Solution of a Variational inequality Problem for Accretive Operators in Banach Spaces

${ }^{1}$ Renu Chugh and ${ }^{2}$ Rekha Rani*
${ }^{l}$ Department of Mathematics, Maharshi Dayanand University, Rohtak (INDIA).
${ }^{2}$ Department of Mathematics, A. I. J. H. M. College, Rohtak (INDIA) *rekhadalal93@gmail.com

Abstract

This paper introduces a two-step iterative process for finding a solution of a variational inequality problem for accretive operators in Banach spaces. The result obtained in this paper is motivated by the result given by Koji Aoyama et al [3]. Further, we consider the problem of finding a fixed point of a strictly pseudocontractive mapping in a Banach space.

Keywords: Accretive operators, sunny non-expansive retractions, Banach spaces, variational inequality problem.

I. Introduction

Let E be any smooth Banach space with $\|$.$\| . Let \mathrm{E}^{*}$ denote the dual of E and $<\mathrm{x}, \mathrm{f}>$ denote the value of $f \in E^{*}$ at $x \in E$. Let C be a nonempty closed convex subset of E and let A be an accretive operator of C into E. The generalized variational inequality problem in Banach space is to find an element $u \in C$ such that $<A u, J(v-u)>\geq 0 \forall v \in C$, where J is the duality mapping of E into E^{*}.

Definiton 1.1 A Banach space E is called uniformly convex iff for any $\varepsilon, 0<\varepsilon \leq 2$, the inequalities $\|\mathrm{x}\| \leq 1$, $\|\mathrm{y}\| \leq 1$ and $\|\mathrm{x}-\mathrm{y}\| \geq \varepsilon$ imply there exists a $\delta>0$ such that $\left\|\frac{x+y}{2}\right\| \leq 1-\delta$.
Definition 1.2 Let E be any smooth Banach space. Then a function $\rho_{E}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$is said to be modulus of smoothness of E if

$$
\rho_{E}(\mathrm{t})=\sup \left\{\frac{\|x+y\|+\|x-y\|}{2}-1 ;\|x\|=1,\|y\|=t\right\} .
$$

Definition 1.3 A Banach space E is said to be uniformly smooth if

$$
\lim _{t \rightarrow 0} \frac{\rho_{E}(t)}{t}=0
$$

Remark 1.4 Let $\mathrm{q}>1$. A Banach space E is said to be q -uniformly smooth if there exists a fixed constant $\mathrm{c}>0$ such that $\rho_{E}(\mathrm{t})=\mathrm{ct}^{\mathrm{q}}$ for all $\mathrm{t}>0$. For more details, see $[4,11]$. It is obvious that if E is q -uniformly smooth, then $\mathrm{q} \leq 2$ and E is uniformly smooth.

Definition 1.5 Let J be any mapping from E into E^{*} satisfying $J(x)=\left\{f \varepsilon E^{*}:\langle x, f\rangle=\|x\|^{2}\right.$ and $\left.\|f\|=\|x\|\right\}$. Then J is called the normalized duality mapping of E.

Definition 1.6 Let C be a non-empty subset of a Banach space E . A mapping $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ is called nonexpansive [10] if
$\|\mathrm{Tx}-\mathrm{Ty}\|=\|\mathrm{x}-\mathrm{y}\| \quad \forall \mathrm{x}, \mathrm{y} \varepsilon \mathrm{C}$.
T is called η-strictly pseudo-contractive if there exists a constant $\eta \varepsilon(0,1)$ such that
$<T x-T y, j(x-y)>\leq\|x-y\|^{2}-\eta\|(I-T) x-(I-T) y\|^{2}$
for every $x, y \varepsilon C$ and for some $j(x-y) \varepsilon J(x-y)$.
It is obvious that (1.1) is equivalent to
$<(\mathrm{I}-\mathrm{T}) \mathrm{x}-(\mathrm{I}-\mathrm{T}) \mathrm{y}, \mathrm{j}(\mathrm{x}-\mathrm{y})>\geq \eta\|(\mathrm{I}-\mathrm{T}) \mathrm{x}-(\mathrm{I}-\mathrm{T}) \mathrm{y}\|^{2}$
Definition 1.7 A Banach space E is said to be smooth if the limit
$\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ exists for all $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{U}$, where $\mathrm{U}=\{\mathrm{x} \varepsilon \mathrm{E}:\|\mathrm{x}\|=1\}$.

Remark 1.8 It is known that $J_{q}(x)=\|x\|^{q-2} J(x)$ for all $x \varepsilon E$. If E is a Hilbert space, then $J=I$. The normalized duality mapping J has the following properties:

1. If E is smooth, then J is single valued.
2. If E is strictly convex, then J is one-one and $\left\langle\mathrm{x}-\mathrm{y}, \mathrm{x}^{*}-\mathrm{y}^{*}\right\rangle>0$ for all $\left(\mathrm{x}, \mathrm{x}^{*}\right),\left(\mathrm{y}, \mathrm{y}^{*}\right) \varepsilon \mathrm{J}$ with $\mathrm{x} \neq \mathrm{y}$.
3. If E is reflexive, then J is surjective.
4. If E is uniformly smooth, then J is uniformly norm to norm continuous on each bounded subset of E .
5. It is also known that $q<y-x, j_{x}>\leq\|y\|^{q}-\|x\|^{q}$ for all $x, y \varepsilon E$ and $j_{x} \varepsilon J_{q}(x)$.

In 2006, Aoyama et al [3] obtained a weak convergence theorem.
Theorem 1.9 [3] Let E be a uniformly convex and 2-uniformly smooth Banach space with best smooth constant K and C be a nonempty closed convex subset of E . Let Q_{C} be a sunny nonexpansive retraction from E onto C, α >0 and A be α-inverse strongly accretive operator of C into E. Let $S(C, A) \neq \varphi$ and the sequence $\left\{x_{n}\right\}$ be generated by
$\mathrm{x}_{\mathrm{n}+1}=\alpha_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}+\left(1-\alpha_{\mathrm{n}}\right) \mathrm{Q}_{\mathrm{C}}\left(\mathrm{x}_{\mathrm{n}}-\lambda_{\mathrm{n}} \mathrm{Ax}_{\mathrm{n}}\right), \mathrm{x}_{1} \in \mathrm{C}, \mathrm{n}=1,2,3, \ldots \ldots \ldots \ldots$,
where $\left\{\lambda_{n}\right\}$ is a sequence of positive real numbers and $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ and $\lambda_{n} \in\left[a, \alpha / K^{2}\right]$ for some a >0 and let $\alpha_{n} \in[b, c]$, where $0<b<c<1$, then $\left\{x_{n}\right\}$ converges weakly to some element z of $S(C, A)$.
After that for finding a common element of $\mathrm{F}(\mathrm{S}) \cap \mathrm{VI}(\mathrm{C}, \mathrm{A})$, Nadezhkina and Takahashi [5] gave another result. They obtained the following weak convergence theorem.

Theorem 1.2 [5] Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone and kLipschitz continuous mapping of C into H and let S be a nonexpansive mapping of C into itself such that F (S) $\cap \operatorname{VI}(\mathrm{C}, \mathrm{A}) \neq \phi$. Let $\left\{\mathrm{x}_{\mathrm{n}}\right\},\left\{\mathrm{y}_{\mathrm{n}}\right\}$ be sequences generated by $\quad \mathrm{x}_{0}=\mathrm{x} \in \mathrm{C}$, $\mathrm{y}_{\mathrm{n}}=\mathrm{P}_{\mathrm{C}}\left(\mathrm{x}_{\mathrm{n}}-\lambda_{\mathrm{n}} \mathrm{Ax}_{\mathrm{n}}\right)$,
$\mathrm{x}_{\mathrm{n}+1}=\alpha_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}+\left(1-\alpha_{\mathrm{n}}\right) \operatorname{SP}_{\mathrm{C}}\left(\mathrm{x}_{\mathrm{n}}-\lambda_{\mathrm{n}} A \mathrm{y}_{\mathrm{n}}\right), \quad \forall \mathrm{n} \geq 0$,
where $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in(0,1 / k)$ and $\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(0,1)$. Then the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ generated generated by (1.3) converge weakly to some $z \in F(S) \cap \operatorname{VI}(C, A)$.
Motivated by above results, we provide the following iterative process for an accretive operator A in a Banach space E,
$\mathrm{x}_{1}=\mathrm{x} \varepsilon \mathrm{C}$,
$\mathrm{y}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{C}}\left(\mathrm{x}_{\mathrm{n}}-\lambda_{\mathrm{n}} \mathrm{Ax}_{\mathrm{n}}\right)$,
$x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) Q_{C}\left(y_{n}-\lambda_{n} A y_{n}\right)$, for $n=1,2 \ldots \ldots \ldots \ldots \ldots$,
where Q_{C} is sunny nonexpansive retraction from E onto C . Using this iterative process, we shall obtain a weak convergence theorem.

II. Preliminaries

Let D be a subset of C and Q be a mapping from C to D. Then Q is said to be sunny if $Q(Q x+t(x-$ $\mathrm{Qx}))=\mathrm{Qx}$, whenever $\mathrm{Qx}+\mathrm{t}(\mathrm{x}-\mathrm{Qx}) \varepsilon \mathrm{C}$ for $\mathrm{x} \varepsilon \mathrm{C}$ and $\mathrm{t} \geq 0$. A mapping $\mathrm{Q}: \mathrm{C} \rightarrow \mathrm{C}$ is called retraction if $\mathrm{Q}^{2}=$ Q. If Q is any retraction, then $Q z=z$ for every $z \& R(Q)$, where $R(Q)$ is the range set of Q. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto D.
Now we collect some results.
Lemma 2 .1 [7] Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space E and let T be a nonexpansive mapping of C into itself with $\mathrm{F}(\mathrm{T}) \neq \varphi$. Then the set $\mathrm{F}(\mathrm{T})$ is a sunny nonexpansive retract of C .

Lemma $2.2[6,8]$ Let C be a nonempty closed convex subset of a smooth Banach space E and let Q_{C} be a retraction of E onto C .Then the following are equivalent
(i). Q_{C} is both sunny and nonexpansive.
(ii). $\left\langle x-Q_{C} x, J\left(y-Q_{C} x\right)>\leq 0\right.$ for all $x \varepsilon E, y \varepsilon C$.

Also it is well known that if E is a Hilbert space, then sunny nonexpansive retraction is coincident with metric projection.
Also Q_{C} satisfies
$\mathrm{x}_{0}=\mathrm{Q}_{\mathrm{C}} \mathrm{X}$ iff $\left\langle\mathrm{x}-\mathrm{x}_{0}, \mathrm{~J}\left(\mathrm{y}-\mathrm{x}_{0}\right)\right\rangle \leq 0$ for all $\mathrm{y} \varepsilon \mathrm{C}$.
Let E be a Banach space and let C be a nonempty closed convex subset of E. An operator A of C into E is said to accretive if there exists $\mathrm{j}(\mathrm{x}-\mathrm{y}) \varepsilon \mathrm{J}(\mathrm{x}-\mathrm{y})$ such that
$<A x-A y, j(x-y)>\geq 0$ for all $x, y \varepsilon C$.

Lemma 2.3 [3] Let C be a nonempty closed convex subset of a smooth Banach space E. Let Q_{C} be a sunny nonexpansive retraction from E onto C and let A be an accretive operator of C into E . Then for all $\lambda>0$,
$\mathrm{S}(\mathrm{C}, \mathrm{A})=\mathrm{F}\left(\mathrm{Q}_{\mathrm{C}}(\mathrm{I}-\lambda \mathrm{A})\right)$, where
$\mathrm{S}(\mathrm{C}, \mathrm{A})=\{\mathrm{u} \varepsilon \mathrm{C}:\langle\mathrm{Au}, \mathrm{J}(\mathrm{v}-\mathrm{u})>\geq 0$, for all $\mathrm{v} \varepsilon \mathrm{C}\}$.
An operator $\mathrm{A}: \mathrm{C} \rightarrow \mathrm{E}$ is said to be α-inverse strongly accretive if
$<A x-A y, J(x-y)>\geq \alpha\|A x-A y\|^{2}$ for all $x, y \varepsilon C$.
It is obvious from above equation that
$\|\mathrm{Ax}-\mathrm{Ay}\| \leq \frac{1}{\alpha}\|\mathrm{x}-\mathrm{y}\|$.
Lemma 2.4 [3] Let C be a nonempty closed convex subset of a 2-uniformly smooth Banach space E. Let $\alpha>0$ and let $\mathrm{A}: \mathrm{C} \rightarrow \mathrm{E}$ be an α-inverse strongly accretive operator. If $0<\lambda \leq \frac{\alpha}{K^{2}}$, then $\mathrm{I}-\lambda \mathrm{A}$ is a nonexpansive mapping of C into E , where K is the 2-uniformly smoothness constant of E .

Lemma 2.5 [9] Let C be a nonempty closed convex subset of a uniformly convex Banach space with a frechet differentiable norm. Let $\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots \ldots.\right\}$ be a sequence of nonexpansive mappings of C into itself with $\bigcap_{n=1}^{\infty} F\left(T_{n}\right) \neq \varphi \quad$. Let $\quad \mathrm{x} \quad \varepsilon \quad \mathrm{C} \quad$ and $\quad \mathrm{S}_{\mathrm{n}}=\mathrm{T}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}-1} \ldots \ldots \ldots \mathrm{~T}_{1}$ for all $\mathrm{n} \geq 1$. Then the set $\bigcap_{n=1}^{\infty} c \bar{o}\left\{S_{m} x: m \geq n\right\} \bigcap \bigcap_{n=1}^{\infty} F\left(T_{n}\right)$ consists of atmost one point, where $c \bar{o} \mathrm{D}$ is the closure of the convex hull of D.

Lemma 2.6 [2] Let q be a given real number with $1<\mathrm{q} \leq 2$ and let E be a q -uniformly smooth Banach space. Then,
$\|x+y\|^{q} \leq\|x\|^{q}+q<y, J_{q}(x)>+2\|K y\|^{2}$, for all $x, y \in E$, where J_{q} is the generalized duality mapping of E and K is the q -uniformly smoothness constant of E .

Theorem 2.7 [1] Let D be a nonempty bounded closed convex subset of a uniformly convex Banach space E and let T be a nonexpansive mapping of D into itself. If $\left\{u_{j}\right\}$ is a sequence of D such that $u_{j} \rightarrow u_{0}$ and let $\lim _{j \rightarrow \infty}\left\|u_{j}-T u_{j}\right\|=0$, then u_{0} is a fixed point of T .

III. Main Result

In this section, we shall prove our main result.
Theorem 3.1 Let E be a uniformly convex and 2-uniformly smooth Banach space with best smooth constant K and C be a nonempty closed convex subset of E . Let Q_{C} be a sunny nonexpansive retraction from E onto $\mathrm{C}, \alpha>$ 0 and A be α-inverse strongly accretive operator of C into E. Let $S(C, A) \neq \varphi$ and the sequence $\left\{x_{n}\right\}$ be generated by
$\mathrm{y}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{C}}\left(\mathrm{x}_{\mathrm{n}}-\lambda_{\mathrm{n}} \mathrm{Ax}_{\mathrm{n}}\right)$,
$\mathrm{x}_{\mathrm{n}+1}=\alpha_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}+\left(1-\alpha_{\mathrm{n}}\right) \mathrm{Q}_{\mathrm{C}}\left(\mathrm{y}_{\mathrm{n}}-\lambda_{\mathrm{n}} \mathrm{Ay}_{\mathrm{n}}\right), \mathrm{x}_{1} \in \mathrm{C}, \mathrm{n}=1,2,3, \ldots$
where $\left\{\lambda_{n}\right\}$ is a sequence of positive real numbers satisfying $\lambda_{n} \leq \alpha$ and $\lambda_{n} \in\left[a, \alpha / K^{2}\right]$ for some a >0 and let $\alpha_{n} \in$ $[b, c]$, where $0<b<c<1$, then $\left\{x_{n}\right\}$ converges weakly to some element z of $S(C, A)$.

Proof. Let $z_{n}=Q_{C}\left(y_{n}-\lambda_{n} A y_{n}\right)$ for $n=1,2, \ldots \ldots \ldots \ldots$. Let $u \in S(C, A)$. Now,
$\left\|y_{n}-u\right\| \leq\left\|Q_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)-Q_{C}\left(u-\lambda_{n} A u\right)\right\|$
$\leq\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{u}\right\|$
Also,
$\left\|z_{n}-u\right\| \leq\left\|Q_{C}\left(y_{n}-\lambda_{n} A y_{n}\right)-Q_{C}\left(u-\lambda_{n} A u\right)\right\|$
$\leq\left\|y_{n}-u\right\| \leq\left\|x_{n}-u\right\|$
Now, for every $n=1,2, \ldots \ldots \ldots \ldots$,
$\left\|x_{n+1}-u\right\|=\left\|\alpha_{n}\left(x_{n}-u\right)+\left(1-\alpha_{n}\right)\left(z_{n}-u\right)\right\|$
$\leq \alpha_{n}\left\|x_{n}-u\right\|+\left(1-\alpha_{n}\right)\left\|z_{n}-u\right\|$

Using (3.2) and (3.3), $\left\|\mathrm{x}_{\mathrm{n}+1}-\mathrm{u}\right\| \leq\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{u}\right\|$
(3.4) shows that $\left\{\left\|x_{n}-u\right\|\right\}$ is non-increasing sequence.

So, there exists $\lim _{n \rightarrow \infty}\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{u}\right\|$ and hence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a bounded sequence . (3.2) and (3.3) shows that $\left\{\mathrm{y}_{\mathrm{n}}\right\}$, $\{$ $\left.A x_{n}\right\}$ and $\left\{z_{n}\right\}$ are also bounded .
Next, we shall show that $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$. Conversely, let $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\| \neq 0$. Then there exists $\in>0$ and a subsequence $\left\{x_{n_{i}}-y_{n_{i}}\right\}$ of $\left\{\mathrm{x}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}}\right\}$ such that II $x_{n_{i}}-y_{n_{i}} \| \geq \in$ for each $\mathrm{i}=1,2$ \qquad Since E is uniformly convex, so the function $\|.\|^{2}$ is uniformly convex on bounded convex subset $B\left(0,\left\|x_{1}-u\right\|\right)$, where $B\left(0, \| x_{1^{-}}\right.$ $u \|)=\left\{x \in E:\|x\| \leq\left\|x_{1}-u\right\|\right\}$.

So, for any \in, there exists $\delta>0$ such that $\|x-y\| \geq \in$ implies
$\|\lambda x+(1-\lambda) y\|^{2}$
$\leq \lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda) \delta$,
where $\mathrm{x}, \mathrm{y} \in \mathrm{B}\left(0,\left\|\mathrm{x}_{1}-\mathrm{u}\right\|\right), \lambda \in(0,1)$. So for $\mathrm{i}=1,2, \ldots \ldots \ldots$,
$\left\|x_{n_{i}+1}-\mathrm{u}\right\|^{2}=\left\|\alpha_{n_{i}}\left(x_{n_{i}}-\mathrm{u}\right)+\left(1-\alpha_{n_{i}}\right)\left(z_{n_{i}}-\mathrm{u}\right)\right\|^{2}$
$\leq \alpha_{n_{i}}\left\|x_{n_{i}}-\mathrm{u}\right\|^{2}+\left(1-\alpha_{n_{i}}\right)\left\|y_{n_{i}}-\mathrm{u}\right\|^{2}-\alpha_{n_{i}}\left(1-\alpha_{n_{i}}\right) \delta$
$\leq \alpha_{n_{i}}\left\|x_{n_{i}}-\mathrm{u}\right\|^{2}+\left(1-\alpha_{n_{i}}\right)\left\|x_{n_{i}}-\mathrm{u}\right\|^{2}-\alpha_{n_{i}}\left(1-\alpha_{n_{i}}\right) \delta$
$\leq\left\|x_{n_{i}}-\mathrm{u}\right\|^{2}-\alpha_{n_{i}}\left(1-\alpha_{n_{i}}\right) \delta$
Therefore,
$0<\mathrm{b}(1-\mathrm{c}) \delta \leq \alpha_{n_{i}}\left(1-\alpha_{n_{i}}\right) \delta \leq\left\|x_{n_{i}}-\mathrm{u}\right\|^{2}-\left\|x_{n_{i}+1}-\mathrm{u}\right\|^{2}$
Since right hand side of inequality (3.5) converges to 0 , so we get a contradiction.
Hence, $\lim _{n \rightarrow \infty}\left\|X_{n}-y_{n}\right\|=0$
Now, since $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is bounded, so there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ that weakly converges to z . Also $\lambda_{n_{i}} \in$ [a, $\left.\alpha / \mathrm{K}^{2}\right]$, so $\left\{\lambda_{n_{i}}\right\}$ is bounded. Hence, there exists a subsequence $\left\{\lambda_{n_{i_{j}}}\right\}$ of $\left\{\lambda_{n_{i}}\right\}$ that weakly converges to $\lambda_{0} \in\left[\mathrm{a}, \alpha / \mathrm{K}^{2}\right]$. Without loss of generality assume that $\lambda_{n_{i}} \rightarrow \lambda_{0}$. Since Q_{C} is nonexpansive , so
$y_{n_{i}}=\mathrm{Q}_{\mathrm{C}}\left(x_{n_{i}}-\lambda_{n_{i}} A x_{n_{i}}\right)$ implies that
$\left\|Q_{C}\left(x_{n_{i}}-\lambda_{0} A x_{n_{i}}\right)-x_{n_{i}}\right\|$
$\leq\left\|Q_{C}\left(x_{n_{i}}-\lambda_{0} A x_{n_{i}}\right)-y_{n_{i}}\right\|+\left\|y_{n_{i}}-x_{n_{i}}\right\|$
$=\left\|Q_{C}\left(x_{n_{i}}-\lambda_{0} A x_{n_{i}}\right)-Q_{C}\left(x_{n_{i}}-\lambda_{n_{i}} A x_{n_{i}}\right)\right\|+\left\|y_{n_{i}}-x_{n_{i}}\right\|$
$\leq\left|\lambda_{0}-\lambda_{n_{i}}\right|\left\|A x_{n_{i}}| |+\right\| y_{n_{i}}-x_{n_{i}} \|$
$\leq M\left|\lambda_{0}-\lambda_{n_{i}}\right|+\left\|y_{n_{i}}-x_{n_{i}}\right\|$
where $\mathrm{M}=\sup \left\{\left\|\mathrm{Ax}_{\mathrm{n}}\right\|: \mathrm{n}=1,2,3 \ldots \ldots \ldots \ldots \ldots\right\}$. Equation (3.6), (3.7) and convergence of $\left\{\lambda_{n_{i}}\right\}$ implies that
$\lim _{i \rightarrow \infty}\left\|Q_{C}\left(I-\lambda_{0} A\right) x_{n_{i}}-x_{n_{i}}\right\|=0$
Also, $\mathrm{Q}_{\mathrm{C}}\left(\mathrm{I}-\lambda_{0} \mathrm{~A}\right)$ is nonexpansive, so (3.8), lemma 2.3 and theorem 2.7 implies $\mathrm{z} \in \mathrm{F}\left(\mathrm{Q}_{\mathrm{C}}\left(\mathrm{I}-\lambda_{0} \mathrm{~A}\right)\right)=\mathrm{S}(\mathrm{C}, \mathrm{A})$.
Lastly, we shall prove that $\left\{x_{n}\right\}$ is convergent to some element of $S(C, A)$. Let
$T_{n}=\alpha_{n} I+\left(1-\alpha_{n}\right) \mathrm{Q}_{\mathrm{C}}\left(\mathrm{I}-\lambda_{\mathrm{n}} \mathrm{A}\right)$, for $\mathrm{n}=1,2, \ldots \ldots \ldots .$.
Then, $\mathrm{x}_{\mathrm{n}+1}=\mathrm{T}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}+1} \ldots \ldots \ldots \ldots \ldots . . \mathrm{T}_{1} \mathrm{x}$ and $\mathrm{z} \varepsilon \bigcap_{\mathrm{n}=1}^{\infty} \mathrm{c} \overline{\mathrm{O}}\left\{\mathrm{x}_{\mathrm{m}}: \mathrm{m} \geq \mathrm{n}\right\}$. Also from lemma 2.4, T_{n} is nonexpansive mapping of C into itself. And from lemma 2.3, we have,
$\bigcap_{n=1}^{\infty} F\left(T_{n}\right)=\bigcap_{n=1}^{\infty} F\left(Q_{C}\left(I-\lambda_{n} A\right)\right)=S(C, A)$.
Using theorem (2.5), we obtain
$\bigcap_{n=1}^{\infty} c \bar{o}\left\{x_{m}: m \geq n\right\} \bigcap S(C, A)=\{z\}$
Hence, the sequence $\left\{x_{n}\right\}$ is weakly convergent to some element of $S(C, A)$.

IV. Application

Using our main result, we shall prove a result for strongly accretive operator.
Let C be a subset of a smooth Banach space E . Let $\alpha>0$. An operator A of C into E is said to be α-strongly accretive if
$<A x-A y, J(x-y)>\geq \alpha\|x-y\|^{2} \quad$ for all $x, y \varepsilon C$.
Let $\beta>0$. An operator A of C into E is said to be β-Lipschitz continuous if
$\|A x-A y\| \leq \beta\|x-y\|$, for all $x, y \varepsilon C$.
Theorem 4.1 Let E be a uniformly convex and 2-uniformly smooth Banach space with best smooth constant K and C be a nonempty closed convex subset of E . Let Q_{C} be be a sunny nonexpansive retraction from E onto C, α $>0, \beta>0$ and A be α-strongly accretive operator and β-Lipschitz continuous operator of C into E . Let $\mathrm{S}(\mathrm{C}, \mathrm{A})$ $\neq \varphi$ and the sequence $\left\{x_{n}\right\}$ be generated by
$\mathrm{y}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{C}}\left(\mathrm{x}_{\mathrm{n}}-\lambda_{\mathrm{n}} \mathrm{Ax}_{\mathrm{n}}\right)$,
$\mathrm{x}_{\mathrm{n}+1}=\alpha_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}+\left(1-\alpha_{\mathrm{n}}\right) \mathrm{Q}_{\mathrm{C}}\left(\mathrm{y}_{\mathrm{n}}-\lambda_{\mathrm{n}} \mathrm{Ay}_{\mathrm{n}}\right), \mathrm{x}_{1} \in \mathrm{C}, \mathrm{n}=1,2,3, \ldots \ldots \ldots \ldots$,
where $\left\{\lambda_{n}\right\}$ is a sequence of positive real numbers satisfying $0 \leq \lambda_{n} \leq 1$ and $\lambda_{n} \in\left[a, \alpha / K^{2}\right]$ for some a >0 and let $\alpha_{n} \in[b, c]$, where $0<b<c<1$, then $\left\{x_{n}\right\}$ converges weakly to a unique element z of $S(C, A)$.

Proof. Since A is an α-strongly accretive and β-Lipschitz continuous operator of C into E , we have
$<A x-A y, J(x-y)>\geq \alpha\|x-y\|^{2} \geq \frac{\alpha}{\beta^{2}}\|A x-A y\|^{2}$, for all $x, y \varepsilon C$.
So A is $\frac{\alpha}{\beta^{2}}$ - inverse strongly accretive. Since A is strongly accretive and $S(C, A) \neq \varphi$, so the set $S(C, A)$ consists of one point z . Using theorem 3.1, $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ converges weakly to a unique element z of $\mathrm{S}(\mathrm{C}, \mathrm{A})$.

References

[1]. F. E. Browder, Nonlinear operators and nonlinear equations of evoluation in Banach spaces, Nonlinear Functional Analsis (proc.Sympos.pure Math., vol. XVIII, Part 2,Chicago, III, 1968), American Mathematical Society, Rhode Island, 1976, pp. 1-308.
[2]. H. K. Xu, Inequalities in Banach Spaces with applications, Nonlinear Analysis, 16(1991), no.12, 1127-1138.
[3]. K. Aoyama, H. Iiduka, W. Takashi, Weak convergence of an iterative sequence for accretive operators in Banach spaces, Fixed point theory and applications, vol 2006, p 1-13.
[4]. K. Ball, A. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Inventiones Mathematicae, 115(1994), no. 3, 463-482.
[5]. N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone Mappings, Journal of Optimization Theory and Applications, vol. 128, pp. 191-201, 2006.
[6]. R. E. Bruck Jr., Nonexpansive retracts of Banach spaces, Bulletin of the American mathematical society, 76(1970), 384-386.
[7]. S. Kitahara and W. Takahashi, Image recovery by convex combinations of sunny nonexpansive retractions, Topological methods in Nonlinear analysis, 2(1993), no. 2, 333-342.
[8]. S. Reich, Asymptotic behavior of contractions in Banach spaces, Journal of Mathematical Analysis and Applications, 44(1973), no. 1, 57-70.
[9]. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, Journal of Mathematical Analysis and Applications, 67(1979), no. 2, 274-276.
[10]. W. Takahashi, Nonlinear functional analysis, Yokohama publisher, Yokohama, Japan, 2000.
[11]. Y. Takahashi, K. Hashimoto and M. Kato, On sharp uniform convexity, smoothness and strong type, cotype inequality, Journal of Nonlinear and Convex Analysis, 3(2002), no. 2, 267-281.

