On The Fuzzy Implicative Ideal of a BH-Algebra

Husein Hadi Abbass¹ and Suad Abdulaali Neamah²

Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq

Abstract: In this paper, we study a fuzzy implicative ideal of a BH-algebra. We give some properties of this fuzzy ideal and link it with other types of fuzzy ideals and fuzzy subset of a BH-algebra. **Keywords:** fuzzy completely closed ideal, fuzzy ideal, fuzzy implicative ideal, fuzzy set, fuzzy sub-implicative ideal, fuzzy p- ideal, implicative BH-algebra, implicative BH-algebra. 2000 Mathematics Subject Classification: 06F35, 03G25, 08A72.

I. Introduction

In 1966, K. Iseki introduced the notion of a BCI–algebra which was a generalization of a BCK-algebra [9]. In this year, K. Iseki introduced the notion of an ideal of a BCK–algebra [8]. In 1998, Jun et al, Roh and kim introduced the notion of BH-algebra, which is a generalization of BCH-algebras [13]. Then, Y. B. Jun, E. H. Roh, H. S. Kim and Q. Zhang discussed more properties on BH-algebras [13]. In 2011, H. H. Abbass and H. M.A. Saeed generalized the notion of a closed ideal, p-ideal and implicative ideal to a BH-algebra and BCA-part to a BH-algebra [4]. In 2012, H. H. Abbass and H. D. Dahham introduced the notion of a fuzzy subset of a set as a method for representing uncertainty in real physical world. Since then its application had been growing rapidly over many disciplines [9]. In 2001, Q. Zhang, E. H. Roh and Y. B. Jun studied the fuzzy theory in BH-algebras [11]. In 2011, H. H. Abbass and H. M.A. Saeed generalized the notion of a fuzzy closed ideal, fuzzy p-ideal and fuzzy implicative ideal to a BH-algebra and BCA-part [4]. In 2012, H. H. Abbass and H. D. Dahham introduced the notion of a fuzzy closed ideal and completely closed ideal with respect to an element of a BH-algebra [3]. In 2001, Q. Zhang, E. H. Roh and Y. B. Jun studied the fuzzy theory in BH-algebras [11]. In 2011, H. H. Abbass and H. M.A. Saeed generalized the notion of a fuzzy closed ideal, fuzzy p-ideal and fuzzy implicative ideal to a BH-algebra and BCA-part [4]. In 2012, H. H. Abbass and H. D. Dahham introduced the notion of a fuzzy closed ideal, fuzzy p-ideal and fuzzy implicative ideal to a BH-algebra and BCA-part [4]. In 2012, H. H. Abbass and H. D. Dahham introduced the notion of a fuzzy completely closed ideal fuzzy for a BH-algebra [3].

In this paper, we define the notion of fuzzy implicative ideal of BH-algebra, We state and prove some theorems which determine the relationshipsamong this notion and the other types of fuzzy ideals and fuzzy subsets of a BH-algebra

II. Preliminaries

In this section, we give some basic concepts about BCI-algebra, BH-algebra. We state and prove some theorems which determine the relationship between this notion and the other types of fuzzy ideals and fuzzy subset of a BH-algebra, fuzzy ideals of BH-algebra with some theorems, propositions and examples.

Definition (2.1) [8]

A BCI-algebra is an algebra (X, *, 0), where X is a nonempty set, * is a binary operation and 0 is a constant, satisfying the following axioms:

 $\forall x, y, z \in X$:

- i. ((x *y) * (x * z)) * (z * y) = 0.
- ii. (x * (x * y)) * y = 0.
- iii. x * x = 0.
- iv. x * y = 0 and y * x = 0 imply x = y.

Definition (2.2) [13]

A **BH-algebra** is a nonempty set X with a constant 0 and a binary operation * satisfying the following conditions:

- i. $x * x = 0, \forall x \in X.$
- ii. x * y = 0 and y * x = 0 imply $x = y, \forall x, y \in X$.
- iii. $x *0 = x, \forall x \in X.$

Definition (2.3) [13]

Let I be a nonempty subset of a BH-algebra X. Then I is called an **ideal** of X if it satisfies:

- i. 0∈I.
- ii. $x^*y \in I$ and $y \in I$ imply $x \in I$.

Definition (2.4) [4]

A nonempty subset I of a BH-algebra X is called an **implicative ideal** of X if: i. $0 \in I$.

ii. $(x^*(y^*x))^*z \in I \text{ and } z \in I \text{ imply } x \in I, \forall x, y, z \in X.$

Proposition (2.5) [4]

Every implicative ideal of a BH-algebra X is an ideal of X.

Definition (2.6)[9]

Let X be a non-empty set and I be the closed interval [0, 1] of the real line (real numbers). A **fuzzy set A in X** (a **fuzzy subset of X**) is a function from X into I. **fuzzy sets** in X.

Definition (2.7)[11]

A fuzzy subset A of a BH-algebra X is said to be a **fuzzy ideal** if and only if:

i. $A(0) \ge A(x), \forall x \in X$.

ii. $A(x) \ge \min\{A(x^*y), A(y)\}, \forall x, y \in X.$

Definition (2.8) [4]

A fuzzy subset A of a BH-algebra X is called a fuzzy implicative ideal of X if it satisfies:

- i. $A(0) \ge A(x), \forall x \in X.$
- ii. $A(x) \ge \min\{A((x^{*}(y^{*}x))^{*}z), A(z)\}, \forall x, y, z \in X.$

Example (2.9)

Consider the BH-algebra $X = \{0, 1, 2\}$ with the binary operation '*' defined by the following table:

The fuzzy subset A of X by defined $A(x) = \begin{cases} 1 & \text{;} & x = 0, 1 \\ 0.5 & \text{;} & x = 2 \end{cases}$ is a **fuzzy implicative ideal** of X.

Proposition (2.10) [4]

In BH-algebra of X, every fuzzy implicative ideal is a fuzzy ideal, but the converse is not true, in general.

III. The Relationship between Fuzzy Implicative Ideal and Fuzzy Sub-implicative Ideal of a BH-Algebra.

In this section, we link the fuzzy implicative ideal with fuzzy sub-implicative ideal of a BH-algebra with some theorems, propositions and examples.

Definition (3.1) [12]

A fuzzy set A of a BCI-algebra X is called a **fuzzy sub-implicative ideal** of X if it satisfies:
i. A(0) ≥ A(x), ∀ x∈X.
ii. A(y*(y*x)) ≥ min{A(((x *(x*y))*(y*x)) *z), A(z)}, ∀ x, y, z∈ X.
We generalize the concept of a **fuzzy sub-implicative ideal** to a BH-algebra.

Definition (3.2)

A fuzzy set A of a BH-algebra X is called a **fuzzy sub-implicative ideal** of X if it satisfies: i. $A(0) \ge A(x)$, $\forall x \in X$. ii. $A(y^*(y^*x)) \ge \min \{A(((x^*(x^*y))^*(y^*x)) * z), A(z)\}, \forall x, y, z \in X$.

Proposition(3.3)

Let X be a BH-algebra. Then every fuzzy sub-implicative ideal of X is fuzzy ideal of X. **Proof:** Let A be a fuzzy sub-implicative ideal of X. Then i. $A(0) \ge A(x), \forall x \in X$. [By definition (3.2)(i)] ii. Let x, z \in X. Then $A(x) = A(x^*0) = A(x^*(x^*x)) \ge \min \{A(((x^*(x^*x))^*(x^*x))^*z)), A(z)\}$ [Since A is a fuzzy sub-implicative of X. By definition (3.2)(ii)] = min { $A(((x^*0)^*0)^*z)$, A(z)} [Since X is BH-algebra , $x^*x=0$] = min { $A((x^*0)^*z), A(z)$ } [Since X is BH-algebra, $x^*0=x$] = min { $A(x^*z), A(z)$ } [Since X is BH-algebra, $x^*0=x$] = min { $A(x^*z), A(z)$ } [Since X is BH-algebra, $x^*0=x$]

Remark (3.4)

The converse of proposition (3.3) is not correct in general, as in the following example. **Example (3.5)**

Consider the BH-algebra $X = \{0, 1, 2, 3\}$ with the binary operation '*' defined by the following table:

*	0	1	2	3
0	0	0	0	3
1	1	0	0	3
2	2	2	0	3
3	3	3	3	0

The fuzzy subset A defined by $A(x) = \begin{cases} 0.5 \\ 0.2 \end{cases}$; $x = 0 \\ y \neq 0 \end{cases}$ is a fuzzy ideal of X, but A is not a fuzzy sub-implicative ideal of X. Since if x=2, y=1, z=0, then

 $\begin{aligned} A(1^{*}(1^{*}2)) = A(1^{*}0) = A(1) = 0.2 < \min\{A(((2^{*}(2^{*}1))^{*}(1^{*}2))^{*}0)), A(0)\} = \min\{A(((2^{*}2)^{*}(0))^{*}0)), A(0)\} \\ = \min\{A(0^{*}0), A(0)\} = \min\{A(0), A(0)\} = A(0) = 0.5 \end{aligned}$

Theorem (3.6)

Let X be a BH-algebra and let A be a fuzzy ideal of X. Then A is a fuzzy sub-implicative ideal of X if and only if $A(y^*(y^*x)) \ge A((x^*(x^*y))^*(y^*x))$ (b₁). **Proof:** Let A be a fuzzy sub-implicative ideal of X and x, $y \in X$. Then

 $A(y^*(y^*x)) \ge \min\{A(((x^*(x^*y))^*(y^*x))^*0), A(0)\}$

= min{A(($x^{*}(x^{*}y)$)*($y^{*}x$)),A(0)}[Since X is a BH-algebra ; $x^{*}0=x$]

 $= A((x^*(x^*y))^*(y^*x))[Since A is a fuzzy ideal of X, A(0) \ge A(x)].$

Then the condition (b_1) is satisfied.

Conversely, Let A be a fuzzy ideal of X. Then i. $A(0) \ge A(x)$, $\forall x \in X$. [By definition (2.7)(i)] ii. Let x, y, z $\in X$. Then $A((x^*(x^*y))^*(y^*x)) \ge \min\{A(((x^*(x^*y))^*(y^*x))^*z), A(z)\}$ [Since A is a fuzzy ideal of X. By definition (2.7)(ii)] $\Rightarrow A(y^*(y^*x)) \ge A((x^*(x^*y))^*(y^*x))$ [By (b₁)] $\Rightarrow A(y^*(y^*x)) \ge \min\{A(((x^*(x^*y))^*(y^*x))^*z), A(z)\}.$

Therefore, A is a fuzzy sub-implicative ideal of X.■

Definition (3.7) [7]

A BCI-algebra is said to be an implicative if it satisfies the condition, $(x^*(x^*y))^*(y^*x) = y^*(y^*x); \forall x, y \in X.$ We generalize the concept of an **implicative** to a **BH-algebra**.

Definition (3.8)

A BH-algebra is said to be an implicative if it satisfies the condition, $(x^*(x^*y))^*(y^*x) = y^*(y^*x); \forall x, y \in X.$

Example (3.9)

Consider the BH-algebra $X = \{0, 1, 2\}$ with the binary operation '*' defined by the following table:

*	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

Then (X, *, 0) is an implicative BH-algebra.

Theorem(3.10)[13] Every BH-algebra satisfying the condition: $((x*y)*(x*z))*(z*y)=0, \forall x, y, z \in X$ is a BCI-algebra **Theorem (3.11)** [15]

A BCI-algebra X is an implicative if and only if every fuzzy closed ideal of X is a fuzzy implicative ideal of X. **Theorem (3.12)**

Let X be a BH-algebra and satisfies the condition:

 $((x^*y)^*(x^*z))^*(z^*y)=0, \ \forall x,\,y,\,z\in X \ (b_2).$

Then X is an implicative if and only if every fuzzy closed ideal of X is a fuzzy implicative ideal of X. **Proof:** Directly from theorems (3.10) and (3.11).

Theorem(3.13)

Let X be an implicative BH-algebra. Then every fuzzy ideal of X is a fuzzy sub-implicative ideal of X. **Proof:**

Let A be a fuzzy ideal of X. Then i. $A(0) \ge A(x), \forall x \in X$. [By definition (2.7)(i)] ii. Let x, y, z \in X. Then $A(y^*(y^*x)) \ge \min \{A((y^*(y^*x)) * z), A(z)\}\}$ $\ge \min \{A(((x^*(x^*y))^*(y^*x))^*z)), A(z)\}$ [Since X is an implicative] $\Rightarrow A(y^*(y^*x)) \ge \min \{A(((x^*(x^*y))^*(y^*x))^*z)), A(z)\}.$ Therefore, A is a fuzzy sub-implicative ideal of X. **Definition (3.14) [3]** A BCH-algebra X is called **medial** if $x^*(x^*y) = y, \forall x, y \in X.$ We generalize the concept of **medial** to BH-algebra. **Definition(3.15)** A BH-algebra X is called **medial** if $x^*(x^*y) = y, \forall x, y \in X.$

Corollary (3.16)

In a medial BH-algebra, every fuzzy ideal of X is a fuzzy sub-implicative ideal of X. **Proof:** Let A be a fuzzy ideal of X. Then i. $A(0) \ge A(x), \forall x \in X$. [By definition (2.7)(i)] ii. Let x, y $\in X$. Then $A(y^*(y^*x))=A(x)$ [Since X is a medial, $x^*(x^* y)=y$] $\ge \min\{A(x^*z),A(z)\}$ [Since A is a fuzzy ideal of X. By definition (2.7)(ii)] $\ge \min\{A((y^*(y^*x))^*z), A(z)\}$ [Since X is a medial, $x=y^*(y^*x)$] $\ge \min\{A(((x^*(x^*y))^*(y^*x))^*z)), A(z)\}$. [Since X is a medial, $x^*(x^* y)=y$] $\Rightarrow A(y^*(y^*x)) \ge \min\{A(((x^*(x^*y))^*(y^*x))^*z)), A(z)\}$. Therefore, A is a fuzzy sub-implicative ideal of X.

Remark (3.17)

The following example shows that notions of fuzzy implicative ideal of X and fuzzy sub-implicative ideal of X are independent.

Example (3.18)

Consider the BH-algebra $X = \{0, 1, 2, 3\}$ with the binary operation '*' defined by the following table:

*	0	1	2	3
0	0	0	1	1
1	1	0	0	1
2	2	2	0	1
3	3	0	1	0
(0.8) $(v - 0.3)$				

The fuzzy subset A of X defined by $A(x) = \begin{cases} 0.8 \\ 0.5 \end{cases}$; x = 0,3; x = 1,2 is a fuzzy implicative ideal of X, since A(x)

 $\geq A(x^*(y^*x)), \quad \forall x, y \in X.$ But it is not a fuzzy sub-implicative ideal of X. Since

if x=3, y= 2, z=0, then A(2*(2*3))=A(2)=0.5 < min{A(((3*(3*2))*(2*3))*0), A(0)} min{A(((2*1)*1), A(0)), min{A(0)} min{A(0)} A(0), A(0), A(0)}

 $= \min\{A((3^{*}1)^{*}1), A(0)\} = \min\{A(0^{*}1), A(0)\} = \min\{A(0), A(0)\} = A(0) = 0.8$

Remark (3.20)

If A is a fuzzy sub-implicative ideal of a BH-algebra of X, then A may not be a fuzzy implicative ideal of X, as in the following example.

Example (3.21)

Let X be the BH-algebra in example (2.9). Then the fuzzy ideal A which defined $A(x) = \begin{cases} 0.8 \ ; \ x = 0, 1 \\ 0.5 \ ; \ x = 2 \end{cases}$ is a fuzzy sub-implicative ideal of X. But A is not a fuzzy implicative ideal of X. Since if x=2

$$y=0$$
, z=0, then A(2)=0.5 < min{A(((2*(0*2))*0), A(0))}

$$= \min\{A(2*2), A(0)\} = \min\{A(0), A(0)\} = A(0) = 0.8$$

We provide conditions for a fuzzy sub-implicative ideal to be a fuzzy implicative ideal of X.

Proposition (3.22)

Let X be a BH-algebra. Then every fuzzy sub-implicative ideal of X is a fuzzy ideal of X. **Proof:** Let A be a fuzzy sub-implicative ideal of X. To prove A is a fuzzy ideal of X. i. $A(0) \ge A(x), \forall x \in X$. [Since A is a sub-implicative ideal of X.] ii. Let x, y, z \in X such that min{A(x*z), A(z)}=min {A((x*0)*z), A(z)}[Since X is BH-algebra; x*0=x] $= \min \{A((x^{*}(0^{*}0))^{*}z), A(z)\}$ [Since X is BH-algebra; x*x=0]

 $= \min\{A(((x^*(x^*x))^*(x^*x))^*z), A(z)\}$ [Since X is BH-algebra; x*x=0]

 $\Rightarrow A(x^*(x^*x)) \ge \min \{A(((x^*(x^*x))^*(x^*x))^*z), A(z)\}$ [Since A is a fuzzy sub-implicative of X. By definition (3.2)(ii)]

Now, $A(x^{*}(x^{*}x)) = A(x^{*}0) = A(x)$ [Since X is BH-algebra ; $x^{*}x=0, x^{*}0=x$]

 $\Rightarrow A(x) \ge \min\{A(((x^*(x^*x))^*(x^*x))^*z), A(z)\} = \min\{A(x^*z), A(z)\}$

 $\Rightarrow A(x) \ge \min\{A(x^*z), A(z)\}$. Therefore, A is a fuzzy ideal of X.

Remark (3.23)

The converse the proposition (3.22) is not true, in general. As in the following example.

Example (3.24)

Consider the BH-algebra $X = \{0, 1, 2, 3\}$ with the binary operation '*' defined by the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	2
2	2	2	0	1
3	3	3	3	0

The fuzzy subset A defined by $A(x) = \begin{cases} 1 & ; x = 0 \\ 0.5 & ; x = 1,2,3 \end{cases}$ is a fuzzy ideal of X, but A is not a fuzzy subimplicative ideal of X. Since if x=2, y=1, z=0, then

 $A(1*(1*2))=A(1*0)=A(1)=0.5 < \min\{A(((2*(2*1))*(1*2))*0), A(0)\}$

 $= \min\{A((2^*2))^*(1^*2)), A(0)\} = \min\{A(0), A(0)\} = A(0) = 1.$

Theorem (3.25)

If X is a BH-algebra of X satisfies the condition: $\forall x, y, z \in X ; A(y^*z) \ge A((x^*(x^*y))^*z) (b_3),$ then every fuzzy ideal of X is a fuzzy sub-implicative ideal of X. **Proof:** Let A be a fuzzy ideal of X. Then i. Let x, y, $z \in X$. Then $A((x^*(x^*y))^*(y^*x)) \ge \min\{A(((x^*(x^*y))^*(y^*x))^*z), A(z)\}$ [Since A is a fuzzy ideal of X. By definition (2.7)(ii)] Put $z = y^*x$ in b3. Then $A(y^*(y^*x)) \ge A((x^*(x^*y))^*(y^*x))$ $\Rightarrow A(y^*(y^*x)) \ge \min\{A(((x^*(x^*y))^*(y^*x))^*z), A(z)\}.$

Therefore, A is a fuzzy sub-implicative ideal of X. ■

Theorem (3.26)

Let X be an implicative BH-algebra. Then every fuzzy ideal of X is a fuzzy sub-implicative ideal of X. **Proof:** Let A be a fuzzy ideal of X. Then i. $A(0) \ge A(x), \forall x \in X$. [By definition (2.7)(i)] ii. Let x, y, z \in X. Then $A((x^*(x^*y))^*(y^*x)) \ge \min\{A(((x^*(x^*y))^*(y^*x))^*z), A(z)\}$ [Since A is a fuzzy ideal of X. By definition (2.7)(ii)]

 $\Rightarrow A((x^*(x^*y))^*(y^*x)) = A(y^*(y^*x))$ [Since X is an implicative]

⇒ $A(y^*(y^*x)) \ge \min \{A(((x^*(x^*y))^*(y^*x))^*z), A(z)\}$. Then A is a fuzzy sub-implicative ideal of X. **Proposition (3.27)[5]** Example a lacker is an implication PLL clocker

Every medial BH-algebra is an implicative BH-algebra

Corollary(3.28)

If X is a medial BH-algebra, then every fuzzy ideal of X is fuzzy sub-implicative of X. **Proof:** Directly by theorem (3.26) and proposition (3.27).

Theorem (3.29) [5]

Let X be a BH-algebra and let A be a fuzzy ideal. Then A is a fuzzy implicative ideal of X if and only if A satisfies the following inequality: $\forall x, y \in X; A(x) \ge A(y^*(y^*x))$ (b₄).

Theorem (3.30)

Let X be a medial BH-algebra satisfies the condition: $\forall x, y \in X$; $A((x^*(x^*y))^*(y^*x)) \ge A(x^*(y^*x))$ (b₅). Then every fuzzy sub-implicative ideal is a fuzzy implicative ideal of X. **Proof:** Let A be a fuzzy sub-implicative ideal of X. To prove A is a fuzzy implicative ideal of X. i. $A(0) \ge A(x), \forall x \in X$. [By definition (3.2)(i)] ii. Let x, y, z \in X. Then $A(x^*(y^*x)) \ge \min \{A((x^*(y^*x))^*z), A(z)\}$ [Since A is a fuzzy ideal of X. By proposition (3.3)] Now, $A((x^*(x^*y))^*(y^*x)) \ge A(x^*(y^*x))$, [By (b₅)] and $A(y^*(y^*x)) \ge \min\{A(((x^*(x^*y))^*(y^*x))^*z), A(z)\}$ [Since A is a fuzzy sub-implicative ideal of X.] if z=0, then $A(y^*(y^*x)) \ge \min\{A(((x^*(x^*y))^*(y^*x)), A(0)\}$ $\Rightarrow A(y^*(y^*x)) \ge \min\{A((x^*(x^*y))^*(y^*x)), A(0)\}$ [Since X is a BH-algebra, $x^*0=x$.] $\Rightarrow A(y^*(y^*x)) \ge A((x^*(x^*y))^*(y^*x))$. [Since $A(0) \ge A(x)$] $\Rightarrow A(y^*(y^*x)) \ge A(x^*(y^*x))$ Now, we have $A(x) = A(y^*(y^*x))$ [Since X be a medial; $y^*(y^*x) = x$] $\Rightarrow A(x) \ge A(y^*(y^*x))$. Therefore, A is a fuzzy implicative ideal of X. [By theorem (3.29)].

Theorem (3.31)

Let X be a implicative BH-algebra. Then every fuzzy implicative ideal of X is a fuzzy sub-implicative ideal of X.

Proof: Let A be a fuzzy implicative ideal of X. To prove A is a fuzzy sub-implicative ideal of X. i. A(0) ≥ A(x), $\forall x \in X$. [By definition (2.8)(i)] ii. Let x, y, z ∈ X. Then A((x*(x*y))*(y*x)) ≥ min{A(((x*(x*y))*(y*x))*z), A(z)} [Since A is a fuzzy ideal of X. By proposition (2.10)] ⇒ A((x*(x*y))*(y*x)) = A(y*(y*x)) [Since X is an implicative.] ⇒ A((y*(y*x)) ≥ min {A(((x*(x*y))*(y*x))*z), A(z)}. Therefore, A is a fuzzy sub-implicative ideal of X.■

Corollary (3.32)

Let X be a medial BH-algebra. Then every implicative ideal of X is a sub-implicative ideal of X. **Proof:** Directly by theorem (3.31) and proposition (3.27).

IV. The Relationship Between Fuzzy Implicative Idealand Fuzzy Completely Closed Idealof a BH-algebra

In this section, we link the fuzzy implicative ideal with fuzzy completely closed ideal of a BHalgebra with some theorems, propositions and examples. **Definition (4.1) [4]**

Afuzzy ideal A of a BH-algebra X is said to be fuzzy closed if A $(0 * x) \ge A(x), \forall x \in X$.

Definition (4.2) [3]

Let X be a BH-algebra and A be a fuzzy ideal of X. Then A is called a **fuzzy completely closed ideal** of X if A $(x^*y) \ge \min\{A(x), A(y)\}, \forall x, y \in X.$

Proposition(4.3)

Let X be an implicative BCI-algebra .Then every fuzzy completely closed ideal of X is a fuzzy implicative ideal of X.

Proof: Let A be a fuzzy completely closed ideal of X .To prove A is a fuzzy implicative ideal of X.

 \Rightarrow A is a fuzzy ideal of X. [By definition (4.2)]

i. $A(0) \ge A(x), \forall x \in X$. [By definition (2.7)(i)]

ii. Let $y \in X$, if x=0

 $\Rightarrow A(0^*y) \ge \min\{A(0), A(y)\} = A(y).$ [By definition (4.2)] $\Rightarrow A(0^*y) \ge A(y).$

 \Rightarrow A is a fuzzy closed ideal of X. [By definition (4.2)]

Therefore, A is a fuzzy implicative ideal of X. [By theorem (3.12)].■

Proposition(4.4)

Let X be an implicative BH-algebra satisfies (b_2) . Then every fuzzy completely closed ideal of X is a fuzzy implicative ideal of X.

Proof: Let A be a fuzzy completely closed ideal of X. Then A is a fuzzy ideal of X. [By definition (4.2)] To prove A is a fuzzy closed ideal of X.

Now, let $y \in X$. if x=0,

$$\Rightarrow A(0^*y) \ge \min\{A(0), A(y)\} = A(y) \qquad [A(0) \ge A(y)]$$

 $\Rightarrow A(0*y) \ge A(y)$

⇒ A is a fuzzy closed ideal of X. Therefore, A is a fuzzy implicative ideal of X. By theorem (3.12)].

Corollary (4.5)

Let X be a medial BH-algebra satisfies (b₂). Then every fuzzy completely closed ideal of X is a fuzzy implicative ideal of X.

Proof: Directly by theorem (3.27) and proposition (4.4).■

V. The Relationship Between Fuzzy Implicative Idealand Fuzzy P-Idealof BH-algebra

In this section, we link the fuzzy implicative ideal with fuzzy p- ideal of a BH-algebra with some theorems, propositions and examples.

Definition (5.1) [4]

A fuzzy set A of a BH-algebra X is called a fuzzy p-ideal of X if it satisfies:

- i. $A(0) \ge A(x), \forall x \in X.$
- ii. $A(x) \ge \min \{A((x * z) * (y * z)), A(y)\}, \forall x, y, z \in X.$

Example (5.2)[4]

Let X be a BH-algebra in example (2.9), then the fuzzy ideal A which defined by $A(x) = \begin{cases} 1 & \text{; } x = 0,1 \\ 0.5 & \text{; } x = 2 \end{cases}$. Then

A is a **fuzzy p-ideal** of X.

Definition (5.3) [4]

Let X be a BH-algebra. Then the set $X_{+}=\{x \in X \mid 0 \neq x=0\}$ is called the **BCA-part** of X.

Theorem (5.4)

Let $X=X_+$ be a BH-algebra. Then every fuzzy p-ideal of X is a fuzzy implicative ideal of X. **Proof:** Let A be a fuzzy p-ideal of X. Then

i. $A(0) \ge A(x), \forall x \in X$. [By definition (5.1)(i)]

ii. Let x, $y \in X$. Then $A(a) \ge \min\{A((a^*c)^*(b^*c)), A(b)\}$. Put $a=x, b=0, c=y^*x$

 $A(x) \ge \min \{A((x^*(y^*x))^*(0^*(y^*x)), A(0)\}$

= min {A(($x^{*}(y^{*}x)$)*0),A(0)} [Since X=X_+]

- $= \min \{A(x^*(y^*x)), A(0)\}$ [Since X is BH-algebra ; x*0=x]
- $= A(x^{*}(y^{*}x))$ [Since $A(0) \ge A(x), \forall x \in X$.]

 $\Rightarrow A(x) \ge A(x^*(y^*x))$. Therefore, A is a fuzzy implicative ideal of X. [By theorem (3.29)]

Remark(5.5)

In the following example, we see that the converse of theorem (5.4) may not be true in general. Example (5.6)

Consider $X = \{0, 1, 2\}$ with the b

*	0	1	2
0	0	0	0
1	1	0	1
2	2	2	0

inary operation '*' defined by the following table:

Define a fuzzy subset by $A(x) = \begin{cases} 0.7 & ; x = 0 \\ 0.5 & ; x = 1 \\ 0.2 & ; x = 2 \end{cases}$ p-ideal of X. Because if x=2, y=1, z=2, then $A(2) = 0.2 < \min\{A((2 * 2) * (1 * 2)), A(1)\}$

= min {A(0*1), A(0)}= min {A(0), A(0)}= A(0)=0.7

VI. The Relationship between Fuzzy Implicative Ideal and Some Fuzzy and Ordinary Sets of **BH-algebra**

In this section, we link the fuzzy implicative ideal and some fuzzy and ordinary sets of BH-algebra with some theorems, propositions and examples.

Definition (6.1)[10]

Let A be a fuzzy set in X, $\forall \alpha \in [0, 1]$, the set $A_{\alpha} = \{x \in X, A(x) \ge \alpha\}$ is called a **level subset of A**. Theorem (6.2)

Let X be a BH-algebra and A be a fuzzy ideal of X. Then A is a fuzzy implicative ideal of X if and only if the level subset A_{α} is an implicative ideal of X, $\forall \alpha \in [0, \sup_{x \in X} A(x)]$.

Proof:

Let A be a fuzzy implicative ideal of X. To prove A_{α} is an implicative ideal of X.

i. $A(0) \ge A(x), \forall x \in X$. [By definition (2.8)(i)]

 $\Rightarrow A(0) \ge \alpha, \forall \alpha \in [0, A(0)].$ Then $0 \in A_{\alpha}$.

ii. Let x, y, $z \in X$ such that $(x^*(y^*x))^*z \in A_{\alpha}$ and $z \in A_{\alpha}$

 $\Rightarrow A((x^*(y^*x))^*z) \ge \alpha \quad \text{and} \quad A(z) \ge \alpha \qquad [By \text{ definition}(6.1) \text{ of } A_\alpha]$

 $\Rightarrow \ min \ \{ \ A((x^*(y^*x))^*z) \ , \ A(z) \ \} \geq \ \alpha$

 $ButA(x) \ge \min\{A((x^*(y^*x))^*z), A(z)\}[Since A is a fuzzy implicative ideal of X. By definition (2.8)(ii)]$

 $\Rightarrow A(x) \geq \alpha \Rightarrow x \in A_{\alpha} \quad . \ \text{Therefore, } A_{\alpha} \text{ is an implicative ideal of } X.$

Conversely, Let A_{α} be an implicative ideal of X, $\forall \alpha \in [0, A(0)]$ and Let $\alpha = \sup_{x \in X} A(x)$].. To prove that A is a fuzzy implicative ideal of X.

i. $0 \in A_{\alpha}$. [Since A_{α} is an implicative ideal of X]

 $\Rightarrow A(0) \ge \alpha$. Then $A(0) \ge A(x), \forall x \in X$. [Since A(0)=1]

ii. Let x , y , $z \in X$ such that $\mbox{ min}\{\ A((x^*\!(y^*x))^*z)\ ,\ A(z)\ \!\}=\alpha$

 $\Rightarrow A((x^*(y^*x))^*z) \ge \alpha \quad \text{and} \quad A(z) \ge \alpha$

 \Rightarrow $(x^*(y^*x))^*z \in A_\alpha$ and $z \in A_\alpha$

 $\Rightarrow x \in A_{\alpha}$. [Since A_{α} be an implicative ideal of X.]

$$\Rightarrow A(x) \ge \alpha$$

⇒ $A(x) \ge \min \{A((x^*(y^*x))^*z), A(z)\}$. Therefore, A is a fuzzy implicative ideal of X.

Corollary (6.3)

Let X be a BH-algebra, Then A is a fuzzy implicative ideal A of X if and only if the set X_A is an implicative ideal of X, where $X_A = \{x \in X | A(x) = A(0)\}$

Proof: Let A be a fuzzy implicative ideal of X. To prove X_A is an implicative ideal of X.

i. If x=0, then A(x)=A(0). Then $0 \in X_A$.

ii. Let x, y, $z \in X$ such that $(x^*(y^* x))^* z \in X_A$ and $z \in X_A$.

 $\Rightarrow A((x^*(y^* x))^* z) = A(0) \text{ and } A(z) = A(0).$

We have $A(x) \ge \min\{A((x^*(y^*x))^*z), A(z)\}$ [Since A is a fuzzy implicative ideal of X]

 $= \min \{A(0), A(0)\} = A(0)$

 $\Rightarrow A(x) \ge A(0).$

 \Rightarrow A(x) = A(0). [Since A is a fuzzy implicative ideal of X, A(0) \ge A(x)]

⇒ $x \in X_A$. Therefore, X_A is an implicative ideal of X.

Conversely, Let X_A be an implicative ideal of X. To prove A is a fuzzy implicative ideal of X.

Since $X_A = A_\alpha$, $\alpha = A(0)$. Therefore, A is a fuzzy implicative ideal of X.

Proposition (6.4)

Let X be a BH-algebra and A be a fuzzy subset of X defined by $A(x) = \begin{cases} \alpha_1 & ; & x \in X_A \\ \alpha_2 & ; & otherwise \end{cases}$, where $\alpha_1, \alpha_2 \in [0, 1]$ such that $\alpha_1 > \alpha_2$. Then A is a fuzzy implicative ideal of X if and only if X_A is an implicative ideal of X. **Proof**: Let A be a fuzzy implicative ideal of X. To prove X_A is an implicative ideal of X. i. $A(0) = \alpha_1 \Rightarrow 0 \in X_A$. [Since $A(0) \ge A(x)$; $\forall x \in X$. By definition (2.8)(i)] ii. Let x, y, $z \in X_A$ such that $(x^*(y^*x))^*z \in X_A$ and $z \in X_A$ \Rightarrow A((x*(y*x))*z)=A(0)= α_1 and A(z)=A(0)= α_1 $\Rightarrow A(x) \ge \min\{A((x^*(y^*x))^*z), A(z)\} = \alpha_1$ [Since A is a fuzzy implicative ideal of X, by definition(2.8)(ii)] $\Rightarrow A(x) = \alpha_1$ $\Rightarrow x \in X_A$. Then X_A is an implicative ideal of X. **Conversely**, Let X_A be an implicative ideal of X. To prove A is a fuzzy implicative ideal of X. i. Since $0 \in X_A$, then $A(0) = \alpha_1$. \Rightarrow A(0) = $\alpha_1 \ge$ A(x). Then A(0) \ge A(x), $\forall x \in X$. ii. Let x, y, $z \in X$. Then we have four cases: **Case1**: If $(x^*(y^*x))^*z \in X_A$ and $z \in X_A$ $\Rightarrow x \in X_A$. [Since X_A is an implicative ideal of X] $\Rightarrow A((x^*(y^*x))^*z) = \alpha_1 \Rightarrow A(x) \ge \min\{A((x^*(y^*x))^*z), A(z)\}.$

Case2: If $(x^*(y^*x))^*z \in X_A$ and $z \notin X_A$

 $\Rightarrow A((x^*(y^*x))^*z) = \alpha_1 and A(z) = \alpha_2$

 $\Rightarrow \min \{A((x^*(y^*x))^*z), A(z)\} = \alpha_2$

 $\Rightarrow A(x) \ge \min\{A((x^*(y^*x))^*z), A(z)\}.$

Case3: If $(x^*(y^*x))^*z \notin X_A$ and $z \in X_A$

 $\Rightarrow A((x^*(y^*x))^*z) = \alpha_2 \text{ and } A(z) = \alpha_1$

 $\Rightarrow \min \{A((x^*(y^*x))^*z), A(z)\} = \alpha_2$

 $\Rightarrow A(x) \ge \min \{A((x^*(y^*x))^*z), A(z)\}.$

Case4: If
$$(x^*(y^*x))^*z \notin X_A$$
 and $z \notin X_A$

 $\Rightarrow A((x^*(y^*x))^*z) = \alpha_2 \text{ and } A(z) = \alpha_2$ $\Rightarrow \min \{A((x^*(y^*x))^*z), A(z)\} = \alpha_2$ $\Rightarrow A(x) \ge \min\{A((x^*(y^*x))^*z), A(z)\}. \text{ Therefore, A is a fuzzy implicative ideal of X.} \blacksquare$

Proposition (6.5)

Let X be a BH-algebra and let A be a fuzzy subset of X. Then A is a fuzzy implicative ideal of X if and only if $A^{\#}(x) = A(x) + 1 - A(0)$ is a fuzzy implicative ideal of X. **Proof:** Let A be a fuzzy implicative ideal of X. To prove $A^{\#}$ be a fuzzy implicative ideal of X. i. $A^{\#}(0) = A(0) + 1 - A(0)$. $\Rightarrow A^{\#}(0) = 1$. $\Rightarrow A^{\#}(0) \ge A^{\#}(x), \forall x \in X$. ii. Let x, y, z $\in X$. Then $A^{\#}(x) = A(x) + 1 - A(0) \ge \min\{A((x^*(y^*x))^*z), A(z)\} + 1 - A(0)$ [Since A is a fuzzy implicative of X.] $= \min\{A^{\#}(x^*(y^*x))^*z) + 1 - A(0), A(z) + 1 - A(0)\}$ $= \min\{A^{\#}(x^*(y^*x))^*z), A^{\#}(z)\}$.

Then $A^{\#}$ is a fuzzy implicative ideal of X.

Conversely, Let $A^{\#}$ be a fuzzy implicative ideal of X. To prove A be a fuzzy implicative ideal of X. i. Let $x \in X$. Then we have $A(0)=A^{\#}(0)-1+A(0) \ge A^{\#}(x)-1+A(0)=A(x)$ $\Rightarrow A(0) \ge A(x), \forall x \in X$. ii. Let x, y, z $\in X$. Then $A(x) = A^{\#}(x)-1+A(0) \ge \min\{A^{\#}((x^{*}(y^{*}x))^{*}z), A^{\#}(z)\}-1+A(0)$ [Since $A^{\#}$ is a fuzzy implicative ideal of X. By definition (2.8)(ii)]

1s a fuzzy implicative ideal of X. By definition (2.8)(if
$$\min\left(A^{\#}(x) + 1, A(0)\right)$$

$$\min\{A^{*}((x^{*}(y^{*}x))^{*}Z)-1+A(0), A^{*}(Z)+1-A(0)\}$$

= min{ A($(x^*(y^*x))^*z$), A (z)}. Then A is a fuzzy implicative ideal of X.

Remark(6.6)

Let A be a fuzzy subset of a BH-algebra X and w \in X. The set { $x \in X | A(w) \leq A(x)$ } is denoted by $\uparrow A(w)$.

Proposition (6.7)

Let A be a fuzzy ideal of a BH-algebra X and w $\in X$. If A satisfies the condition: $\forall x, y \in X, A(x) \ge A (x^*(y^*x)) (b_4)$, then $\uparrow A(w)$ is an implicative ideal of X. **Proof:** Let A be a fuzzy ideal of X. Then i. $A(0)\ge A(x), \forall x \in X$. [By definition (2.7)(i)] $\Rightarrow A(0)\ge A(w)$ [Since $w \in X$.]. Then $0 \in \uparrow A(w)$. ii. Let x, y, z $\in X$ such that $(x^*(y^*x))^*z \in \uparrow A(w)$ and $z \in \uparrow A(w)$ $\Rightarrow A(w) \le A((x^*(y^*x))^*z)$ and $A(w) \le A(z)$ $\Rightarrow A(w) \le mi\{A((x^*(y^*x))^*z), A(z)\} \le A(x^*(y^*x))[$ Since A is a fuzzy ideal of X. By definition (2.7)(ii)] But $A(x^*(y^*x)) \le A(x)$. [By (b_4)] $\Rightarrow A(w) \le A(x)$. $\Rightarrow x \in \uparrow A(w)$. Therefore, $\uparrow A(w)$ is an implicative ideal of X.

Proposition (6.8)

Let X be a BH-algebra and w \in X. If A is a fuzzy implicative ideal of X, then $\uparrow A(w)$ is an implicative ideal of X. **Proof:** Let A be a fuzzy implicative ideal of X. To prove that $\uparrow A(w)$ is an implicative ideal of X. i. $A(0) \ge A(x), \forall x \in X$. [By definition (2.8)(i)] $\Rightarrow A(0) \ge A(w)$ [Since $w \in X$.]. Then $0 \in \uparrow A(w)$. ii. Let x, y, z \in X such that $(x^*(y^*x))^*z \in \uparrow A(w)$ and $z \in \uparrow A(w)$, $\Rightarrow A(w) \le A((x^*(y^*x))^*z)$ and $A(w) \le A(z)$, $\Rightarrow A(w) \le \min\{A((x^*(y^*x))^*z), A(z)\}$. But min $\{A((x^*(y^*x))^*z), A(z)\} \le A(x)$. [By definition (2.8)(ii)] $\Rightarrow A(w) \le A(x)$. Then $x \in \uparrow A(w)$. Thus $\uparrow A(w)$ is an implicative ideal of X.

Definition (6.9)[1]

if $\{A_{\alpha}, \alpha \in \Lambda\}$ is a family of fuzzy sets in X, then $\bigcap_{i \in I} A_i(x) = \inf \{ A_i(x), i \in I \}, \forall x \in X \text{ and } \bigcup_{i \in I} A_i(x) = \sup \{ A_i(x), i \in I \}, \forall x \in X. \text{ which are also}$

Proposition (6.10)[3]

Let $\{A_{\alpha}|\alpha \in \lambda\}$ be a family of fuzzy ideals of a BH-algebra X. Then $\bigcap_{\alpha \in \lambda} A_{\alpha}$ is a fuzzy ideal of X.

Proposition (6.11)

Let $\{A_{\alpha} | \alpha \in \lambda\}$ be a family of fuzzy implicative ideals of a BH-algebra X. Then $\bigcap_{\alpha \in \lambda} A_{\alpha}$ is a fuzzy implicative ideal of X.

Proof: Let $\{A_{\alpha}|\alpha \in \lambda\}$ be a family of fuzzy implicative ideals of X.

i. Let
$$x \in X$$
. Then $\bigcap_{\alpha \in \lambda} A(0) = \inf \{ A_{\alpha}(0) | \alpha \in \lambda \}) \ge \inf \{ A_{\alpha}(x) | \alpha \in \lambda \} = \bigcap_{\alpha \in \lambda} A_{\alpha}(x)$

[Since A_{α} is a fuzzy implicative ideal of X, $\forall \alpha \in \lambda$. By definition (2.8)(i)]. Then $\bigcap_{\alpha \in \lambda} A_{\alpha}(0) \ge \bigcap_{\alpha \in \lambda} A_{\alpha}(x)$

ii. Let
$$x,y,z \in X$$
. Then, we have $\bigcap_{\alpha \in \lambda} A_{\alpha}(x) = \inf\{A_{\alpha}(x) \mid \alpha \in \lambda\} \ge \inf\{\min\{A_{\alpha}(x^{*}(y^{*}x))^{*}z), A_{\alpha}(z) \mid \alpha \in \lambda\}\}$

[Since
$$A_{\alpha}$$
 is a fuzzy implicative ideal of $X, \forall \alpha \in \lambda$. By definition (2.8)(ii)]]
= min {inf { $A_{\alpha}((x^{*}(y^{*}x))^{*}z), A_{\alpha}(z) \mid \alpha \in \lambda$ }}
= min {inf { $A((x^{*}(y^{*}x))^{*}z) \mid \alpha \in \lambda$ }, inf{ $A_{\alpha}(z) \mid \alpha \in \lambda$ }}
= min { $\bigcap_{\alpha \in \lambda} A((x^{*}(y^{*}x))^{*}z) \mid \in \lambda$ }, $\bigcap_{\alpha \in \lambda} A_{\alpha}(z) \mid \alpha \in \lambda$ }
 $\Rightarrow \bigcap_{\alpha \in \lambda} A_{\alpha}(x) \ge \min \{ \bigcap_{\alpha \in \lambda} A_{\alpha}((x^{*}(y^{*}x))^{*}z) \mid \alpha \in \lambda\}, \bigcap_{\alpha \in \lambda} A_{\alpha}(z) \mid \in \lambda$ }
Therefore, $\bigcap_{\alpha} A_{\alpha}(x)$ is a fuzzy implicative ideal of X. \blacksquare

$\alpha \in \lambda$ Theorem (6.12)

Let $\{A_{\alpha} | \alpha \in \lambda\}$ be a family of fuzzy ideals of a BH-algebra X satisfies (b₄). Then $\bigcap_{\alpha \in \lambda} A_{\alpha}$ is a fuzzy implicative

ideal of X. **Proof**: Directly from proposition (6.10) and theorem (3.29)]. **Proposition (6.13) [3]** Let $\{A_{\alpha} | \alpha \in \lambda\}$ be a chain of fuzzy ideals of a BH-algebra X. Then $\bigcup_{\alpha \in \lambda} A_{\alpha}$ is a fuzzy ideal of X.

Proposition (6.14)

Let $\{A_{\alpha} | \alpha \in \lambda\}$ be a chain of fuzzy implicative ideals of a BH-algebra X. Then $\bigcup_{\alpha \in \lambda} A_{\alpha}$ is a fuzzy implicative

ideal of X.

Proof: Let $\{A_{\alpha} | \alpha \in \lambda\}$ be a chain of fuzzy implicative ideal of X.

i. Let
$$x \in X$$
. Then $\bigcup_{\alpha \in \lambda} A_{\alpha}(0) = \sup \{ A_{\alpha}(0) | \alpha \in \lambda \}) \ge \sup \{ A_{\alpha}(x) | \alpha \in \lambda \} = \bigcup_{\alpha \in \lambda} A_{\alpha}(x)$
[Since A is a fuzzy implicative ideal of $X \forall \alpha \in \lambda$ By definition (2.8)(i)]

[Since A_{α} is a fuzzy implicative ideal of X, $\forall \alpha \in \lambda$. By definition (2.8)(i)]

$$\Rightarrow \bigcup_{\alpha \in \lambda} A_{(0)} \ge \bigcup_{\alpha \in \lambda} A_{\alpha}(\mathbf{x}).$$

ii. Let x, y, z \in X. Then, we have
$$\bigcup_{\alpha \in \lambda} A_{\alpha}(\mathbf{x}) = \sup \{ A_{\alpha}(\mathbf{x}) \mid \alpha \in \lambda \} \ge \sup \{ \min\{A_{\alpha}((\mathbf{x}^{*}(\mathbf{y}^{*}\mathbf{x}))^{*}\mathbf{z}), A_{\alpha}(\mathbf{z}) \mid \alpha \in \lambda \} \}$$

[Since A_{α} is a fuzzy implicative ideal of X, $\forall \alpha \in \lambda$. By definition (2.8)(ii)]

$$= \min \{ \sup \{A_{\alpha} ((x^{*}(y^{*}x))^{*}z), A_{\alpha}(z) \mid \alpha \in \lambda \} \} [\text{Since } A_{\alpha} \text{ is a chain, } \alpha \in \lambda] \\ = \min \{ \sup \{A_{\alpha} ((x^{*}(y^{*}x))^{*}z) \mid \alpha \in \lambda \}, \sup \{A_{\alpha}(z) \mid \alpha \in \lambda \} \} \\ = \min \{ \bigcup_{\alpha \in \lambda} A ((x^{*}(y^{*}x))^{*}z) \mid \alpha \in \lambda \}, \bigcup_{i \in \Gamma} A (z) \mid \epsilon \lambda \} \} \\ \Rightarrow \bigcup_{\alpha \in \lambda} A_{\alpha} (x) \ge \min \{ \bigcup_{\alpha \in \lambda} A ((x^{*}(y^{*}x))^{*}z) ; \alpha \in \lambda \}, \bigcup_{\alpha \in \lambda} A_{\alpha}(z); \alpha \in \lambda \} \} \\ \text{Therefore, } \bigcup_{\alpha \in \lambda} A_{\alpha} \text{ is a fuzzy implicative ideal of X.} \blacksquare$$

Theorem (6.15)

Let $\{A_{\alpha} | \alpha \in \lambda\}$ be a chain of fuzzy ideals of a BH-algebra X satisfies (b₄). Then $\bigcup_{\alpha} A_{\alpha}$ is a fuzzy implicative

ideal of X.

Proof: Directly from proposition (6.13) and theorem (3.29).■

Remark (6.16) [14]

Let X and Y be BH-algebras. A mapping f: $X \rightarrow Y$ is called a **homomorphism** if $f(x^*y) = f(x)^*f(y)$, $\forall x, y \in X$. A homomorphism f is called a **monomorphism** (resp., **epimorphism**), if it is injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two BH-algebras X and Y are said to be **isomorphic**, written $X \cong Y$, if there exists an isomorphism f: $X \rightarrow Y$. For any homomorphism f: $X \rightarrow Y$, the set $\{x \in X: f(x)=0'\}$ is called the **kernel** of f, denoted by ker(f), and the set $\{f(x):x \in X\}$ is called the **image** of f, denoted by Im(f). Notice that f(0)=0', \forall homomorphism f.

Definition (6.17) [2]

Let X and Y be any two sets, A be any fuzzy set in X and f: $X \to Y$ be any function. The set $f^{-1}(y) = \{x \in X \mid f(x) = y\}, \forall y \in Y$. The fuzzy set B in Y defined by B(y)

 $= \{ \bigcup_{0}^{\sup \{A(x) \mid x \in f^{-1}(y)\}}; \inf_{j \in f^{-1}(y) \neq \emptyset} f^{-1}(y) \neq \emptyset \}, \forall y \in Y, \text{ is called the image of A under f and is denoted by } f(A).$

Definition (6.18) [2]

Let X and Y be any two sets, f: $X \to Y$ be any function and B be any fuzzy set in f(A). The fuzzy set A in X defined by: $A(x)=B(f(x)), \forall x \in X$ is called the **preimage** of B under f and is denoted by $f^{-1}(B)$. **Proposition(6.19)**[2]

Let $f: (X, *, 0) \rightarrow (Y, *', 0')$ be a BH-epimorphism. If A is a fuzzy ideal of X, then f(A) is a fuzzy ideal of Y.

Proposition (6.20)

Let f: $(X, *, 0) \rightarrow (Y, *, 0)$ be a BH-epimorphism. If A is a fuzzy implicative ideal of X, then f(A) is a fuzzy implicative ideal of Y.

Proof: Let A be a fuzzy implicative ideal of X. Then

i. Let $y \in Y$. Then there exists $x \in X$.

 $(f(A))(0')=\sup \{A(x_1) \mid x_1 \in f^{-1}(0')\}=A(0) \ge \sup \{A(x) \mid x \in X\} \ge \sup \{A(x_1) \mid x = f^{-1}(y)\}=(f(A))(y)$ [Since A is a fuzzy implicative ideal of X. By definition (2.8)(i)]]

 \Rightarrow (f(A))(0') \ge (f(A))(y), $\forall y \in Y$. By proposition(6.19) and byproposition(2.5)]

ii. Let $y_1, y_2, y_3 \in Y$. Then there exist $f(x_1)=y_1, f(x_2)=y_2, f(z)=y_3$ such that $x_1, x_2, z \in X$ $\Rightarrow (f(A))(y_1) = \sup \{A(x_1) \mid x \in f^{-1}(y_1)\}$

 $\geq \sup\{A(((x_1^*(x_2^*x_1))^*z),A(z)|(x_1^*(x_2^*x_1))^*z) \in f^1((y_1^*(y_2^*y_1))^*y_3)\} \text{ and } z \in f^{-1}(y_3)\}\}$

[Since A is a fuzzy implicative ideal of X. By definition(2.8)(ii)]]

 $\geq \min \{ \sup\{A(((x_1^*(x_2^*x_1)))) \times z) | (x_1^*(x_2^*x_1)) \times z) \in \mathbb{C} \}$

 $f^{-1}((y_1^{*'}(y_2^{*'}y_1))^{*'}y_3)^{*'}t))\}$, sup {A(z) | x ∈ $f^{-1}(y_3)$ }

 $= \min \left\{ ((f(A))(f((x_1 * (x_2 * x_1)) * z), (f(A))(f(z))) \right\}$

 $= \min\{((f(A))(f((x_1)*(f(x_2)*'f((x_1)))*'f((z))), (f(A))(f(z)))\} \text{ [Since f is an epimorphism. By remark (6.16)]}$

 $= \min \{ (f(A))((y_1^*(y_2^*, y_1))^*, y_3), (f(A))(y_3) \}$

 $\Rightarrow (f(A))(y_1) \ge \min\{(f(A))((y_1^*(y_2^*y_1))^*y_3), (f(A))(y_3)\}.$

Therefore, f(A) is a fuzzy implicative ideal of Y.■

Proposition(6.21) [2]

Let $f:(X,*,0) \rightarrow (Y,*',0')$ be BH-homomorphism. If B be a fuzzy ideal of Y, then $f^{-1}(B)$ is a fuzzy ideal of X.

Proposition (6.22)

Let f: $(X, *, 0) \rightarrow (Y, *', 0')$ be a BH-homomorphism. If B be a fuzzy implicative ideal of Y, then $f^{-1}(B)$ is a fuzzy implicative ideal of X.

Proof: Let B be a fuzzy implicative ideal of Y. To prove $f^{-1}(B)$ is a fuzzy implicative ideal of X.

i. Let $x \in X$. Then $(f^{-1}(B))(0) = B(f(0)) = B(0') \ge B(f(x)) = (f^{-1}(B))(x)$

[Since B is a fuzzy implicative ideal of Y. By definition (2.8)(i)]]

 \Rightarrow (f⁻¹(B))(0) \ge (f⁻¹(B))(x), $\forall x \in X$. By proposition(6.21) and byproposition(2.5)]

ii. Let x, y, z $\in X$. Then $(f^{-1}(B))(x) = B(f(x))$

 $\geq \min \{B((f(x)^{*'}(f(y)^{*'}f(x)))^{*'}f(z)), B(f(z))\} [By definition(2.8)(ii)]\}$

 $= \min \{B(f(((x^*(y^*x))^*z)), B(f(z))\})\}$ [Since f is a homomorphism]

 $= \min \{ (f^{-1}(B))(((x^*(y^*x))^*z)), f^{-1}(B)(z) \}. [Since (f^{-1}(B))(x) = B(f(x))] \}$

 $\Rightarrow (f^{-1}(B))(x) \ge \min \{(f^{-1}(B))(((x^*(y^*x))^*z)), (f^{-1}(B))(z)\}.$

Thus $f^{-1}(B)$ is a fuzzy implicative ideal of X.

References

- D. Dubois and H. Prade, "Fuzzy Sets and Systems", Academic Press. INC. (London) LTD, fifth Avenue, New Yurk, 1980. [1]
- E. M.kim and S.S. Ahn," On Fuzzy n-fold Strong Ideals of BH-algebras", J. Appl. Math. & Informatics. 30,(No.3) 4,pp. 665 -[2] 676.2012
- H. H. Abbass and H. A. Dahham,"Some Types of Fuzzy Ideals with Respect to an Element of a BG-algebra", M.S.c thesis, Kufa [3] University, 2012.
- H. H. Abbass and H. M. A. Saeed, "The Fuzzy Closed BCH-algebra with Respect to an Element of a BH-algebra", M.S.c thesis, [4] Kufa University, 2011.
- [5] H. H. Abbass and S. A. Neamah, " On Fuzzy Implicative Ideal with Respect to an Element of a BH-algebra ", M.S.c thesis, Kufa University, 2014.
- H. H. Abbass and S. J. Mohammed, "On a Q-samarandache Fuzzy Completely Closed ideal with Respect to an Element of a BH-[6] algebra", M.S.c thesis, Kufa University, 2013.
- J. Meng and X.L.X," Implicative BCI-algebra" Pure Apple, china, pp 99-103, 1992. [7]
- K. Iseki, "An Algebra Related with a Propositional Calculus", Proc. Japan Acad. 42, pp. 26-29, 1966. [8]
- L. A. Zadeh, "Fuzzy Sets", Information and control, Vol. 8, PP. 338-353, 1965. [9]
- M. Ganesh, "Introduction to Fuzzy Sets and Fuzzy Logic", fourth printing, 2009. [10]
- [11] Q. Zhang, E. H. Roh and Y. B. Jun, "On Fuzzy BH-algebras", J. Huanggang, Normal Univ. 21(3), pp. 14–19, 2001.
- Y. B. Jun "Fuzzy Sub-implicative Ideal of BCI-algebras "Bull. Krean Math Soc. 93 No. 2, pp. 185-198, 2002. [12]
- [13]
- Y. B. Jun, E. H. Roh and H. S. Kim, "On BH-algebras", Scientiae Mathematicae 1(1), pp. 347–354, 1998. Y. B. Jun, H. S. Kim and M. Kondo," On BH-relations in BH-algebras", Scientiae MathematicaeJaponicae Online, Vol.9, pp. 91– [14] 94, 2003.
- Y. L. Liu and J. Meng, "Fuzzy Ideals in BCI-algebra" Fuzzy sets and Systems ,123, pp. 227-237.2001. [15]