Exact Value of pi $\pi(17-8 \sqrt{ } 3)$

Mr. Laxman S. Gogawale
Fulora co-operative society, Dhankawadi, Pune-43 (India)

Abstract

It is believed that pi (π) is a transcendental number. In author's opinion, it is not the fact. The paper aims at showing that pi (π) is an algebraic number with exact value $17-8 \sqrt{ } 3$. The derivation of this value is supported by several geometrical constructions, arithmetic calculations and use of some simple algebraic formulae.

I. Introduction

Determination of the ratio of circumference of circle with its diameter has been a problem of much more interest in the field of mathematics since thousands of years. The ratio of circumference of circle/diameter is denoted by a Greek letter π. It is believed that the constant pi (π) is a transcendental number. Its value has been computed correct up to several trillions of digits. For practical purpose the value of pi is taken approximately equal to $22 / 7,355 / 113$ etc. However, the eminent mathematicians of the world suffer from a serious drawbacks while using the methods such as use of infinite series, trigonometry, division of area of circle into infinite symmetric parts n sided polygon and many others, as we cannot measure the end point quantities exactly. This causes an obvious limitation on obtaining exact value of pi.
The sections which follow, describe the derivation for "Exact" value of pi which is a creation of the author. In author's opinion the exact value of pi is $17-8 \sqrt{ } 3$.
I have made many proofs \& here I am giving one of them.
Basic figures

Basic information

Note: let a, b, c \& d each part shows area
Area of inscribed hexagon $=12 \mathrm{a} \quad=(1.5 \sqrt{ } 3) \mathrm{r}^{2} \quad a=(0.125 \sqrt{ } 3) \mathrm{r}^{2}$
Area of inscribed dodecagon $=(12 a+12 b)=3 r^{2}=($ area of circle $-12 c)$
$(12 a+12 b)-12 a \quad=12 b \quad=(3-1.5 \sqrt{ } 3) r^{2} \quad b=(0.25-0.125 \sqrt{ } 3) r^{2}$

Area of circumscribed square $=(12 a+12 b+12 c+4 d)=4 r^{2} \quad=($ area of circle $+4 d)$ Area of circle $=(12 a+12 b+12 c)=\left(3 r^{2}+12 c\right)=\left(4 r^{2}-4 d\right)=\pi r^{2}$
$\pi=(3+12 c) \quad=(4-4 d)$
As we know, the exact area of inscribed dodecagon $=3 r^{2}$. In order to calculate exact area of circle, we have to calculate exact area of 12c. Hence there is no need to divide whole circle into infinite number of parts to calculate its accurate area. How to estimate the exact values of part 12c \& part $\mathbf{4 d}$?
Area of circumscribed square $=(12 a+12 b+12 c+4 d)=(16 a+16 b)$
i.e.

I found that:
i.e.

From previous information: $(14 b-2 a-3 c)=0$,
Therefore: $x(14 b-2 a-3 c)=0 \quad$ (Note: x is any number)
For example: Area of circle $+x(14 b-2 a-3 c) \quad=$ area of circle +0
$=(12 a+12 b+12 c)+4(14 b-2 a-3 c)$
$=(12 a+12 b+12 c)+(56 b-8 a-12 c)=4 a+68 b \quad=$ area of circle
$=\left[4(0.125 \sqrt{ } 3) r^{2}+68(0.25-0.125 \sqrt{ } 3) r^{2}\right]=\left[(0.5 \sqrt{ } 3) r^{2}+(17-8.5 \sqrt{ } 3) r^{2}\right]$
$=(17-8 \sqrt{ } 3) r^{2}$
$=$ area of circumscribed square $=4 r^{2}=(12 \mathrm{a}+12 \mathrm{~b}+12 \mathrm{c})+4 \mathrm{~d} \quad=$ area of circle +4 d
$=(4 a+68 b)+4 d$
$4 d=4 r^{2}-(17-8 \sqrt{3}) r^{2}=(8 \sqrt{3}-13) r^{2}$
$d=(2 \sqrt{ } 3-3.25) r^{2}$
Area of inscribed dodecagon $=3 r^{2}=(12 a+12 b+12 c)-12 c \quad=$ area of circle $-12 c$

$$
=(4 a+68 b)-12 c
$$

$$
12 c=(17-8 \sqrt{ } 3) r^{2}-3 r^{2}=(14-8 \sqrt{ } 3) r^{2}
$$

$$
3 \mathrm{c} \quad=(3.5-2 \sqrt{ } 3) \mathbf{r}^{2}
$$

Supported work:

	$\left.\begin{array}{l} \text { Area of circumscribed dodecagon }=12(2-\sqrt{ } 3) r^{2} \\ =96 b=(12 a+12 b+12 c)+y \\ =(4 a+68 b)+y \\ =(17-8 \sqrt{ } 3) r^{2}+y \end{array}\right\} \begin{aligned} & y=(24-12 \sqrt{3}) r^{2}-(17-8 \sqrt{ } 3) r^{2} \\ & =(7-4 \sqrt{ } 3) r^{2}=6 c \\ & =2(3.5-2 \sqrt{ } 3) r^{2} \\ & \text { i.e. area of circumscribed dodecagon } \\ & =\text { area of circle }+6 c \end{aligned}$

$$
\begin{aligned}
& (12 a+12 b+12 c+4 d)-(16 a+16 b)=0 \\
& =(-4 a-4 b+12 c+4 d)=0 \\
& (4 a+4 b=12 c+4 d) \\
& (a+b=3 c+d) \\
& (a+b-3 c-d)=0 \\
& (14 b-2 a-3 c)=0 \\
& (13 b+d-3 a)=0 \\
& (14 b-2 a-3 c)-(13 b+d-3 a)=(a+b-3 c-d)=0 \\
& (14 b-2 a-3 c)=(13 b+d-3 a)
\end{aligned}
$$

Proof of previous equations:

Exact area		Derived area	
			$12 a+12 b+12 c+6 c=$ Ares of Circumscribed Dodecagon
Area of inscribed dodecagon $=3 r^{2}=\mathbf{1 2 a}+12 b$ $=$ area of circle $(-12 c)$	$\begin{aligned} & \text { Area of circumscribed } \\ & \text { square }=4 r^{2}=16 a+16 b \\ & =\text { area of circle }+(4 d) \end{aligned}$	$\begin{aligned} & \text { Area of circumscribed } \\ & \text { hexagon }=(2 \sqrt{ } 3) r^{2}=16 a \\ & =\text { area of circle }+(2 d-9 \mathrm{c}) \end{aligned}$	```Area of circumscribed dodecagon = 12(2-\sqrt{}{3}) (r = 96b = area of circle + (6c)```

Proof of exact area equal to derived area
[Area of circumscribed 3 square + area of 4 inscribed dodecagon) $\left.=\left[3\left(4 \mathbf{r}^{2}\right)+\mathbf{4 (3 r ^ { 2 }}\right)\right]=24 \mathbf{r}^{2}$
$=[$ area of circumscribed (6 hexagon +1 dodecagon) $] \quad=\left\{6(2 \sqrt{ } 3) r^{2}+1[12(2-\sqrt{ } 3)]\right\} r^{2}=24 r^{2}$

Exact area	= Derived area
$\begin{aligned} & \text { [Area of circumscribed } 3 \text { square } \\ & =\text { area of } 3 \text { circle }+3(4 d) \end{aligned}$	$\begin{aligned} &=\text { [area of circumscribed } 6 \text { hexagon } \\ &=\text { area of } 6 \text { circle }+6(2 d-9 c) \end{aligned}$
+ area of inscribed 4 dodecagon	+ area of circumscribed 1 dodecagon
$\begin{aligned} & =\text { area of }(3+4) \text { circle }+(12 d-48 \mathrm{c}) \\ & =\text { area of } 7 \text { circle }+(12 d-48 \mathrm{c}) \end{aligned}$	$\begin{aligned} & =\text { area of }(6+1) \text { circle }+(12 d-54 c)+6 c \\ & =\text { area of } 7 \text { circle }+(12 d-48 c) \end{aligned}$

I have tried to verify the above equations by using other value of $\mathbf{p i} \pi$ but answer doesn't match.
If $\mathbf{p i}$ is an approximate value or transcendental number then exact area cannot be equal to derived area.
I got method by using it we can solve infinite examples similar to above
Area of 1 inscribed dodecagon + area of 2 circumscribed dodecagon
$=($ area of 1 circle $-12 \mathrm{c})+($ area of 2 circle $+12 \mathrm{c}) \quad=$ area of 3 circle
$\left.=3 r^{2}+2\left[12(2-\sqrt{ } 3) r^{2}\right]=\left[3 r^{2}+(48-24 \sqrt{ } 3) r^{2}\right]=(51-24 \sqrt{ } 3) r^{2}\right]=3(17-8 \sqrt{ }) r^{2}$
Area of circumscribed (2 hexagon +3 dodecagon) $=$ [area of 2 circle $+2(2 d-9 c)+$ area of 3 circle $+3(6 \mathrm{c})]$
$=$ area of $(2+3)$ circle $+(4 d-18 c)+18 c \quad=($ area of 5 circle $+4 d)$
$=$ area of 4 circle $+($ area of 1 circle $+4 d)=$ area of $(4$ circle +1 circumscribed square $)$
Area of 4 circle $=2(2 \sqrt{ } 3) r^{2}+3\left[12(2-\sqrt{ } 3) r^{2}\right]-1\left(4 r^{2}\right) \quad=\left[(4 \sqrt{ } 3) r^{2}+(72-36 \sqrt{ } 3) r^{2}-1\left(4 r^{2}\right)\right]=4(17-8 \sqrt{ } 3) r^{2}$

II. Supported work

We know that:
(Area of circle $+4 d$) = area of circumscribed square
$=(12 a+12 b+12 c+4 d)=(16 a+16 b) \quad$ exact equations
Area of circumscribed hexagon $=16 \mathrm{a}=$ area of circle $+(2 \mathrm{~d}-9 \mathrm{c})$
i.e. Area of circle $=(16 a+9 c-2 d)$

Area of circumscribed square $=(16 a+9 c-2 d)+4 d \quad=(16 a+9 c+2 d) \quad$ derived equation
Area of circumscribed dodecagon $=96 \mathrm{~b}=$ area of circle +6 c
i.e. Area of circle $=(96 b-6 c)$

Area of circumscribed square $\quad=(96 b-6 c)+4 d \quad$ derived equation
Area of circle $=(4 a+68 b)$
Area of circumscribed square $\quad=(4 a+68 b)+4 d \quad$ derived equation
Proof of derived equations equal to exact equations: Area of circumscribed square

Derived equations	$=$ exact equations
$(16 \mathrm{a}+9 \mathrm{c}+2 \mathrm{~d})=(96 \mathrm{~b}-6 \mathrm{c}+4 \mathrm{~d})=(4 \mathrm{a}+68 \mathrm{~b}+4 \mathrm{~d})$	$=(12 \mathrm{a}+12 \mathrm{~b}+12 \mathrm{c}+4 \mathrm{~d})=(16 \mathrm{a}+16 \mathrm{~b})$
Area of $(4+1)$ circumscribed square	$=$ area of $(3+2)$ circumscribed square
$=4(16 \mathrm{a}+9 \mathrm{c}+2 \mathrm{~d})]+1(4 \mathrm{a}+68 \mathrm{~b}+4 \mathrm{~d})$	$=3(12 \mathrm{a}+12 \mathrm{~b}+12 \mathrm{c}+4 \mathrm{~d})+2(16 \mathrm{a}+16 \mathrm{~b})$
$=(64 \mathrm{a}+36 \mathrm{c}+8 \mathrm{~d})+(4 \mathrm{a}+68 \mathrm{~b}+4 \mathrm{~d})$	$=(36 \mathrm{a}+36 \mathrm{~b}+36 \mathrm{c}+12 \mathrm{~d})+(32 \mathrm{a}+32 \mathrm{~b})$
$=(68 \mathrm{a}+68 \mathrm{~b}+36 \mathrm{c}+12 \mathrm{~d})$	$=(68 \mathrm{a}+68 \mathrm{~b}+36 \mathrm{c}+12 \mathrm{~d})$
Area of $(10+1+1)$ circumscribed square	$=$ area of $(7+5)$ circumscribed square
$=10(16 \mathrm{a}+9 \mathrm{c}+2 \mathrm{~d})]+1(96 \mathrm{~b}-6 \mathrm{c}+4 \mathrm{~d})+1(4 \mathrm{a}+68 \mathrm{~b}+4 \mathrm{~d})$	$=7(12 \mathrm{a}+12 \mathrm{~b}+12 \mathrm{c}+4 \mathrm{~d})+5(16 \mathrm{a}+16 \mathrm{~b})$
$=(160 \mathrm{a}+90 \mathrm{c}+20 \mathrm{~d})+(96 \mathrm{~b}-6 \mathrm{c}+4 \mathrm{~d})+(4 \mathrm{a}+68 \mathrm{~b}+4 \mathrm{~d})$	$=(84 \mathrm{a}+84 \mathrm{~b}+84 \mathrm{c}+28 \mathrm{~d})+(80 \mathrm{a}+80 \mathrm{~b})$
$=(164 \mathrm{a}+164 \mathrm{~b}+84 \mathrm{c}+28 \mathrm{~d})$	$=(164 \mathrm{a}+164 \mathrm{~b}+84 \mathrm{c}+28 \mathrm{~d})$
Area of $(22+1+4)$ circumscribed square	$=$ area of $(16+11)$ circumscribed square

Algebraic method: note x is any number

s. r. no.	Derived equations	$=(96 b-6 c+4 d)$	$=(4 a+68 b+4 d)$	$=(12 a+12 b+12 c+4 d)$	$=(16 a+16 b)$
	$(16 a+9 \mathrm{c}+2 \mathrm{~d})$	$=(9 x a c t ~ e q u a t i o n s ~$	2 x		
1	4 x		x	3 x	$2 \mathrm{x}+1$
2	$4 \mathrm{x}+2$	1	$\mathrm{x}-1$	$3 \mathrm{x}+1$	$2 \mathrm{x}+1$
3	$4 \mathrm{x}+2$	-1	$\mathrm{x}+2$	$3 \mathrm{x}+2$	

For example no. $1 \quad x=5$

$5[4(16 a+9 c+2 d)]+5(4 a+68 b+4 d)$		$=5[3(12 a+12 b+12 c+4 d)]+5[2(16 a+16 b)]$
$=(320 a+180 c+40 d)+(20 a+340 b+20 d)$	$=(180 a+180 b+180 c+60 d)+(160 a+160 b)$	
$=(340 a+340 b+180 c+60 d)$		$=(340 a+340 b+180 c+60 d)$

Using derived equations \& found area of circle:
Area of 3 circumscribed square $=(16 a+9 c+2 d)+(96 b-6 c+4 d)+(4 a+68 b+4 d)$

$$
\begin{aligned}
& =20 a+164 b+3 c+10 d \\
& =20 a+164 b+(3 c+d)+(10 d-d) \\
& =20 a+164 b+(a+b)+9 d \\
& =21 a+165 b+9 d
\end{aligned}
$$

(Area of circumscribed square $-\mathbf{4 d}=$ area of circle)

$$
(21 a+165 b+9 d)-9 d
$$

$=($ Area of 2.25 circumscribed square $-9 \mathrm{~d})+$ area of $(3-2.25)$ circumscribed square
$=(21 a+165 b)=$ area of 2.25 circle +0.75 circumscribed square
$=21(0.125 \sqrt{ } 3) \mathbf{r}^{2}+165(0.25-0.125 \sqrt{ } 3) r^{2}$
$=(2.625 \sqrt{ } 3) r^{2}+(41.25-20.625 \sqrt{ } 3) r^{2}$
$=(41.25-18 \sqrt{ } 3) r^{2}$
Area of 2.25 circle $=(41.25-18 \sqrt{ } 3) \mathbf{r}^{2} \mathbf{- 0 . 7 5}\left(4 r^{2}\right)$

$$
=(38.25-18 \sqrt{ } 3) \mathrm{r}^{2}
$$

Area of circle $\quad=(38.25-18 \sqrt{ } 3) \mathbf{r}^{2} / 2.25$

$$
=(17-8 \sqrt{ } 3) r^{2}
$$

One more example:

Area of $(2+3)$ circumscribed square $=2(16 a+9 c+2 d)+3(96 b-6 c+4 d)$
$=(32 a+18 c+4 d)+(288 b-18 c+12 d)=(32 a+288 b+16 d)$
$(32 a+288 b+16 d)-16 d \quad$ (area of circumscribed square $-4 d=$ area of circle)
$=($ Area of 4 circumscribed square $-16 d)+$ area of $(5-4)$ circumscribed square
$=(32 a+288 b)=$ area of 4 circle +1 circumscribed square
$=32(0.125 \sqrt{ } 3) \mathrm{r}^{2}+288(0.25-0.125 \sqrt{ } 3) \mathrm{r}^{2}$
$=(4 \sqrt{ } 3) r^{2}+(72-36 \sqrt{ } 3) r^{2}$
$=(72-32 \sqrt{ } 3) r^{2}$
Area of 4 circle $=(72-32 \sqrt{ } 3) r^{2}-1\left(4 r^{2}\right)$

$$
=(68-32 \sqrt{ } 3) r^{2}
$$

Area of circle $=(68-32 \sqrt{ } 3) r^{2} / 4=(17-8 \sqrt{ } 3) r^{2}$

III. Conclusions

Exact Area of circle $=(17-8 \sqrt{ } 3) \mathbf{r}^{2}$

References

[1]. Exact area of equilateral triangle formula $=(\sqrt{3} \div 4) \times$ side 2, Area of circumscribed hexagon $=(2 \sqrt{3}) r^{2}$, Area of circumscribed dodecagon $=12(2-\sqrt{3}) r^{2}$
[2]. Basic Algebra \& Geometry concept, History of pi (π) Complete thesis of my research titled as "Exact value of pi" has being published in following journals:
[3]. IOSR(international organization scientific research) journal of mathematics in May-June 2012
[4]. IJERA (international journal of Engineering research and applications) in July-August 2013.
[5]. IJMSI (international journal of mathematics and Statistics Invention) in Feb. 2015
[6]. Soft copy of my thesis is now also available on internet and one can get it by making search with following keywords: "Gogawale pi"
3.1435935394489816517804292679530210644575579695169549755535441643845358647295997033508305 059420113945949908686767463757602404392400083801695067559032450108117752541447815553434562 014391913226006138798775012538647734169067946219626486252962301836229467170571072958476001 077009611248842587972199473915939470532149631511924191825024773993348333638083213360176814 0393...

Laxman Gogawale

