Projective Flat Finsler Space with Special (α, β)-Metrics

Ramesha M ${ }^{1}$, Narasimhamurthy S. K ${ }^{2}$
${ }^{1}$ Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta-577 451, Shivamogga, Karnataka, INDIA.
${ }^{2}$ Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta-577 451, Shivamogga, Karnataka, INDIA.

Abstract

In this article, we devoted to study about the n-dimensional Finsler $F^{n}=\left(M^{n}, L\right)$ with an (α, β) metric $L(\alpha, \beta)$ to be projectively flat, where α is Riemannian metric and β is differential 1-form under some geometric conditions on the basis of Matsumoto results.

Keywords: Finsler space, (α, β)-metrics, Projective flatness.

I. Introduction

The concept of an (α, β)-metric $L(\alpha, \beta)$ was introduced in 1972 by M. Matsumoto [1]. An (α, β)metric is of the form $F=\alpha \phi(s) ; s=\frac{\beta}{\alpha}$ where $\alpha^{2}=a_{i j}(x) y^{i} y^{j}$ is Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a differential 1-form with $\left\|\beta_{x}\right\|<b_{0}, x \in M$. The function $\phi(s)$ is a c^{∞} positive function on an open interval $\left(-b_{0}, b_{0}\right)$ satisfying:
$\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right)>0$.
In this case, the fundamental form of the metric tensor induced by F is positive definite.
An n-dimensional Finsler space $F^{n}=\left(M^{n}, L\right)$ equipped with the fundamental function $L(x, y)$ is called an (α, β)-metric if L is a positively homogeneous function of degree one two variables α and β.
A Finsler space $F^{n}=\left(M^{n}, L\right)$ is called a locally minkowskian space [2], if M^{n} is covered by co-ordinate neighborhood system $\left(x^{i}\right)$ in each of which L is a function of $\left(y^{i}\right)$ only. A Finsler space $F^{n}=\left(M^{n}, L\right)$ is called projective flat if F^{n} is projective to a locally minkowskian space. The condition for a Finsler space to be projectively flat was studied by L. Berwlad [3], in tensorial form and completed by M. Matsumoto [4]. Later on many authors worked on projective flatness of (α, β)-metric ([1], [5], [6], [7], [8], [9], [10], [11], [12]).

The purpose of the present article is devoted to studying the condition for a Finsler space with certain special (α, β)-metrics to be projective flat.

II. Preliminaries

A Finsler metric on a manifold M is a function $F: T M \rightarrow[0, \infty)$ which has the following properties:
(i) F is a c^{∞} on $T M_{0}$,
(ii) $F(x, \lambda y)=\lambda F(x, y), \lambda>0$,
(iii) For any tangent vector $y \in T_{x} M$, the vertical-Hessian $\frac{1}{2} F^{2}$ given by $g_{i j}(x, y)=\frac{1}{2}\left[F^{2}\right] y^{i} y^{j}$, is positive definite
The canonical spray of F denoted by $G=y^{i}\left\{\frac{\partial}{\partial x^{i}}\right\}-2 G^{i}(x, y) \frac{\partial}{\partial y^{i}}$ and it is defined as
$G^{i}(x, y)=\frac{1}{4} g^{i l}(x, y)\left\{2 \frac{\partial g_{j l}}{\partial x^{k}}(x, y)-\frac{\partial g_{j k}}{\partial x^{l}}(x, y)\right\} y^{j} y^{k}$,
where the matrix $\left(g^{i j}\right)$ means the inverse of the matrix $\left(g_{i j}\right)$.
Let us consider an n-dimesional Finsler space $F^{n}=\left(M^{n}, L\right)$ with an (α, β)-metric $L(\alpha, \beta)$. The space $R^{n}=\left(M^{n}, \alpha\right)$ is called the associated Riemannian space. Let $\gamma_{j k}^{i}(x)$ be the christoffel symbols constructed from α and we denote the covariant differentiation with respect to $\gamma_{j k}^{i}(x)$ by (\mid). From the differential 1-form $\beta(x, y)=b_{i}(x) y^{i}$, we define

$$
2 r_{i j}=b_{i \mid j}+b_{j \mid i}, \quad 2 s_{i j}=b_{i \mid j}-b_{j \mid i}
$$

$$
s_{j}^{i}=a^{i h} s_{h j}, s_{j}=b_{i} s_{j}^{i}, b^{i}=a^{i h} b_{h}, b^{2}=b^{i} b_{i} .
$$

According to [1], a Finsler space $F^{n}=\left(M^{n}, L\right)$ with an (α, β)-metric $L(\alpha, \beta)$ is projectively flat if and only if for any point of space M there exist local coordinate neighborhoods containing the point such that $\gamma_{j k}^{i}(x)$ satisfies:
$\frac{\left(\frac{\gamma_{00}^{i}-\gamma_{000} y^{i}}{\alpha^{2}}\right)}{2}+\left(\frac{\alpha L_{\beta}}{L_{\alpha}}\right) s_{0}^{i}+\left(\frac{L_{\alpha \alpha}}{L_{\alpha}}\right)\left(C+\frac{\alpha r_{00}}{2 \beta}\right)\left(\frac{\alpha^{2} b^{i}}{\beta}-y^{i}\right)=0$,
where a subscript 0 means a contraction by $y^{i}, L_{\alpha}=\frac{\partial L}{\partial \alpha}, L_{\beta}=\frac{\partial L}{\partial \beta}, L_{\alpha \alpha}=\frac{\partial L_{\alpha}}{\partial \alpha}, L_{\beta \beta}=\frac{\partial L_{\beta}}{\partial \beta}$, and C is given by $C+\left(\frac{\alpha^{2} L_{\beta}}{\beta L_{\alpha}}\right) s_{0}+\left(\frac{\alpha L_{\alpha \alpha}}{\beta^{2} L_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(C+\frac{\alpha r_{00}}{2 \beta}\right)=0$.
By the homogeneity of L we known $\alpha^{2} L_{\alpha \alpha}=\beta^{2} L_{\beta \beta}$, so that (2.2) can be written as
$\left\{1+\left(\frac{L_{\beta \beta}}{\alpha L_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\right\}\left(C+\frac{\alpha r_{00}}{2 \beta}\right)=\left(\frac{\alpha}{2 \beta}\right)\left\{r_{00}-\left(\frac{2 \alpha L_{\beta}}{L_{\alpha}}\right) s_{0}\right\}$.
If $1+\left(\frac{L_{\beta \beta}}{\alpha L_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) \neq 0$, then we can eliminate $\left(C+\frac{\alpha r_{00}}{2 \beta}\right)$ in (2.1) and it is written in the form,
$\left\{1+\left(\frac{L_{\beta \beta}}{\alpha L_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\right\}\left\{\frac{\left(\frac{\gamma_{00}^{i}-\gamma_{000} y^{i}}{\alpha^{2}}\right)}{2}+\left(\frac{\alpha L_{\beta}}{L_{\alpha}}\right) s_{0}^{i}\right\}+\left(\frac{L_{\alpha \alpha}}{L_{\alpha}}\right)\left(\frac{\alpha}{2 \beta}\right)\left\{r_{00}-\left(\frac{2 \alpha L_{\beta}}{L_{\alpha}}\right) s_{0}\right\}\left(\frac{\alpha^{2} b^{i}}{\beta}-y^{i}\right)=0$.
Thus we state that
Theorem 2.1: [12] If $1+\left(\frac{L_{\beta \beta}}{\alpha L_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) \neq 0$, then a Finsler space F^{n} with an (α, β)-metric is projectively flat if and only if (2.4) is satisfied.

According to [13], It is known that if α^{2} contains β as a factor, then the dimension is equal to two and $b^{2}=$ 0 . So throughout this paper, we assume that the dimension is more than two and $b^{2} \neq 0$, that is, $\alpha^{2} \not \equiv$ $0(\bmod \beta)$.

III. Projective Flat Finsler Space with (α, β)-metric $L^{2}=\alpha^{2}+\epsilon \alpha \beta+k \beta^{2}$

Let F^{n} be a Finsler space with an (α, β)-metric is given by
$L^{2}=\alpha^{2}+\epsilon \alpha \beta+k \beta^{2} ; \epsilon, k \neq 0$.
The partial derivatives with respect to α and β of (3.1) are given by
$L_{\alpha}=\frac{2 \alpha+\epsilon \beta}{2 \sqrt{\alpha^{2}+\epsilon \alpha \beta+k \beta^{2}}}, \quad L_{\alpha \alpha}=\frac{\left(4 k-\epsilon^{2}\right) \beta^{2}}{4 \sqrt{\alpha^{2}+\epsilon \alpha \beta+k \beta^{2}}\left(\alpha^{2}+\epsilon \alpha \beta+k \beta^{2}\right)}$,
$L_{\beta}=\frac{\epsilon \alpha+2 k \beta}{2 \sqrt{\alpha^{2}+\epsilon \alpha \beta+k \beta^{2}}}, \quad L_{\beta \beta}=\frac{\left(4 k-\epsilon^{2}\right) \alpha^{2}}{4 \sqrt{\alpha^{2}+\epsilon \alpha \beta+k \beta^{2}}\left(\alpha^{2}+\epsilon \alpha \beta+k \beta^{2}\right)}$.
If $1+\left(\frac{L_{\beta \beta}}{\alpha L_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)=0$, then we have $\left[\left\{4+\left(4 k-\epsilon^{2}\right) b^{2}\right\} \alpha^{3}+6 \epsilon \alpha^{2} \beta+3 \epsilon^{2} \alpha \beta^{2}+2 \epsilon k \beta^{3}\right]=0$ which leads to contradiction. Thus $1+\left(\frac{L_{\beta \beta}}{\alpha L_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) \neq 0$ and hence theorem (2.1) can be applied.
Substituting (3.2) into (2.4), we get
$\left\{\left(2 \alpha^{2}+2 \epsilon \alpha \beta+2 k \beta^{2}\right)(2 \alpha+\epsilon \beta)+\left(4 k-\epsilon^{2}\right)\left(\alpha^{3} b^{2}-\alpha \beta^{2}\right)\right\}\left\{\left(\alpha^{2} \gamma_{00}^{i}-\gamma_{000} y^{i}\right)(2 \alpha+\epsilon \beta)+2 \alpha^{3}(\epsilon \alpha+\right.$ $2 k \beta s 0 i+4 k-\epsilon 2 \alpha 3 \alpha 2 b i-\beta y i r 002 \alpha+\epsilon \beta-2 \alpha \epsilon \alpha+2 k \beta s 0=0$.
The terms of (3.3) can be written as
$\left(p_{7} \alpha^{6}+p_{5} \alpha^{4}+p_{3} \alpha^{2}+p_{1}\right) \alpha+\left(p_{6} \alpha^{6}+p_{4} \alpha^{4}+p_{2} \alpha^{2}+p_{0}\right)=0$.
Where
$p_{7}=\left\{8 \epsilon+\left(8 \epsilon k-2 \epsilon^{3}\right) b^{2}\right\} s_{0}^{i}-2 \epsilon\left(4 k-\epsilon^{2}\right) s_{0} b^{i}$,
$p_{6}=2\left\{4+\left(4 k-\epsilon^{2}\right) b^{2}\right\} \gamma_{00}^{i}+\left\{12 \epsilon^{2}+16 k+\left(16 k^{2}-4 \epsilon^{2} k\right) b^{2}\right\} s_{0}^{i} \beta+2\left(4 k-\epsilon^{2}\right) b^{i} r_{00}-$

$$
4 k\left(4 k-\epsilon^{2}\right) \beta s_{0} b^{i}
$$

$p_{5}=\left\{16 \epsilon+\epsilon\left(4 k-\epsilon^{2}\right) b^{2}\right\} \beta \gamma_{00}^{i}+\left(24 \epsilon k+6 \epsilon^{3}\right) \beta^{2} s_{0}^{i}+\left(4 k \epsilon-\epsilon^{3}\right) \beta r_{00} b^{i}+\left(8 k \epsilon-2 \epsilon^{3}\right) \beta s_{0} y^{i}$,
$p_{4}=12 \epsilon^{2} \beta^{2} \gamma_{00}^{i}-\left\{8+\left(8 k-2 \epsilon^{2}\right) b^{2}\right\} \gamma_{000} y^{i}+16 k \epsilon^{2} \beta^{3} s_{0}^{i}-\left(8 k-2 \epsilon^{2}\right) \beta y^{i} r_{00}+\left(16 k^{2}-4 \epsilon^{2} k\right) \beta^{2} s_{0} y^{i}$,
$p_{3}=\left(3 \epsilon^{3}+4 \epsilon k\right) \beta^{3} \gamma_{00}^{i}-\left\{16 \epsilon+\left(4 k \epsilon-\epsilon^{3}\right) b^{2}\right\} \gamma_{000} y^{i} \beta+8 k^{2} \epsilon \beta^{4} s_{0}^{i}-\left(4 k \epsilon-\epsilon^{3}\right) \beta^{2} y^{i} r_{00}$,
$p_{2}=-12 \epsilon^{2} \beta^{2} \gamma_{000} y^{i}+2 \epsilon^{2} k \beta^{4} \gamma_{00}^{i}$,
$p_{1}=-4 \epsilon k \beta^{3} \gamma_{000} y^{i}$,
$p_{0}=-2 \epsilon^{2} k \beta^{4} \gamma_{000} y^{i}$.
Since $\left(p_{7} \alpha^{6}+p_{5} \alpha^{4}+p_{3} \alpha^{2}+p_{1}\right)$ and $\left(p_{6} \alpha^{6}+p_{4} \alpha^{4}+p_{2} \alpha^{2}+p_{0}\right)$ are rational and α irrational in y^{i}, we have
$\left(p_{7} \alpha^{6}+p_{5} \alpha^{4}+p_{3} \alpha^{2}+p_{1}\right)=0$,
$\left(p_{6} \alpha^{6}+p_{4} \alpha^{4}+p_{2} \alpha^{2}+p_{0}\right)=0$.
The term which does not contain β in (3.5) is $p_{7} \alpha^{6}$. Therefore there exist a homogeneous polynomial v_{6} of degree six in y^{i} such that
$\left[\left\{8 \epsilon+\left(8 \epsilon k-2 \epsilon^{3}\right) b^{2}\right\} s_{0}^{i}-2 \epsilon\left(4 k-\epsilon^{2}\right) s_{0} b^{i}\right] \alpha^{6}=\beta v_{6}^{i}$.
Since $\alpha^{2} \not \equiv 0(\bmod \beta)$, we have a function $u^{i}=u^{i}(x)$ satisfying
$\left\{8 \epsilon+\left(8 \epsilon k-2 \epsilon^{3}\right) b^{2}\right\} s_{0}^{i}-2 \epsilon\left(4 k-\epsilon^{2}\right) s_{0} b^{i}=\beta u^{i}$.
Contracting above by b_{i}, we have
$8 \epsilon s_{0}=u^{i} \beta b_{i}$,
implies $8 \epsilon s_{j}=u^{i} b_{j} b_{i}=0$. Again transvecting by b^{j}, we have $u^{i} b_{i}=0$. Plugging $u^{i} b_{i}=0$ in (3.8), we have $s_{0}=0$. Thus from (3.7), we have
$\left\{8 \epsilon+\left(8 \epsilon k-2 \epsilon^{3}\right) b^{2}\right\} s_{i j}=u_{i} b_{j}$,
which implies $u_{i} b_{j}+u_{j}+b_{i}=0$. Contracting this by b^{j}, we have $u_{i} b^{2}=0$ by virtue of $u_{j} b^{j}=0$. Therefore we get $u_{i}=0$. Hence, from (3.9), we have $s_{i j}=0$, provided $8 \epsilon+\left(8 \epsilon k-2 \epsilon^{3}\right) b^{2} \neq 0$.
Again, From (3.6), we observe that the terms $-2 \epsilon^{2} k \beta^{4} \gamma_{000} y^{i}$ must have a factor α^{2}. Therefore there exist a 1form $v_{0}=v_{i}(x) y^{i}$ such that
$\gamma_{000}=v_{0} \alpha^{2}$.
Plugging $s_{0}=0, s_{0}^{i}=0$ and (3.10) in to (3.3) which yields,

$$
\begin{equation*}
\left\{\left(2 \alpha^{2}+2 \epsilon \alpha \beta+2 k \beta^{2}\right)(2 \alpha+\epsilon \beta)+\left(4 k-\epsilon^{2}\right)\left(\alpha^{3} b^{2}-\alpha \beta^{2}\right)\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right) \tag{3.10}
\end{equation*}
$$

$+\left(4 k-\epsilon^{2}\right) \alpha\left(\alpha^{2} b^{i}-\beta y^{i}\right) r_{00}=0$.
Terms of (3.11) can be written as

$$
\begin{equation*}
\left[\left\{\left(4+4 k-\epsilon^{2} b^{2}\right) \alpha^{2}+3 \epsilon^{2} \beta^{2}\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+\left(4 k-\epsilon^{2}\right)\left(\alpha^{2} b^{i}-\beta y^{i}\right) r_{00}\right] \alpha \tag{3.11}
\end{equation*}
$$

$+\left[6 \epsilon \alpha^{2} \beta+2 \epsilon k \beta^{3}\right]\left(\gamma_{00}^{i}-v_{0} y^{i}\right)=0$.
Again (3.12) written in the form $P \alpha+Q=0$, where
$P=\left\{\left(4+4 k-\epsilon^{2} b^{2}\right) \alpha^{2}+3 \epsilon^{2} \beta^{2}\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+\left(4 k-\epsilon^{2}\right)\left(\alpha^{2} b^{i}-\beta y^{i}\right) r_{00}$,

$$
Q=\left[6 \epsilon \alpha^{2} \beta+2 \epsilon k \beta^{3}\right]\left(\gamma_{00}^{i}-v_{0} y^{i}\right) .
$$

Since P and Q are rational and α irrational in $\left(y^{i}\right)$, we have $P=0$ and $Q=0$.
By the term $Q=0$, we have
$\left(\gamma_{00}^{i}-v_{0} y^{i}\right)=0$.
which yields
$2 \gamma_{j k}^{i}=v_{j} \delta_{k}^{i}+v_{k} \delta_{j}^{i}$,
which shows that associated Riemannian space (M, α) is projectively flat.
Again from $P=0$ and (3.13) we have
$\left(4 k-\epsilon^{2}\right)\left(\alpha^{2} b^{i}-\beta y^{i}\right) r_{00}=0$.
Transvecting (3.15) by b^{i}, we have $\left(4 k-\epsilon^{2}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) r_{00}=0$ implies $r_{00}=0$ provided that $\epsilon, k \neq 0$. i.e., $r_{i j}=0$. By summarizing up the above results, i.e., by using $s_{i j}=r_{i j}=0$ we conclude that $b_{i \mid j}=0$.

Conversely, if $b_{i \mid j}=0$, then we have $r_{00}=s_{0}^{i}=s_{0}=0$. So (3.3) is a consequence of (3.13).
Thus we state that,
Theorem-3.1: A Finsler space F^{n} with an (α, β)-metric $L(\alpha, \beta)$ given by (3.1) provided that $\epsilon, k \neq 0$ is projectively flat, if and only if we have $b_{i \mid j}=0$ and the associated Riemannian space $\left(M^{n}, \alpha\right)$ is projectively flat.

IV. Projective Flat Finsler Space with $(\boldsymbol{\alpha}, \boldsymbol{\beta})$-metric $\boldsymbol{L}=\boldsymbol{\alpha}+\boldsymbol{\beta}+\frac{\boldsymbol{\alpha}^{2}}{\alpha-\beta}$

Let F^{n} be a Finsler space with an (α, β)-metric is given by
$L=\alpha+\beta+\frac{\alpha^{2}}{\alpha-\beta}$.
The partial derivatives with respect to α and β of (4.1) are given by

$$
\begin{array}{rlrl}
L_{\alpha} & =\frac{2 \alpha^{2}+\beta^{2}-4 \alpha \beta}{(\alpha-\beta)^{2}}, & L_{\beta} & =\frac{2 \alpha^{2}+\beta^{2}-2 \alpha \beta}{(\alpha-\beta)^{2}}, \tag{4.1}\\
L_{\alpha \alpha} & =\frac{2 \beta^{2}}{(\alpha-\beta)^{3}}, & L_{\beta \beta}=\frac{2 \alpha^{2}}{(\alpha-\beta)^{3}} .
\end{array}
$$

If $1+\left(\frac{L_{\beta \beta}}{\alpha L_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)=0$, then we have $\left\{\alpha^{3}\left(2+2 b^{2}\right)-6 \alpha^{2} \beta+3 \alpha \beta^{2}-\beta^{3}\right\}=0$ which leads to contradiction. Thus $1+\left(\frac{L_{\beta \beta}}{\alpha L_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) \neq 0$ and hence theorem (2.1) can be applied.
Substituting (4.2) into (2.4), we get

$$
\begin{align*}
& \quad\left\{\alpha^{3}\left(2+2 b^{2}\right)-6 \alpha^{2} \beta+3 \alpha \beta^{2}-\beta^{3}\right\}\left\{\left(\alpha^{2} \gamma_{00}^{i}-\gamma_{000} y^{i}\right)\left(2 \alpha^{2}+\beta^{2}-4 \alpha \beta\right)+2 \alpha^{3}\left(2 \alpha^{2}+\beta^{2}-2 \alpha \beta\right) s_{0}^{i}\right\} \\
& +2 \alpha^{3}\left\{\left(2 \alpha^{2}+\beta^{2}-4 \alpha \beta\right) r_{00}-2 \alpha\left(2 \alpha^{2}+\beta^{2}-2 \alpha \beta\right) s_{0}\right\}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0 . \tag{4.3}\\
& \text { The terms of }(4.3) \text { can be written as, } \\
& p_{8} \alpha^{8}+p_{6} \alpha^{6}+p_{4} \alpha^{4}+p_{2} \alpha^{2}+p_{0}+\alpha\left(p_{5} \alpha^{4}+p_{3} \alpha^{2}+p_{1}\right)=0, \tag{4.4}\\
& \text { Where } \\
& p_{8}=4\left\{\left(2+2 b^{2}\right) s_{0}^{i}-2 b^{i} s_{0}\right\}, \\
& p_{7}=\left(4+4 b^{2}\right) \gamma_{00}^{i}-\left(32+8 b^{2}\right) s_{0}^{i} \beta+4 b^{i} r_{00}+8 \beta s_{0}^{i} b^{i}, \\
& p_{6}=-\left(20+8 b^{2}\right) \beta \gamma_{00}^{i}+\left(40+4 b^{2}\right) \beta^{2} s_{0}^{i}-8 \beta r_{00} b^{i}+8 \beta s_{0} y^{i}-4 \beta^{2} s_{0} b^{i},
\end{align*}
$$

$p_{5}=\beta^{2}\left(32+2 b^{2}\right) \gamma_{00}^{i}-\left(4+4 b^{2}\right) \gamma_{000} y^{i}-28 \beta^{3} s_{0}^{i}+2 \beta^{2} b^{i} r_{00}-4 \beta y^{i} r_{00}-8 \beta^{2} s_{0} y^{i}$,
$p_{4}=\beta\left(20+8 b^{2}\right) \gamma_{000} y^{i}-20 \beta^{3} \gamma_{00}^{i}+10 \beta^{4} s_{0}^{i}+8 \beta^{2} r_{00} y^{i}+4 \beta^{7} s_{0} y^{i}$,
$p_{3}=-\left(32+2 b^{2}\right) \beta^{2} \gamma_{000} y^{i}+7 \beta^{4} \gamma_{00}^{i}-2 \beta^{5} s_{0}^{i}-2 \beta^{3} r_{00} y^{i}$,
$p_{2}=20 \beta^{3} \gamma_{000} y^{i}-\beta^{5} \gamma_{00}^{i}$,
$p_{1}=-7 \beta^{4} \gamma_{000} y^{i}$,
$p_{0}=\beta^{5} \gamma_{000} y^{i}$.
Since $\left(p_{8} \alpha^{8}+p_{6} \alpha^{6}+p_{4} \alpha^{4}+p_{2} \alpha^{2}+p_{0}\right)$ and $\left(p_{5} \alpha^{4}+p_{3} \alpha^{2}+p_{1}\right)$ are rational and α is irrational in y^{i}, we have,
$p_{8} \alpha^{8}+p_{6} \alpha^{6}+p_{4} \alpha^{4}+p_{2} \alpha^{2}+p_{0}=0$,
$p_{5} \alpha^{4}+p_{3} \alpha^{2}+p_{1}=0$.
The term which does not contain β in (4.5) is $p_{8} \alpha^{8}$. Therefore there exists a homogeneous polynomial v_{8} of degree eight in y^{i} such that
$4\left\{\left(2+2 b^{2}\right) s_{0}^{i}-2 b^{i} s_{0}\right\} \alpha^{8}=\beta v_{8}^{i}$.
Since $\alpha^{2} \not \equiv 0(\bmod \beta)$, we have a function $u^{i}=u^{i}(x)$ satisfying
$4\left\{\left(2+2 b^{2}\right) s_{0}^{i}-2 b^{i} s_{0}\right\}=\beta u^{i}$.
Contracting above by b_{i}, we have
$8 s_{0}=u^{i} \beta b_{i}$,
implies $8 s_{j}=u^{i} b_{j} b_{i}=0$. Again transvecting (4.8) by b^{j}, we have $u^{i} b_{i}=0$. Plugging $u^{i} b_{i}=0$ in (4.8), we have $s_{0}=0$. Thus from (4.7), we have
$4\left(2+2 b^{2}\right) s_{i j}=u_{i} b_{j}$,
Which implies $u_{i} b_{j}+u_{j} b_{i}=0$. Contracting this by b^{j}, we have $u_{i} b^{2}=0$ by virtue of $u_{j} b^{j}=0$. Therefore we get $u_{i}=0$. Hence, from (4.9), we have $s_{i j}=0$, provided $\left(2+2 b^{2}\right) \neq 0$.
Again, From (4.6), we observe that the terms $-7 \beta^{4} \gamma_{000} y^{i}$ must have a factor α^{2}. Therefore there exist a 1 -form $v_{0}=v_{i}(x) y^{i}$ such that
$\gamma_{000}=v_{0} \alpha^{2}$.
Plugging $s_{0}=0, s_{0}^{i}=0$ and (4.10) in to (4.3) which yields,
$\left\{\alpha^{2}\left(2+2 b^{2}\right)-6 \alpha^{2} \beta+3 \alpha \beta^{2}-\beta^{3}\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+2 \alpha\left(\alpha^{2} b^{i}-\beta y^{i}\right) r_{00}=0$.
Terms of (4.11) can be written as
$\left[\left\{\left(2+2 b^{2}\right) \alpha^{2}+3 \beta^{2}\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+2\left(\alpha^{2} b^{i}-\beta y^{i}\right) r_{00}\right] \alpha-\beta\left[6 \alpha^{2}+\beta\right]\left(\gamma_{00}^{i}-v_{0} y^{i}\right)=0$.
The terms in (4.12) are rational and irrational in y^{i}, which yields

$$
\begin{equation*}
\left\{\left(2+2 b^{2}\right) \alpha^{2}+3 \beta^{2}\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+2\left(\alpha^{2} b^{i}-\beta y^{i}\right) r_{00}=0, \tag{4.12}
\end{equation*}
$$

And

$$
\begin{equation*}
\left[6 \alpha^{2}+\beta\right]\left(\gamma_{00}^{i}-v_{0} y^{i}\right)=0 \tag{4.13}
\end{equation*}
$$

From (4.14), it follows that
$\left(\gamma_{00}^{i}-v_{0} y^{i}\right)=0$.
which yields
$2 \gamma_{j k}^{i}=v_{j} \delta_{k}^{i}+v_{k} \delta_{j}^{i}$,
which shows that associated Riemannian space (M, α) is projectively flat.
Again from (4.13) and (4.15), we have
$r_{00}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0$.
Implies $r_{i j}=0$. By studying the above results i.e., using $s_{i j}=r_{i j}=0$, we conclude that $b_{i \mid j}=0$.
Conversely, if $b_{i \mid j}=0$, then we have $r_{00}=s_{0}^{i}=s_{0}=0$. So (4.3) is a consequence of (4.10).
Thus we state that,
Theorem-4.1: A Finsler space F^{n} with an (α, β)-metric $L(\alpha, \beta)$ given by (4.1) is projectively flat, if and only if we have $b_{i \mid j}=0$ and the associated Riemannian space $\left(M^{n}, \alpha\right)$ is projectively flat.

V. Projective Flat Finsler Space with (α, β)-metric $L=\frac{\beta^{m+1}}{\alpha^{m}}$

Let F^{n} be a Finsler space with an (α, β)-metric is given by
$L=\frac{\beta^{m+1}}{\alpha^{m}}$.
The partial derivatives with respect to α and β of (5.1) are given by

$$
\begin{align*}
& L_{\alpha}=-m \frac{\beta^{m+1}}{\alpha^{m+1}}, \quad L_{\alpha \alpha}=m(m+1) \frac{\beta^{m+1}}{\alpha^{m+2}} \\
& L_{\beta}=(m+1) \frac{\beta^{m}}{\alpha^{m}}, \quad L_{\beta \beta}=m(m+1) \frac{\beta^{m-1}}{\alpha^{m}} \tag{5.2}
\end{align*}
$$

If $1+\left(\frac{L_{\beta \beta}}{\alpha L_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)=0$, then we have $\left\{\beta^{2}(m+2)-(m+1) \alpha^{2} b^{2}\right\}=0$ which leads to contradiction. Thus $1+\left(\frac{L_{\beta \beta}}{\alpha L_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) \neq 0$ and hence theorem (2.1) can be applied.
Substituting (5.2) into (2.4), we get
$\left\{(1+m \lambda) \beta^{2}-m \lambda \alpha^{2} b^{2}\right\}\left\{\left(\alpha^{2} \gamma_{00}^{i}-\gamma_{000} y^{i}\right) \beta-2 \lambda \alpha^{4} s_{0}^{i}\right\}-m \lambda \alpha^{2}\left\{\beta r_{00}+2 \lambda \alpha^{2} s_{0}\right\}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0$.
where $\lambda=\frac{m+1}{m}$.
Only the terms $-\beta^{3}(1+m \lambda) \gamma_{000} y^{i}$ of (5.3) seemingly does not contain α^{2} as a factor and hence we must have $h p(5) v_{5}^{i}$ satisfying $-\beta^{3}(1+m \lambda) \gamma_{000} y^{i}=\alpha^{2} v_{5}^{i}$.
For sake of brevity, we suppose $\alpha^{2} \not \equiv 0(\bmod \beta)$, then we have
$\gamma_{000}=v_{0} \alpha^{2}$.
Where v_{0} is $\mathrm{hp}(1)$.
Plugging (5.4) in to (5.3), we have
$\left\{(1+m \lambda) \beta^{2}-m \lambda \alpha^{2} b^{2}\right\}\left\{\left(\gamma_{00}^{i}-v_{0} y^{i}\right) \beta-2 \lambda \alpha^{2} s_{0}^{i}\right\}-m \lambda\left\{\beta r_{00}+2 \lambda \alpha^{2} s_{0}\right\}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0$.
The terms of (5.5) which seemingly does not contain α^{2} are $(1+m \lambda) \beta^{3}\left(\gamma i_{00}-v_{0} y^{i}\right)+m \lambda \beta^{2} r_{00} y^{i}$. Consequently we must have $h p(1) u_{0}^{i}$ such that the above is equal to $\alpha^{2} \beta^{2} u_{0}^{i}$.
Thus we come by
$(1+m \lambda) \beta\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+m \lambda r_{00} y^{i}=\alpha^{2} u_{0}^{i}$.
Contracting (5.6) by $a_{i r} y^{r}$, leads to
$m \lambda r_{00}=u_{0}^{i} y_{i}$.
Substituting (5.7) in (5.6), we get
$\gamma_{00}^{i}=v_{0} y^{i}$,
which yields
$2 \gamma_{j k}^{i}=v_{j} \delta_{k}^{i}+v_{k} \delta_{j}^{i}$,
Consequently (5.9) shows that associated Riemannian space is projectively flat.
Again substituting (5.8) in (5.5), we have
$-2 \lambda \alpha^{2}\left\{(1+m \lambda) \beta^{2}-m \lambda \alpha^{2} b^{2}\right\} s_{0}^{i}-m \lambda\left\{\beta r_{00}+2 \lambda \alpha^{2} s_{0}\right\}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0$.
Contracting (5.10) by b_{i}, we have,
$\left(-2 \beta s_{0}-m b^{2} r_{00}\right) \alpha^{2}+m \beta^{2} r_{00}=0$.
Then there exists a function $k(x)$ such that
$-2 \beta s_{0}-m b^{2} r_{00}=k \beta^{2}$, and $m r_{00}=k \alpha^{2}$.
By eliminating r_{00} from the above, we have
$2 \beta s_{0}=k\left(\beta^{2}-\alpha^{2} b^{2}\right)$.
Implies
$\left(s_{i} b_{j}+s_{j} b_{i}\right)=k\left(b_{i} b_{j}-b^{2} a_{i j}\right)$.
Contracting the above by $a^{i j}$, we have $k=0$.
From (5.13), we have $s_{0}=0$ and hence from (5.12), we obtain $r_{00}=0$.
Again from $s_{i}=0$ and $r_{00}=0$, (5.10) implies $s_{0}^{i}=0$ implies $s_{i j}=0$.
Since $r_{i j}=s_{i j}=s_{0}^{i}=0$, we have $b_{i \mid j}=0$.
Conversely, if $b_{i \mid j}=0$, then we have $r_{00}=s_{0}^{i}=s_{0}=0$. So (5.3) is a consequence of (5.8).
Thus we state that,
Theorem-5.1: A Finsler space F^{n} with an (α, β)-metric $L(\alpha, \beta)$ given by (5.1) is projectively flat, if and only if we have $b_{i \mid j}=0$ and the associated Riemannian space $\left(M^{n}, \alpha\right)$ is projectively flat.

VI. Conclusion

A Finsler metric being projectively equivalent on a manifold means their geodesics are same up to a parametrization

$$
G^{i}=\bar{G}^{i}+P y^{i}
$$

where $P=P(x, y)$ is a positively y-homogeneous of degree one. If a quantity does not change between two projectively equivalent Finsler metrics, then it is called as a projectively invariant.

We have a two essential projective invariants, namely Weyl tensor W and the other is the Douglas tensor D. A Finsler space where both of these tensors vanish is characterized as a projecitvely flat Finsler space which can be projectively mapped to a locally minkowskian space. A Locally minkowskian space with (α, β) metric is flat parallel if α is locally flat and β is parallel with respect to α.

A Finsler space is called projectively flat, or with rectilinear gedesic, if the space is covered by cordinate neighborhoods in which the geodesic can be represented by $(n-1)$ linear equations of the coordinates. Such a coordinate system is called rectilinear.

Still now it is an open problem to classify the projectively flat (α, β) - metrics in dimension $n=2$. In this article we are discussing about the condition for Finsler space F^{n} of dimension $n>2$ of the above mentioned metrics are projectively flat if and only if $b_{i \mid j}=0$ and F^{n} is covered by coordinate neighborhoods on which the Christoffel symbol of the associated Riemannian space with the metric α are written as $\gamma_{j k}^{i}=$ $v_{k} \delta_{j}^{i}+v_{j} \delta_{k}^{i}$.

References

[1]. M. Matsumoto, Projective flat Finsler space with (α, β) - metric, Rep. On Math. Phys., 30 (1991), 15- 20.
[2]. M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaishima Press., Saikawa, Otsu, 520, Japan, (1986).
[3]. L. Berwald, Ueber Finsersche und Cartanscher geometric, IV, Projectiv Krummung allegemeiner affine raume und Finslerscher Raume skalarer krummung, Ann. Of Math., 48, No. 03,(1947), 755-781.
[4]. M. Matsumoto, Projective changes of Finsler metric and projectively flat Finsler spaces, Tensors, N. S., 34(1980), 303-315.
[5]. Gauree Shankar and Ravindra Yadav, On some projectively flat (α, β)-metrics, Gulf Journal of Mathematics, 1 (2013), 72-77.
[6]. Gauree Shankar and Proxy Gupta, Projectively flat Finsler spaces with special (α, β) - metric, Journal of International Academy of Physical sciences., Vol. 17, No. 4, (2013), 369-376.
[7]. M. Hashiguchi and Y. Ichijyi, On some special (α, β) - metric, Comm. Korean Math. Soc., 11 (1996), No.2, 407-413.
[8]. B. D. Kim, On the projectively flat Finsler space with a Special (α, β)-metric, Comm. Korean Math. Soc., 11 (1996), No.2, 407413.
[9]. S. K. Narasimhamurthy, Latha Kumari and C. S. Bagewadi, On Some Projectively flat (α, β) - metrics, International Electronic Journal of Pure and Applied Mathematics., Vol. 03, No. 3, (2011), 187-193.
[10]. S. K. Narasimhamurthy, H. Anjan Kumar and Ajith, On Some Projectively flat special (α, β)- metrics, International Journal of Advances in Science and Technology,., Vol. 03, No. 2, (2011), 96-101.
[11]. H. S. Park and I. Y. Lee, On projectively flat Finsler space with a (α, β)-metric, Comm. Korean Math. Soc., No.02, 14 (1999), 373383.
[12]. H. S. Park, H. Y. Park, B. D. Kim and E. S. Choi, Projectively flat Finsler space with a Certain (α, β) - metrics, Bull. Korean Math. Soc., No.4, 40 (2003), 649-661.
[13]. S. Bacso and M. Matsumoto, Projective changes between Finsler space with (α, β)- metrics, Tensor, N.S., 55 (1994), 252-257.

