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Abstract: In this paper we will present some properties of generalized k-Fibonacci sequence
Ui =KU, 1 +U, U, o =0,U,; =kq by matrix methods (Multiplication and Addition of Matrices) such as
the nth power for the matrix representation of generalized k-Fibonacci sequence, Cassini’s Identity of generalized
k-Fibonacci sequence and some identities will be presented on the relations between k-Fibonacci and generalized
k-Fibonacci sequence.
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. Introduction
Many authors have studied k-Fibonacci humbers by different ways to discuss the different properties of
these numbers in [4, 6, 8, 9]. The well-known Fibonacci numbers and k-Fibonacci numbers are defined as
F.=F+F,, n>LF=0F=1 (1.2)
Fk‘n+1 = ka,n + Fk,n—l' nx1, Fk,o =0, Fk,l =1 (1.2)
In addition to this many researchers from time to time studied the Fibonacci numbers in terms of

matrices. In 1960 Charles H. King introduced and studied the matrix for classical Fibonacci numbers in his Master
thesis which is known as Q-matrix which is to be discussed in the koshy’s book [10] and Q-matrix is given as

Q= 11 then Q" = Fra P
- 1 0 - F I:n—l

He showed with the help of matrices and determinants that
F.,F_,—F?=(=1)" which is known as Cassini’s Identity.

n+l" n-1

After that in 1983 1983 Sam Moore introduced M- matrix for classical Fibonacci numbers for this case one can
see [10] and M-matrix is defined as

11 F F
Q — then Qn _ 2n-1 n
1 2 I:2n I:2n+1

In [7] Silvester derived a number of properties of the Fibonacci sequence by considering a matrix representation if

it A=|® 2 then an[O]=| U
11 17 ..,

In [3] many properties have been presented about Fibonacci and Lucas sums with the help of two cross two
matrices which are given as

5

5 0 5
2 and K =
1 10

2
In [5] authors discussed the matrix representations of Jacobsthal and Jacobsthal-Lucas numbers. In which they
considered Jacobsthal F-matrix and Jacobsthal M-matrix and these are defined as

11 32 Jpa 23 3, 2]
F= and M = then E" =| ™ n and M" =| “2 2n
10 12 J, 23, Jon 23, 4

where J is the nth Jacobsthal number. In [1] authors derived results for k-Fibonacci and k-Lucas sequences

and obtained a Binet’s form of these sequences by matrix diagonalization. In doing so they considered a matrix
F which is called a generating matrix.

01 F . F
F :( j then F" =| "% "
1 k Fk,n Fk,n+1

S:

NI, N~
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In [2] Godase gave the matrix properties of generalized k-Fibonacci Like sequence to do so he considered a two
cross two matrix P and proved an one of the important result as follows

01 MkyrH,l Mk,n n m+k 2
F= then =P
1 k M, My, 2 m-k

where M, =mF_ +L ,, n>0

Il. Two Cross Two Matrix Representation of a Generalized k-Fibonacci Sequence

So in the present paper we are going to study a generalized k-Fibonacci sequence by some matrix
methods after using a two cross two matrix representation for the generalized k-Fibonacci sequence. Hence the
generalized k-Fibonacci is defined as
Definition 2.1. For the integers n>0 and k >0 and for fixed positive integer g the generalized k-Fibonacci

sequence is recurrently defined by

Uiz =kUpps +U 0, Uy o =0, Uy =kg (2.1)
and the two cross two matrix representation for the generalized k-Fibonacci sequence is given as
2
U= k+1 k (2.2)
k 1
I11. Main Results

Theorem 3.1. For any positive integer n the nth power of a matrix U is given by

Un = ql(uk,Zn Uk,anJ (3.1)

u k,2n-1 u k.,2n-2
Proof: To prove the result we shall use induction onn.

o afYeze Ui kZ+1 k . L .
Forn=1,U"=q U u. |z " L] that is true using initial conditions of the sequence. Suppose that
k.1 k,0

(3.1) is true for n . Now we show that (3.1) is true for n+1 then
U™ =gt Uean  Uiona [kz +1 kj
Uk,Zn—l Uk,2n—2 k 1
_k(kUk,Zn +Uk,2n—1)+Uk,2n Uk,2n+1
| K(kUy on1 +Uy202) #Ug 200 Uian

—kUk,2n+l +Uk,2n Uk,2n+1
kUk,Zn +Uk,2n—1 Uk,Zn

U n+l — q—l

U n+1 — qfl

Uk,2n+1 Uk,2n

Hence the result.

Uml :qfl_Uk,2n+2 Uk,2n+1]

Theorem 3.2. For any positive integer n the nth power of a matrix U is given by

F R
U"Z[ k,2n41 k,2n J 3.2)

I:k,2n Fk,2n—1
Proof: To prove the result we shall use induction onn .

F K 2
3 “? = K+l k , that is true using initial conditions of the sequence. Suppose that
Fk,z Fk,l k 1

(3.2) is true for n. Now we show that (3.2) is true for n+1 then

U n+l _ I:k,2n+1 Fk,2n [kz +1 kJ
Fk,Zn Fk,Zn—l k 1

For n=1,U" =q‘1[
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U™ = kZFk,2n+1 + P ona +KF o0
K2Fy o0 + Fieon + KF o
U™ = KR 2042 + Feana Fk,2n+2J
KF 2nia + Fi 2n Fe2na
U™ = Fk,2n+3 Fk,2n+zJ
Fe2ni2 Feani
as required.

KR 21 *+ Fean
ka,Zn + Fk,Zn—l

Theorem 3.3. For any positive integer n

Uy 20 =AF2na

(3.3)

Proof: By equating the equations (3.1) and (3.2) we can get the desired result.

Theorem 3.4. (Cassini’s Identities) For any positive integer n

2 2
Uy 2nYi2n2 Ui na = 9" and

2 _
Fk,2n+1Uk,2n—1 - Fk,2n =1

(3.4)
(3.5)

Proof: The ongoing theorem can be simply proved by using concept of determinant to matrices U and U"in

equations (2.1), (3.1) and (3.2).

Theorem 3.5. For any positive integer n

Uk,2n =Uk,n I:k,n+1 +Uk,n—1Fk,n (36)
Uk,2n—1 :Un,k Fk,n +Uk,n—1Fk,n—1 (37)
nhon
Proof: U"=U2U2
U gug _ q_l Uk,n Uk,n—l l:k,n+1 Fk,n
Uk,n—l Uk,n—2 I:k,n I:k,n—l
U %U % _ ql(u k.,n Fk,n+1 +Uk,n—le,n Uk,n Fk,n +U k,n—le,n—l J
UnaFicnn TYin2Fn UinaFon tYin2Fina
U U, o
But U" = ql[ o o 1] hence we get
Uk,Zn—l Uk,2n—2
Uk,2n :Uk,n I:k,n+1+uk,n—1Fk,n and
Uk,Zn—l :Un,k Fk,n +Uk,n—1Fk,n—l
Theorem 3.6. For any integers nand m
Uy znizm =YianFiom Yk 2naFioms 121 m20 (3.7)
Uy aniams =Y Fiom FYk2naFoma, NiM21 (3.8)

Proof:
U n+m — U nU m

U n+m _ ql[uk,Zn
Uk,Zn—l
U n+m o _ ql[

k,2n+2m U k,2n+2m-1

But UMM = (

U k,2n+2m-1 U k,2n+2m-2

Uy anizm =Yk 2nFicom Yk 2n1Ficom

Uy aniom-1 =Y anFiom Ui onaFioma

Uk,an] [Fk,Zerl
Uk,2n—2 Fk,Zm

Uy onFiomit Yk onaFiom

Uy onaFi2mia + Yk 2n2Fic om

I:k,2m J
Fk,Zm—l

k2nFicam T Y onaFiama J

k2n-1Fiom Tk 2n2Fioma

U
U

J then we get the desired result as
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Theorem 3.7. For any integers nand m

Uk,2n—2m :Uk,2nUk,2m—2 _Uk,2n—1Uk,2m—1’ nm=1 n=m
U on-ama =YUinaYiom ~Yk2sUkame, MM2L n2m
Proof:

U n-m :U n(U m)—l

u n-m _ q_l[UK,Zn Uk,Zn—l Jq[uk,ZmZ _Uk,ZmlJ_1
Uk,Zn—l Uk,2n—2 _Uk,2m—1 Uk,2m

U n-m _ q,z (Uk,ZnUk,ZmZ -U k,2n—1U k,2m-1 -U k,ZnU k,2m-1 +U k,2n—1U k,2m J
Uk,Zn—IUk,Zm—Z _Uk,Zn—ZUk,Zm—l _Uk,2n—lUk,2m—1 +Uk,2n—2Uk,2m

But U n-m _ ql[uk,Zan u k,2n-2m-1 j

U k,2n-2m-1 U k,2n-2m-2
Therefore
Uk,2n—2m :Uk,ZnUk.Zm—Z _Uk,2n—1Uk.2m—1’ nm=1 n=m

Uionama =Y n Y om ~Uk2sUkams, MM2L n2m

Theorem 3.8. For any integers nand m
Uk,2n—2m = Uk,zn Fk,2m—1 _Uk,2n—1Fk,2m—1' nm=1 nzm

Uk,2n—2m—1 :Uk,Zn—le,Zerl _Uk,Zn Fk,Zm’ nm=1 nzm
Proof: It can be proved same as theorem (3.7)

Theorem 3.9. For any integers nand m

U . = Uy 2niom Yk 2n-2m
k,2n —

, hym>1 n>m
Ui om TYkomo

Proof:
qUn+m+qUn—m=Un(qu+qU—m)

-1
U m U M U m U me
ql jn+m ql jn-m _yn ( k,2 k,2m-1 ] 2( k,2 k,2m-1 ]

Uk,Zm—l Uk,Zm—Z Uk,Zm—l Uk,Zm—Z
B -1
Ui Yeoms) (Yeamz  —Uyom.
qU n+m+qUn—m —uy" ( k,2 k,2 1]+ k,2m-2 k,2m-1
Uk,Zm—l Uk,2m—2 _Uk,Zm—l Uk,Zm

qU n+m +qU n-m _Un(uk,Zm +Uk,2m—2 O J
0 Ui om2 +Uk om

qU n+m 4 qU n-m _ q_l{uk,ZH Uk,anJ (Uk,Zm +Uk,2m—2 0 J

Uk,2n—1 Uk,2n—2 0 Uk,Zm—Z +Uk,2m

UianWiom tYioma)  UionaUgomo Uy o)
Uk,Zn—l(Uk,Zm +Uk,2m—2) Uk,2n—2 (Uk,Zm—Z +Uk,2m)

Uk,2n+2m +Uk,2n—2m Uk,2n+2m—1 +Uk,2n—2m—1}

Uk,2n+2m—1 +Uk,2n—2m—l Uk,2n+2m—2 +Uk,2n—2m—2

qU n+m + qU n-m _ q—l(
Since qU™™ +quU™™" =[

Therefore,

qilUk,Zn (Uk,Zm +Uk,2m—2) :Uk,2n+2m +Uk,2n—2m
Hence,

Uk,2n+2m +Uk‘2n—2m
Upon =
0 U, ,, +U
k,2m k,2m-2

(3.9)
(3.10)

(3.11)
(3.12)

(3.13)
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Theorem 3.10. For any integers nand m

Ukyzn:quk,2n+2m +Uk,2n—2m , n,le, n>m (314)
Feoma + Foma

Theorem 3.11. For any positive integer n

Uy 2ns k?+1 k\(F
( k,2n 1} _ q( + k,2n (3.15)
Uk,2n k 1 I:k,Zn—l
Proof: Here we shall use induction onn. Indeed the result is true for n=1. Assume that the result is true forn.
Now we show that the result is true for n+1then

Uk,2n+3 kUk,2n+2 +Uk,2n+1j

Uk,2n+2 Uk,2n+2

c C

2
k,2n+3 k Uk,2n+l + I(Uk,Zn +Uk,2n+1]

k,2n+2 Uk,2n+2

kenms | k?+1 kj Uy onu
Uk,2n+2 k 1 Uk,2n

Since the result is true for n then

C

Uy 2nis _ k?+1 k)(k®+1 k} ( Fe2n j
Uznz) Lk 1k 1) R
Uy 2ni3 k2+1 k)(k*+1 k ksz,zn +Fon t KR 20
Uome) Lk 1)1 k 1} [ KF, o+ Fe ona J
Uy 2nis _q k?+1 k) (KRznat Fk,ZnJ
Uy 2nez k 1 Fe2na
Uy 2nis _ k?+1 k Fk,2n+2j
Uy 2ne2 - k 1)\ Fzna
as required.

Corollary 3.12. For any positive integer n

(Uk,zmj _ {kz +1 k] (Uk,an] (3.16)
Uk,Zn k 1 Uk,Zn—Z

Proof: It can be easily seen by using the concept of theorem (3.3) in theorem (3.11) and after that we get the
desired result.

Theorem 3.13. For any positive integer n

Uy zn- k2+1 k) (F
( k,2 l]=({ + k,2 (3.16)
Uk,Zn k 1 Fk,l
Proof: To prove the result we shall use induction on n. Clearly the result is true for n =1. Assume that the result
is true for n. Now we show that the result is true for n+1 then

o+ K) (Fz) (K241 k oKL K "(Fez
k 1) (F, k 1) k 1)(F,
q k?+1 k " Fe.z _ k?+1 k) (Yionu
k 1) (Fo k 1)\ U

q k2 +1 k ml{Fk,zJ_(kUk,ZnJrz +Uk,2n+1J
k 1 Fea KUy 2001 U520
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q k?+1 k n+1 Fe2 B KUy 2ni2 U ona
k 1 Fea KUy 2001 U520
q{kz +1 kJnﬂ[Fk,zJ B (Uk,2n+3J
k 1 Fk,l Uk,2n+2
as required.

Corollary 3.14. For any positive integer n

U, one 2 "(U
kanit | _ k“+1 Kk ki (3.17)
Uk,Zn k 1 Uk,O
Theorem 3.15. For any integers nand m
AUy 2niomia =Yi oYk zna T Yk om Ui 20 120, m21 (3.18)
AUy 2nizm =Y omaYi 21 FYiom Ui o 20, m21 (3.19)
1
Proof: we can prove it easily by using U~ 2=U"U 2
Theorem 3.16. For any integers nand m
AUy onizma =Yk ome2Uk 201 Yk amaUk 2n2r N2L m=0 (3.20)

Proof:

Since

(Uk,2n+lJ —U (UK,an J
Uk,Zn Uk,2n—2

Multip

(Y

! (U

Uy 2ma J (Uk,znuJ B (Uk,2m+2 Uk,2m+1] (Uk,anj

4 Uianz Uiz ) (Uizna Uian U anz

Uy 2nYk 200 T Y am Ui an ] _ {U kamJk2n1 TUx 2mal k,ZnZJ
AUiana T amaUkan B

Uk,Zm
Uk,2m

Uk,2m

lying both sides by U™, we get

]
k,2n+1 1 k,2n-1
— U m-+:
k,2n J Uk,2n—2

UiomaYiona FUx oY oz

+

Now by using theorem (3.15), we have

AUy oniomi 3 Ui amiY k201 Yk omaYion2
AUy oni2om
Hence,

UiamiY ik 2na Yk 2mYian-2

AUy 2ns2mis =Yk zme2Yk2n1 F YUk 2miYk an-2

IVV. Conclusion

In the present paper properties of generalized k-Fibonacci sequence have been presented by matrix methods.
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