Regular Weakly Generalized Locally Closed Sets in Ideal Topological Spaces

1S.Maragathavalli and 2C.R.Parvathy
1Department of Mathematics, Govt. Arts College, Udumalpet, Tamilnadu, India
2Department of Mathematics, PSGR Krishnammal College for women, Coimbatore, Tamilnadu, India

Abstract: In this paper we have introduced the concept of regular weakly generalized locally closed sets in ideal topological spaces. Properties and characterizations are discussed.

Keywords: \(I_{rwg}lc \) set, \(I_{rwg}lc^+ \) set, \(I_{rwg}lc^{**} \) set.

I. Introduction

A nonempty collection \(I \) of subsets on a topological space \((X, \tau) \) is called a topological ideal [3] if it satisfies the following two conditions:

(i) If \(A \in I \) and \(B \subseteq A \) implies \(B \in I \) (heredity)
(ii) If \(A \in I \) and \(B \in I \), then \(A \cup B \in I \) (finite additivity)

Local function in topological spaces using ideals was introduced by Kuratowski [3]. Donchev [2] introduced the concept of I-locally closed sets. After that Navaneetha Krishnan and Sivaraj [4] introduced \(I \)-locally \(*\) closed sets and \(I_e \)-locally \(*\) closed sets.

II. Preliminaries

Definition 2.1.: A subset \(A \) of a topological space \((X, \tau, I) \) is called

(i) \(I \)-locally \(*\) closed [4] if there exist an open set \(U \) and a \(*\) closed set \(F \) such that \(A = U \cap F \),
(ii) \(I_e \)-locally \(*\) closed [4] if there exist an \(I_e \)-open set \(U \) and a \(*\) closed set \(F \) such that \(A = U \cap F \).

Definition 2.2: For a subset \(A \) of a topological space \((X, \tau) \) is said to be

(i) \(GLC^*(X, \tau) \) if there exist a \(g \)-open set \(U \) and a closed set \(F \) of \((X, \tau) \) such that \(A = U \cap F \),
(ii) \(GLC^{**}(X, \tau) \) if there exist a \(g \)-open set \(U \) and a \(g \)-closed set \(F \) of \((X, \tau) \) such that \(A = U \cap F \).

Definition 2.3: A subset \(A \) of an ideal topological space \((X, \tau, I) \) is called a

(i) \(rpsIlc\)-set [5] if there exists a \(rpsI \)-open set \(U \) and a \(rpsI \)-closed set \(F \) of \((X, \tau, I) \) such that \(A = U \cap F \),
(ii) \(rpsIlc^+\)-set [5] if there exists a \(rpsI \)-open set \(U \) and a closed set \(F \) of \((X, \tau, I) \) such that \(A = U \cap F \),
(iii) \(rpsIlc^{**}\)-set [5] if there exists a \(rpsI \)-open set \(U \) and a \(rpsI \)-closed set \(F \) of \((X, \tau, I) \) such that \(A = U \cap F \).

III. \(I_{rwg}LC \) SETS AND \(I_{rwg}LC^+ \) SETS

In this section, regular weakly generalized locally closed sets are and introduced.

Definition 3.1: A subset \(A \) of an ideal topological spaces \((X, \tau, I) \) is said to be a regular weakly generalized locally closed \((I_{rwg}LC) \) set if \(A = U \cap F \) where \(U \) is \(I_{rwg}\)-open and \(F \) is \(I_{rwg}\)-closed in \(X \).

Definition 3.2: A subset \(A \) of an ideal topological space \((X, \tau, I) \) is said to be \(I_{rwg}LC^+ \) if there exist an \(I_{rwg}\)-open set \(U \) and a \(I_e \)-closed set \(F \) of \(X \) such that \(A = U \cap F \).

Definition 3.3: A subset \(A \) of an ideal topological spaces \((X, \tau, I) \) is said to be \(I_{rwg}LC^{**} \) if there exist a \(I_{rwg}\)-open set \(U \) and a \(I_e \)-closed set \(F \) of \(X \) such that \(A = U \cap F \).

The collection of all \(I_{rwg}LC \) - sets (resp. \(I_{rwg}LC^+ \) and \(I_{rwg}LC^{**} \)) of \((X, \tau, I) \) is denoted by \(I_{rwg}LC \) in \((X, \tau) \) (resp. \(I_{rwg}LC^+ \) in \((X, \tau) \) and \(I_{rwg}LC^{**} \) in \((X, \tau) \)).

Theorem 3.4: For a ideal topological space \((X, \tau, I) \) the following implications hold.

(i) \(ILC(X, \tau) \subseteq IRWGLC(X, \tau) \subseteq IRWGLC^+(X, \tau) \subseteq IRWGLC^{**}(X, \tau) \)
(ii) \(ILC(X, \tau) \subseteq IRWGLC^{**}(X, \tau) \subseteq IRWGLC(X, \tau) \)

The reverse implications need not be true as seen from the following example.

Example 3.5: Let \(X = \{ a, b, c \} \), \(\tau = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, X \} \), \(I = \{ \emptyset, \{a\} \} \), then \(Ilc \) closed sets are \(\{ \emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, X \} \) and the \(I_{rwg}LC \) sets are \(\{ \emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, X \} \). Hence \(\{a,c\} \) is an \(I_{rwg}LC \) sets but not \(Ilc \) set.

Example 3.6: Let \(X = \{ a, b, c, d \} \), \(\tau = \{ \emptyset, \{a\}, \{b\}, \{a,b\}, X \} \), \(I = \{ \emptyset, \{a\} \} \), then \(Ilc \) closed sets are \(\{ \emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{a,b,c\}, \{a,c,d\}, \{b,c,d\}, X \} \) and the \(I_{rwg}LC \) sets are \(\{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{a,b,c\}, \{a,c,d\}, \{b,c,d\}, X \} \). Hence \(\{a,d\} \) are \(I_{rwg}LC \) sets but not \(Ilc \) set.

DOI: 10.9790/5728-1206055052 www.iosrjournals.org 50 | Page
Theorem 3.7: Let A be any subset of X, then
(i) A is inweg-closed in X if and only if A = inweg cl(A)
(ii) inweg cl(A) is inweg-closed in X
(iii) x ∈ inweg cl(A) if and only if A ∩ U ≠ ∅ for every inweg-open set U containing x.

Proof: (i) and (ii) are trivially true.
(iii) Suppose that there exists an inweg-open set U containing x such that A ∩ U ≠ ∅. Since X − U is inweg-closed and A ⊆ X − U, inweg cl(A) ⊆ X − U. Therefore x ∈ inweg cl(A). Conversely suppose that x ∉ inweg cl(A). Then U = X − inweg cl(A) is inweg-open set containing x and A ∩ U = ∅.

Theorem 3.8: For a subset A of (X, τ, I), the following statements are equivalent.
(i) A ∈ inweg LC(X, τ)
(ii) A = U ∩ inweg cl(A) for some inweg-open set U.
(iii) inweg cl(A) − A is inweg-closed.
(iv) AU (X − inweg cl(A)) is inweg-open.

Proof: (i) ⇒ (ii) Suppose A ∈ inweg LC(X, τ). Then there exists an inweg-open subset U and inweg-closed subset F such that A = U ∩ F. Since A ⊆ U and A ⊆ inweg cl(A), A ⊆ U ∩ inweg cl(A). Also by Theorem 3.7, inweg cl(A) is inweg-closed in X. Hence inweg cl(A) ⊆ F and U ∩ inweg cl(A) ⊆ U ∩ F = A. Therefore A = U ∩ inweg cl(A).
(ii) ⇒ (i) By Theorem 3.7, inweg cl(A) is inweg-closed and hence A = U ∩ inweg cl(A) ∈ inweg LC(X, τ).

Theorem 3.9: For a subset A of (X, τ, I), the following statements are equivalent.
(i) A ∈ inweg LC′(X, τ)
(ii) A = U ∩ cl(A) for some inweg-open set U.
(iii) cl'(int(A)) − A is inweg-closed.
(iv) AU (X − cl'(int(A))) is inweg-open.

Proof: The proof is similar to that of above theorem.

Theorem 3.10: Let A be a subset of (X, τ, I). If A ∈ inweg LC''(X, τ) then inweg cl(A) − A is inweg-closed and A ∪ (X − inweg cl(A)) is inweg-open.

Proof: Let A ∈ inweg LC''(X, τ). Then there exists an open set U such that A = U ∩ inweg cl(A). A U (X − inweg cl(A)) = (U ∩ inweg cl(A)) U (X − inweg cl(A)) = U ∩ inweg cl(A) U (X − inweg cl(A)) = U ∩ A = open. Since every open set is inweg-open, A U (X − inweg cl(A)) is inweg-open. Let W = A U (X − inweg cl(A)). Then W is inweg-open implies W = X − inweg cl(A) closed and W = X − (A U (X − inweg cl(A))) = inweg cl(A) ∩ A = inweg cl(A) − A. Thus inweg cl(A) − A is inweg-closed.

Theorem 3.11: Let A and B be subsets of (X, τ, I). If A ∈ inweg LC(X, τ) and B is inweg-open, then A ∩ B ∈ inweg LC(X, τ).

Proof: Let A ∈ inweg LC(X, τ). Then A = U ∩ F where U is inweg-open and F is inweg-closed. So A ∩ B = U ∩ F ∩ B = U ∩ B = F. This implies that A ∩ B ∈ inweg LC(X, τ).

Theorem 3.12: Let A and B be subsets of (X, τ, I). If A ∈ inweg LC′(X, τ) and B ∈ inweg LC′(X, τ) then A ∩ B ∈ inweg LC′(X, τ).

Proof: Let A and B ∈ inweg LC′(X, τ). Then there exists inweg-open sets P and Q such that A = P ∩ cl(A) and B = Q ∩ cl(B). Therefore A ∩ B = P ∩ cl(A) ∩ Q ∩ cl(B) = P ∩ Q ∩ cl(A) ∩ cl(B) where P ∩ Q is inweg-open and cl(A) and cl(B) is closed. This shows that A ∩ B ∈ inweg LC′(X, τ).

Theorem 3.13: If A ∈ inweg LC''(X, τ) and B is inweg-open, then A ∩ B ∈ inweg LC''(X, τ).

Proof: Let A ∈ inweg LC''(X, τ). Then there exists an open set U and an inweg-closed set F such that A = U ∩ F. So A ∩ B = U ∩ F ∩ B = U ∩ B = F. This proves that A ∩ B ∈ inweg LC''(X, τ).

Theorem 3.14: Let A and B be subsets of (X, τ, I). If a and b are inweg-open in (X, τ, I) and A ∈ inweg LC' (Z, τZ), then A ∈ inweg LC' (X, τ).

Proof: Suppose that A is inweg cl', then there exists an inweg-open set U of (Z, τZ) such that A = U ∩ cl(A). But cl(A) = Z ∩ cl(A). Therefore, A = U ∩ Z ∩ cl(A) where U ∩ Z is inweg-open. Thus A ∈ inweg LC' (X, τ).
References

