On ray properties of Hurwitz polynomials

Taner Büyükköroğlu, Vakif Dzhafarov
Department of Mathematics, Faculty of Science, Anadolu University, Turkey

Abstract: In this paper, we investigate some geometric properties of the Hurwitz set which corresponds to the set of stable monic polynomials in a parameter space. We firstly consider the segment stability. After we study properties of rays in the Hurwitz sets, which corresponds with inclusion or non-inclusion of certain rays in the Hurwitz sets.

Keywords: Hurwitz polynomials, monic polynomials, ray properties, segment stability

I. Introduction

The celebrated theorem Kharitonov [1] on the stability of prisms of polynomials gave an impetus to the research in this old and ever-important field and in the last decades many new results concerning stability of diamonds, edges, segments, polygons, polytopes etc. have been obtained (see [2-15]). A remarkable new approach has been towards understanding the geometry (and topology) of (all or part of) stable polynomials.

First of all, we identify a non-monic polynomial \(p(s) = a_0 s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n \) with the point (or vector) \((a_0, a_1, \ldots, a_n) \in \mathbb{R}^{n+1} \). A stable (or Hurwitz) polynomial is a polynomial with roots lying in the open left half of the complex plane. (A necessary but not sufficient condition for stability is that all of \(a_0, a_1, \ldots, a_n \) have the same sign. There are well-known necessary and sufficient conditions for stability such as the Routh-Hurwitz and Hermite-Bieler criteria and the separation property [16-17])

We will denote the set of such vectors by \(\mathcal{H}^+ \subseteq \mathbb{R}^{n+1} \) and the subset of \(\mathcal{H}^+ \) with positive leading coefficients \(a_0 > 0 \) with \(\mathcal{H}_0^+ \). The important special case of monic polynomials \(a_0 = 1 \), which for the consideration of stability are equivalent to the general case, are thus identified with vectors of the form \((1, a_1, \ldots, a_n) \). On the other hand, they are often identified with the vector \((a_1, a_2, \ldots, a_n) \in \mathbb{R}^n \) and this causes a minor nuisance of notation. To prevent ambiguity, we will denote the set of stable monic polynomials by \(\mathcal{H}_0^+ \) if they are taken as elements \((1, a_1, \ldots, a_n) \in \mathbb{R}^{n+1} \), and by \(\mathcal{H}_0^+ \) if they are taken as elements \((a_1, a_2, \ldots, a_n) \in \mathbb{R}^n \). Unless explicitly stated otherwise, we will represent the \(n \)th order monic polynomials

\[
p(s) = s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n
\]

with \((a_1, a_2, \ldots, a_n) \in \mathbb{R}^n \).

Thus, the open sets \(\mathcal{H}_0^+ \subseteq \mathbb{R}^{n+1} \) and \(\mathcal{H}_0^+ \subseteq \mathbb{R}^n \) are defined as follows:

- \((a_0, a_1, \ldots, a_n) \in \mathcal{H}_0^+ \iff a_0 > 0 \) and the polynomial \(p(s) = a_0 s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n \) is stable.
- \((a_1, a_2, \ldots, a_n) \in \mathcal{H}_0^+ \iff \) the polynomial \(p(s) = s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n \) is stable.

It is obvious that for \(k > 0 \) and \(p = (a_1, a_2, \ldots, a_n) \in \mathcal{H}_0^+ \)

\[
kp \in \mathcal{H}_0^+ \iff \text{the polynomial } p_k(s) = s^n + ka_1 s^{n-1} + \ldots + ka_n s^{n-k+1} \text{ is stable.
}

The first geometric property of interest is the convexity and it is well-known that \(\mathcal{H}_0^+ \) (and thus \(\mathcal{H}_0^+ \)) is non-convex. The next question of interest is the following: Given two elements from \(\mathcal{H}_0^+ \) (or \(\mathcal{H}_0^+ \)), under which conditions it can be stated that the segment in \(\mathbb{R}^{n+1} \) (or \(\mathbb{R}^n \)) with these end points belong to \(\mathcal{H}_0^+ \) (or \(\mathcal{H}_0^+ \))? Several authors gave results and discussions in this direction (see [4,6]), but the most important result is due to Rantzer [3] and implies the others. In Section 2, we give a simple new case (Remark 1) and some important consequence (Corollary 1 and Corollary 2) not obtainable by Rantzer’s theorem.

Section 3 contains the main results where we investigate some other geometric properties of rays, but before stating them we want to introduce some additional terminology. Given a vector \(p \in \mathbb{R}^n \) (which corresponds to a monic polynomial of degree \(n \)), we call the set \(\{kp : k > 0\} \subseteq \mathbb{R}^n \) the radial ray through \(p \). Likewise, we will call the set \(\{kp : k \geq 1\} \subseteq \mathbb{R}^n \) the radial ray starting at \(p \) and the set \(\{kp : 0 < k < 1\} \subseteq \mathbb{R}^n \) the radial ray till \(p \). Now we state the properties proven in Section 3. Given any vector \(p \in \mathcal{H}_0^+ \) \((n \geq 3) \), there exists \(k_0 \in (0,1) \) such that the part \(\{kp : 0 < k \leq k_0\} \) of the radial ray till \(p \) lies outside \(\mathcal{H}_0^+ \) and the part \(\{kp : k_0 < k \leq 1\} \) lies inside \(\mathcal{H}_0^+ \) (Theorem 1).

On the other hand, for every \(n \geq 2 \) there is a vector \(p \in \mathcal{H}_0^+ \) (actually infinitely many) such that the radial ray starting at \(p \) lies completely inside \(\mathcal{H}_0^+ \) (Theorem 2). For \(n = 2,3 \) and 4 all radial rays starting at any \(p \in \mathcal{H}_0^+ \) lie completely in \(\mathcal{H}_0^+ \).
II. Segment-Stability And Properties Concerning Rays

The following result comes from [6]: Given two stable polynomials \(p(s) = a_0 s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n \) and \(q(s) = b_0 s^n + b_1 s^{n-1} + \cdots + b_{n-1} s + b_n \), then the segment \([p, q]\) is stable if \(a_i = b_i \) either for even entries or odd entries (consult also [8,9,13]).

Proposition 1 Let \(p(s) = a_0 s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n \) and \(q(s) = b_0 s^n + b_1 s^{n-1} + \cdots + b_{n-1} s + b_n \) be stable polynomials. If even (or odd) part of \(q(s) \) is a positive scalar multiple of the even (or odd) part of \(p(s) \) then the segment \([p, q]\) of their convex combinations is also stable.

It is enough to see this for the case of even parts, the case of odd parts being similar. One can re-arrange \(p(s) \) and \(q(s) \) as \(p(s) = h(s^2) + sg_1(s^2), q(s) = kh(s^2) + sg_2(s^2) \) where \(k > 0 \) is a fixed scalar. Denote \(q_1(s) = q(s) \), then the convex combination of \(p(s) \) and \(q(s) \) is stable by [6]. Hence for every \(\lambda_1 \geq 0, \lambda_2 \geq 0, \lambda_1 + \lambda_2 > 0 \) the polynomial \(\lambda_1 p(s) + \lambda_2 q(s) \) is stable, since

\[
\lambda_1 p(s) + \lambda_2 q(s) = (\lambda_1 + \lambda_2) \frac{\lambda_1}{\lambda_1 + \lambda_2} p(s) + \frac{\lambda_2}{\lambda_1 + \lambda_2} q(s)
\]

Therefore, assigning \(\lambda_1 = (1 - \lambda) \) and \(\lambda_2 = k\lambda \) the polynomial \(\lambda_1 p(s) + \lambda_2 q_1(s) = (1 - \lambda)p(s) + \lambda q(s) \) is stable for all \(\lambda \in [0,1] \).

Corollary 1 Let \(p(s) = s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n \) and \(q(s) = s^n + b_1 s^{n-1} + \cdots + b_{n-1} s + b_n \) be stable polynomials. Identify \(p(s) \) with \((a_1, a_2, \ldots, a_n) \) and \(q(s) \) with \((b_1, b_2, \ldots, b_n) \) and assume that \(b_1, b_2, \ldots, b_n \) is \(k \) times \(a_1, a_2, \ldots, a_n \) for a positive scalar \(k \). Then the segment \([p, q]\) in \(\mathbb{R}^n \) is stable. In other words, segments on radial rays with stable end points are stable.

Proof. Either the even or odd parts of \(p \) and \(q \) are proportional according to \(n \) being odd or even. The result follows from Proposition 1. \(\square \)

Corollary 2 If the radial ray emanating from the origin enters the \(\mathbb{H}^n \) and then leaves it, it cannot re-enter it. In other words, for \(p \in \mathbb{H}^n \) if \(k_0 \in \mathbb{H}^n \) for \(k_0 < 1 \) then \(kp \in \mathbb{H}^n \) for any \(k < k_0 \) and similarly if \(k_1 p \in \mathbb{H}^n \) for \(k_1 > 1 \), then \(kp \notin \mathbb{H}^n \) for any \(k > k_1 \).

We now prove the theorems stated in the introduction.

Theorem 1 For any vector \(p \in \mathbb{H}^n \): (\(n \geq 3 \), there exists \(k_0 \in (0,1) \) such that

- \(kp \notin \mathbb{H}^n \) for all \(k \) with \(0 < k \leq k_0 \)
- \(kp \in \mathbb{H}^n \) for all \(k \) with \(k_0 < k < 1 \)

Proof. By the separation property of stable polynomials, a necessary and sufficient condition for \(p(s) = s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n \) to be stable is that the curve \(p(j\omega), \) where \(0 \leq \omega < \infty \), cuts the real and imaginary axes alternatively \(n \) times precisely.

If \(n = 4m \) then for

\[
k_1 = -\frac{\omega^n}{a_n - a_{n-2} \omega^2 + \cdots - a_2 \omega^{n-2}}
\]

we have \(0 < k_1 < 1 \) and \(p_{k_1}(j\omega) = 0 \), where \(p_{k_1}(s) = s^n + ka_1 s^{n-1} + ka_2 s^{n-2} + \cdots + ka_n \) and \(\omega \) corresponds with the point of intersection with the real axis. If \(n = 4m + 1 \) then for

\[
k_2 = -\frac{\omega^n}{a_{n-1} \omega + a_{n-3} \omega^3 + \cdots - a_2 \omega^{n-2}}
\]

we have \(0 < k_2 < 1 \) and \(p_{k_2}(j\omega) = 0 \), where \(\omega \) corresponds with the point of intersection with the imaginary axis. Similar procedure can be applied to the cases \(n = 4m + 2 \) and \(n = 4m + 3 \). Thus for any \(n \geq 3 \) and any \(p \in \mathbb{H}^n \) there exists \(k \in (0,1) \) such that \(k(a_1, a_2, \ldots, a_n) \notin \mathbb{H}^n \). From Corollary 2 the desired result follows. \(\square \)

Theorem 1 shows that if we move radially towards the origin starting from an arbitrary polynomial \(p \in \mathbb{H}^n \), then we certainly leave \(\mathbb{H}^n \).

The following properties are about what can happen when we move in reverse direction.

Theorem 2 For \(n \geq 2 \) there exists infinitely many \(p \in \mathbb{H}^n \) such that \(kp \in \mathbb{H}^n \) for all \(k \geq 1 \). To prove this theorem we first prove the following proposition.

Proposition 2 Let \(q(s) = a_1 s^{n-1} + a_2 s^{n-2} + \cdots + a_n \) be a stable polynomial. Then there exists \(\varepsilon_0 > 0 \) such that for all \(\varepsilon \) with \(0 < \varepsilon \leq \varepsilon_0 \) the polynomial \(p_\varepsilon(s) = \varepsilon s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n \) is stable.

Proof. Let \(n \) be an even number. Then we can write \(q(s) = q_1(s^2) + q_2(s^2) \), where \(q_1(u) \) and \(q_2(u) \) are polynomials of order \(m = \frac{n}{2} \). Let \(u_1, u_2, \ldots, u_m \) and \(v_1, v_2, \ldots, v_m \) denote the roots of \(q_1(u) \) and \(q_2(u) \) respectively. Then by the Hermite-Biehler theorem.

DOI: 10.9790/5728-1206058790 www.iojsrjournals.org 88 | Page
The polynomial $p_k(s)$ can be written as $p_k(s) = \left[s^n + a_1s^{n-1} + \ldots + a_n\right]$ where $n \geq 5$ and a_n is a stable polynomial. From Proposition 2 it follows that for all $k \geq 1$ the polynomial

$$p_k(s) = \frac{1}{t} s^n - a_1 s^{n-1} + \ldots + a_n$$

is stable. If we choose $p = (t_0 a_1, t_0 a_2, \ldots, t_0 a_n)$, then $p \in \mathcal{H}_1^n$ and for all $k \geq 1$ we have $kp \in \mathcal{H}_1^n$. □

Proposition 3 For $n = 2, 3$ and 4 the property stated in Theorem 2 is true for all $p \in \mathcal{H}_1^n$.

The proof is omitted.

Remark 1 It might seem that the Proposition 2 could plausibly be expected to be "naturally" true but the situation is more intricate than it seems, because there comes a surprise when we add two small terms: Let $s^n + 2s^{n-1} + \ldots$ be stable polynomial, then for no $\varepsilon > 0$ the polynomial $\varepsilon s^{n+2} + \varepsilon s^{n+1} + s^n + 2s^{n-1} + \ldots$ is stable.

Theorem 3 Let $n \geq 5$. Then for all $k > 0$, $k \neq 1$, there exists $p = (a_1, a_2, \ldots, a_n) \in \mathcal{H}_1^n$ such that $kp = (ka_1, ka_2, \ldots, ka_n) \in \mathcal{H}_1^n$. That is to say the polynomial $p(s) = s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n$ is stable but $p_k(s) = s^n + ka_1 s^{n-1} + \ldots + ka_{n-1} s + ka_n$ is not stable.

Proof. The proof is based on the Hermite-Biehler theorem. Suppose that n is an odd integer and $m = \frac{n-1}{2}$.

Choose arbitrary numbers v_1, v_2, \ldots, v_m satisfying $v_1 < v_2 < \ldots < v_m < 0$ and define the polynomial $g(u) = (u - v_1)(u - v_2) \cdots (u - v_m) = u^m - b_m u^{m-1} - \ldots - b_1 u + b_0$. Let $k > 0, k \neq 1$ is given. Consider the polynomials $g_k(u) = u^m + kb_m u^{m-1} + \ldots + kb_1 u + kb_0$. Firstly suppose that the roots of $g_k(u)$ satisfies the condition $v_1 < v_2 < \ldots < v_m < 0$. It is not difficult to see that $g(u)$ and $g_k(u)$ have no common root. Then we can find u_1, u_2, \ldots, u_m satisfying $v_1 < u_1 < v_2 < u_2 < \ldots < v_m < u_m < 0$ and not satisfying at least one of the following inequities $v_1 < u_1 < v_2 < u_2 < \ldots < v_m < u_m < 0$ (here we use $m \geq 2$). The Hermite-Biehler theorem ensures that $p(s) = h(s^2) + sg(s^2)$ is stable, where $h(u) = (u - u_1)(u - u_2) \cdots (u - u_m)$. If we write down $p(s)$ as $p(s) = s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n$ then $p_k(s) = s^n + ka_1 s^{n-1} + \ldots + ka_{n-1} s + ka_n = kh(s^2) + sg_k(s^2)$ and the Hermite-Biehler theorem also guarantees the unstability of $p_k(s)$.

If the roots of $g_k(u)$ does not satisfy $v_1 < v_2 < \ldots < v_m < 0$ then $p_k(s)$ is also unstable. By a similar scheme one may prove the theorem for even n. □

Remark 2 As it is seen from the proof of Theorem 3, the point p depends on v_1, v_2, \ldots, v_m. By changing these numbers we can obtain infinitely many p satisfying Theorem 3.

Corollary 3 There exists a point $p \in \mathcal{H}_1^n, (n \geq 5)$ with the following property: There exists a number $k_0 > 1$ such that

- $kp \in \mathcal{H}_1^n$ for all $1 \leq k < k_0$,
- $kp \in \mathcal{H}_1^n$ for all $k \geq k_0$.

Proof. Choose $k = 2$. Then by Theorem 3 there exists $p \in \mathcal{H}_1^n$ such that $2p \not\in \mathcal{H}_1^n$. Then the claim follows from Corollary 2. □

Remark 3 There exists a radial ray in the positive quadrant of \mathbb{R}^n which lies completely outside $\mathcal{H}_1^n (n \geq 4)$. The polynomial $p_k(s) = s^n + ks^{n-1} + ks^{n-2} + \ldots + ks + k$ is unstable for all $k > 0$. But for $n = 3$ there is no such ray.

III. Conclusion

In this paper it is established that in a parameter space of polynomials segments on radial rays with stable end points are stable. We show that there is a stable vector such that the radial ray starting at this point lies completely inside the stability region. We also show that for any positive scalar differing one, there exists a stable vector such that the multiplication of this vector by this scalar is not stable.

References

On ray properties of Hurwitz polynomials