemma: Let N be a near–ring (not necessarily associative) satisfying $(x-y)^k = x^k - y^k$ for $k = m,n$ where $m \geq 1$ and $n \geq 1$ are fixed integers. If $xy^mx^n = \pm xz^my^n$ for all $x,y,z \in N$, then N is either weak (m,n) power commutative or weak (m,n) power anti-commutative.

Proof: For each $a \in N$, let $C_a = \{ x \in N : xa^mz^n = yz^ma^n \forall z \in N \}$

$A_a = \{ x \in N : xa^mz^n = -yz^ma^n \forall z \in N \}$

By the hypothesis of the lemma, $N = C_a \cup A_a$

We note that, if $x,y \in C_a$ then $x - y \in C_a$

For $x,y \in C_a$ implies $xa^mz^n = yz^ma^n \forall z \in N$ (1)

and $ya^mz^n = yz^ma^n \forall z \in N$ (2)

Equation (1) – (2) gives,

$(x - y)a^mz^n = (x - y)z^ma^n \forall z \in N.$

$\Rightarrow (x - y) \in C_{a^m}$

Similarly $x,y \in A_a$ implies $x - y \in A_a$

We claim that either $N = C_a$ or $N = A_a$.

Suppose $N \neq C_a$ and $N \neq A_a$, there are elements $b \in C_a - A_a$ and $d \in A_a - C_a$.

Now, $b + d \in N = C_a \cup A_a$.

If $b + d \in C_a$ then $d = (b + d) - b \in C_a$, a contradiction.

Similarly, if $b + d \in A_a$, then $b = (b + d) - d \in A_a$, again a contradiction.

Hence either $N = C_a$ or $N = A_a$.

Let $A = \{ a \in N : C_a = N \}$

and $B = \{ a \in N : A_a = N \}$

Clearly $N = A \cup B$.

We note that if $x,y \in A$ implies $x - y \in A$.

For if $x,y \in A$ implies $C_x = N$ and $C_y = N$.

This implies $xz^ma^n = xa^mz^n$ and $yz^ma^n = ya^mz^n$ for all $a,z \in N$.

So, $(x - y)z^ma^n = (x - y)a^mz^n$ for all $a,z \in N$, which proves that $x - y \in A$.

Similarly $x,y \in B$ implies $x - y \in B$.

We claim that either $N = A$ or $N = B$.

Suppose $N \neq A$ and $N \neq B$, there are elements $u \in A - B$ and $v \in B - A$.

Now, $u + v \in N = A \cup B$.

If $u + v \in A$, then $v = (u + v) - u \in A$, a contradiction.

If $u + v \in B$, then $u = (u + v) - v \in B$, again a contradiction.

Hence either $N = A$ or $N = B$.

This proves that N is either weak (m,n)– power commutative or weak (m,n)– power anti–commutative.

3.9 Note: When $m = n = 1$, we get Lemma 3.3. When $n = 1$, we get Lemma 3.4.

References

On Weak m-power Commutative Near – rings and weak (m,n) power Commutative Near – rings

