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Abstract: In this paper, an attempt has been made to discuss frailty models and their further developments 

under the Bayesian approach. The modeling of baseline hazard function with parametric and semiparametric 

approach, distribution of frailty variable along with derivation of posterior distribution with the help of the data 

likelihood and the prior distribution of the parameters of the frailty distribution with examples are also 

discussed here. Based on this review work it is observed that the Bayesian analysis of frailty models in survival 

analysis attains vast attention by the researchers. The study of frailty models under Bayesian mechanism has 

been continuing from various view points, but yet there is a vast scope of extending the Bayesian approach in 

survival modeling in presence of unobserved random effect (frailty) in different directions. 
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I. Introduction 

Frailty models, a specific area in survival analysis, provides a convenient way to introduce random 

effects, association and unobserved heterogeneity into models for survival data.  In its simplest form, a frailty is 

an unobserved random proportionality factor that modifies the hazard function of an individual, or of related 

individuals. In essence, the frailty concept goes back to the work of Greenwood and Yule [1920] on “accident 

proneness”. The term frailty itself was introduced by Vaupel et al. [1979] in univariate survival models and the 

model was substantially promoted by its application to multivariate survival data in a seminal paper by 

Clayton[1978] (without using the notation “frailty”) on chronic disease incidence in families. 

Normally in most clinical applications, survival analysis implicitly assumes a homogeneous population 

to be studied. This means that all individuals sampled into that study are subject in principle under the same risk 

(e.g., risk of death, risk of disease recurrence). In many applications, the study population cannot be assumed to 

be homogeneous but must be considered as a heterogeneous sample i.e., a mixture of individuals with different 

hazards. For example, in many cases it is impossible to measure all relevant covariates related to the disease of 

interest, sometimes because of economical reasons, sometimes the importance of some covariates is still 

unknown. The frailty approach is a statistical modeling concept which aims to account for heterogeneity, caused 

by unmeasured covariates. In statistical terms, a frailty model is a random effect model for time to event data, 

where the random effect (the frailty) has a multiplicative effect on the baseline hazard function. A frailty model 

is a multiplicative hazard model consisting of three components: a frailty (random effect), a baseline hazard 

function (parametric or non parametric), and a term modeling the influence of observed covariates (fixed 

effects). 

Bayesian approach is a method of statistical inference in which Bayes’ theorem is used to update the 

probability for a hypothesis as evidence is acquired. The Bayesian Mechanism refers to prior, posterior and 

predictive distributions to obtain estimates, compare models and test hypothesis and make predictions 

conditional on an observed sample. The use of Bayesian mechanism in survival analysis is wide spread. Several 

researchers have been developing Bayesian methodologies to analyse survival data with different frailty models 

and prior processes. In this paper, an attempt has been made to discuss frailty models in the context of Bayesian 

analysis based on past literatures and their further developments. The paper ends with a brief discussion on 

scope for further study. 

 

II. The Frailty Model 
Frailty models are extensions of population hazards model which is best known as the Cox model 

[Cox, 1972], a widely pursued model in survival analysis. According to Cox the hazard rate of an individual is 

given by, 

μ (t,X) = μ0(t)exp(β
T
X) ………….(2.1) 

Where μ0(t) denotes the baseline hazard function, assumed to be unique for all individuals in the study 

population. X is the vector of observed covariates and β the respective vector of regression parameters to be 
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estimated. The mathematical convenience of this model is based on the separation of the effects of aging in the 

baseline hazard μ0(t) from the effects of the covariates in the parametric term  exp(β
T
X). 

Frailty models extends the Cox model such that the hazard of an individual depends in addition on an 

unobservable random variable Z, which acts multiplicatively on the baseline hazard function μ0(t), 

μ (t,Z,X) = Z μ0(t)exp(β
T
X)……………..(2.2) 

Here frailty Z is the random variable varying over the population decreases (Z<1) or increases (Z>1) 

the individual risk. The most important point here is that the frailty is unobservable. The respective survival 

function S, describing the fraction of surviving individuals in the study population is given by 

S (t|Z,X)= exp(-Z 𝜇0
1

0
(s)ds exp(β

T
X))……………………..(2.3) 

The cumulative hazard function is given by 

M (t) = 𝜇 𝑠 𝑑𝑠
𝑡

0
…………………….. (2.4) 

 

III. Classification of Frailty Models 
The frailty models can be classified into two broad classes, 

1) Univariate frailty Models: Models with an univariate survival time as endpoint and 

2) Multivariate frailty Models: Models which describe multivariate survival endpoints (e.g., competing risk, 

recurrence of events in the same individuals, occurrence of a disease in relatives) 

 

3.1 Univariate Frailty Models 

In case of univariate frailty models a univariate (independent) lifetime is used to describe the influence 

of unobserved covariates in a proportional hazards model (heterogeneity). The variability of survival data is split 

into a part that depends on risk factor, and is therefore theoretically predictable, and a part that is initially 

unpredictable, even when all relevant information is known. A separation of these two sources of variability has 

the advantage that heterogeneity can explains some unexpected results or give an alternative interpretation of 

some results, for example, crossing-over effects or convergence of hazard functions of two different treatment 

arms [Manton and Stallard 1981] or leveling-off effects - that means the decline in the increase of mortality 

rates, which could result in a hazard function at old ages parallel to the x-axis [Aalen and Tretli 1999] 

 

3.2 Multivariate Frailty Models 

In case of multivariate frailty models multivariate survival data are used. Such kind of data occurs for 

example if lifetimes (or time of onset of a disease) of relatives (twins, parent child) or recurrent events like 

infections in the same individual are considered. Multivariate survival times are considered for the dependence 

in clustered event times, for example in the lifetime of patients in study centers in a multi-centre clinical trial, 

caused by centre-specific conditions [Andersen et al., 1999]. A natural way to model dependence of clustered 

event times is through the introduction of a cluster-specific random effect - the frailty. In other words, the 

lifetimes are conditional independent, given the frailty. This approach can be used for survival times of related 

individuals like family members or recurrent observations on the same person. 

Let S (t1|Z,X1) and S(t2|Z,X2) be the conditional survival function of two related individuals with 

different vectors of observed covariates X1 and X2 respectively. Averaging over an assumed distribution for the 

latent variables (e.g., using a gamma, log-normal, stable distribution) then induce a multivariate model for the 

observed data. In the case of paired observations, the two dimensional survival function is of the form 

S (t1,t2) =  𝑆 
∞

0
(t1|z,X1) S(t2|z,X2)g(z)dz………………….(3.2.1) 

Where g (.) denotes the density of the frailty Z. In the case of twins, S (t1,t2) denotes the fraction of 

twins pair with twin 1 surviving t1 and twin 2 surviving t2. 

Frailty models for multivariate survival data are derived under conditional independence assumption by 

specifying latent variables that act multiplicatively on the baseline hazard. 

 

IV. Shared and Correlated Frailty Models 
There are two types multivariate frailty models available in survival analysis,- 

 Shared frailty model 

 Correlated frailty model 

The shared frailty model is relevant to event times of related individuals, similar organs and repeated 

measurements. Individuals in a cluster are assumed to share the same frailty that’s why this model is called 

shared frailty model. The survival times are assumed to be conditional independent with respect to the shared 

(common) frailty. For example consider the case of groups with pairs of individuals (bivariate failure times, e.g., 

event times of twins or parent-child).  

Conditional on the frailty Z, the hazard function of an individual in a pair is of the form   Z 

μ0(t)exp(β
T
X), where the value of Z is common to both individuals in the pair, and thus is the cause for 
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dependence between survival times within pairs. Independence of the survival times within a pair corresponds to 

a degenerate frailty distribution (Z=1, σ
2
=0). In all other cases with σ

2
>0 dependence is positive by construction 

of the model. Conditional on Z, the bivariate survival function is given as 

S (t1, t2|Z) = S1(t1)
z
S2(t2)

z
…………………(4.1) 

In most applications it is assumed that the frailty distribution (i.e. the distribution of the random 

variable Z) is a gamma distribution with mean 1 and variance σ
2
. Averaging the conditional survival function 

produces under this assumption survival functions of the form 

S(t1,t2)= ( S1(t1)−𝜎2
 + S2(t2)−𝜎2

-1)1/𝜎2
…………………(4.2)

 

Shared frailty explains correlations between subjects within clusters. However it does have some 

limitations (See Winke [2003]) also. 

The correlated frailty models were developed for the analysis of bivariate failure time data, in which 

two associated random variables are used to characterize the frailty effect for each pair. For example, one 

random variable is assigned for partner 1 and one for partner 2 so that they would no longer be constrained to 

have a common frailty. These two variables are associated and have a joint distribution. Knowing one of them 

does not necessarily imply knowing the other. There is no more a restriction on the type of correlation. These 

two variables can also be negatively associated, which would induce a negative association between survival 

times. Assuming gamma frailties, Yashin and Iachine(1995) used the correlated gamma frailty model resulting 

in a bivariate survival distribution of the form 

 

2 2 2

1 1

1 1 2 2
1 2 /

1 1 2 2

( ) ( )
( , )

( ( ) ( ) 1)

S t S t
S t t

S t S t

 

   

 

 


 
……………….. (4.3) 

 

One important problem in the area of frailty model is the choice of frailty distribution. The frailty 

distributions most often applied are the gamma distribution (Clayon [1978]; Vaupel et al.[ 1979]), the positive 

stable distribution (Hougaard [1986a]), a three-patameter distribution (PVF) (Hougaard [1986b], the compound 

poissson distribution (Aalen [1988,1992] and the log –normal distribution (McGilchrist and Aisbett, [1991]). 

 

V. Bayesian Approach in Frailty Models 
Bayesian approaches to frailty models with recent advances are computationally feasible in computing 

technology. Bayesian analysis of survival data using semiparametric models started immediately after Cox 

[1972] with work of Ferguson [1973] and Kalbfleisch [1978]. 

 

5.1 Hazard Function Modeling 

Under Bayesian approach a parametric as well as a semiparametric approach is possible for modeling 

the baseline hazard function. In the parametric case, we can model the baseline hazard function parametrically. 

Sahu et al.[1997] used Weibull distribution to model the baseline hazard function and they compared it with the 

flexible baseline hazard model based on correlated prior process. 

Let us consider the survival time of i
th 

individual (i=1,2,…n) be Ti and given the unobserved frailty 

parameter denoted by zi (for the i
th

 individual), the hazard function as given in equation (2.2) is as follows: 

μ(ti|xi,zi) =  μ0(ti)exp(β
T
xi)zi………………..(5.1.1) 

Where xi is the fixed covariate vector, β is the regression parameter and μ0(.) is the baseline hazard 

function and zi is the frailty parameter for the i
th

 individual.  

In the parametric approach we can model the baseline hazard function parametrically. For example if 

we use weibull distribution to model it the weibull baseline hazard function is given by 

μ0(ti) = λγti
γ-1

, , i=1,2,…n ………………(5.1.2) 

Where λ,γ>0 ; λ and γ are unknown hypermeters. 

Now from equation (5.1.1) the hazard of the i
th 

individual is given by 

μ (ti) =  λγti
γ-1

exp(β
T
xi)zi........................(5.1.3) 

The cumulative hazard function is given by 

Mi (t) = λti
γ
exp(β

T
xi)zi........................(5.1.4) 

Then the survival function is given by 

Si (t) =exp (-Mi (t)) = exp (-λti
γ
exp(β

T
xi)zi)……………….(5.1.5) 

Let us consider right censored survival data (ti,δi), i=1,2,…,n and assume that the censoring is non 

informative. Let δi be the indicator variable taking value 1 if the i
th 

individual fails and value 0 otherwise. Hence 

ti is a failure if δi=1 and censoring time otherwise. Hence the triplet (ti,δi,xi), i=1,2,…,n is observed for all n 

individuals. Given the unobserved frailty zi, ti’s are independent. Hence the complete data likelihood is given by 
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L (parameter, data) = 

1

[ ( )] ( )i

n

i i

i

t S t


  

        =  1 T T

i i

1

[ t exp( ) ] exp ( t exp )i

n

i i i i

i

x z x z
    



 ………….. (5.1.6) 

Again recent advances in Bayesian nonparametric survival analysis give us wide range of choices for 

the prior processes to model the baseline hazard function. Modeling the baseline hazard using prior processes is 

very common; see Sinha and Day [1997] for more details.  

As for example let us consider a piecewise exponential model. Piecewise exponential models and prior 

processes on the components provide a very flexible framework for modeling univariate survival data. Let {(ti ,δi 

,xi), i=1,2,…,n} be the observed data. We divide time into g prespecified interval Ik = (tk-1,tk) for k = 1,2,…,g 

where 0 = t0 < t1 < ...
 
< tg < , tg being the last survival or censored time and assume that the baseline hazard to 

be constant within each interval. i.e,  

μ0 (ti) = μk , for ti ϵ IK………………….(5.1.7) 

To correlate the μk’s in adjacent intervals, a discrete-time martingale process is used by Arjas and 

Gasbarra[1994] for univatiate survival models. Given (μ1 , μ2 ,…, μk ) they specify that 

μk | μ1 , μ2 ,…, μk-1  ̴  Gamma 

1

( , )k
k

k




 

, k = 1,2,…,g………..(5.1.8) 

Where μ0=1. The parameter αk controls the amount of smoothness available. 

The corresponding hazard and cumulative hazard function for the i
th 

individual is given by 

μ (ti) = μk exp(β
T
xi)zi........................(5.1.9) 

Mi (t) = μk exp(β
T
xi)zi k ……………………(5.1.10) 

Where k =

 
 
 

 
 0, if 1i kt t 

1i kt t  , if 1k i kt t t  

1k kt t  , if i kt t

  

If the i
th

 individual survived beyond the k
th

 interval i.e, i kt t  then the likelihood contribution is given by  

(μk exp(β
T
xi)zi)

0
exp(-μk exp(β

T
xi)zi( 1k kt t  )) = exp (-μk exp(β

T
xi )z i( 1k kt t  )) 

When 1k i kt t t    the likelihood contribution is given by 

 T T

k k 1( exp ) exp( exp( ) ( )
i

i i i i i kx z x z t t


      ) 

Hence we arrive at the following complete data likelihood 

 T T T

k 1 1 1

1 1

{ exp( exp( ) ( ))}( exp ) exp( exp( ) ( ))
i

i

i i i

gn

i i k k g i i g i i i g

i k

x z t t x z x z t t


       

 

    
…………….. (5.1.11) 

Where gi  is such that ti ϵ 1 1( , )
i i ig g gt t I    

Kalbflesich [1978] and Ferguson and Phadia [1979] introduced the gamma prior process for non 

parametric Bayesian analysis of right censored continuous survival data. Again Sari et al[2014] used gamma 

prior process to the recurrence of infection time data at the point of catheter insertion for kidney patients using 

portable equipment. Nieto-Barajas and Yin [2008] took a mixture prior of a Markov gamma process for full 

Bayesian analysis of a bone marrow transplant data set. Burridge [1981], Clayton [1991] used Levy process 

with positive independent increments in disjoint intervals to model the prior process of cumulative hazard. 

Gamerman [1991] presented a linear Bayesian method to analyze univariate survival data with possible right 

censoring using the auto-correlated prior process. Sinha[1998] also used an auto-correlated incomplete prior 

process for the baseline hazard and a joint prior for unknown regression parameter and variance (independent of 

the prior process) in the conditional proportional hazard model. Sinha[1993] presented the Bayesian 

semiparametric conditional poisson process model for multiple event-time data. Ferguson and Phadia[1979] and 

Iorio et al. [2009] worked on Bayesian non parametric survival analysis using Dirichlet prior process. Pennell 

and Dunson[2006] also used the Dirichlet prior process for a semiparametric shared frailty and for multiplicative 

innovation on the frailty for multiple event time data. 
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5.2 The Frailty Distribution 

The frailty random variable zi’s are assumed to be independent and identically distributed for each 

individual having some parametric distribution with unit mean (to obtain identifiability). A few examples of 

frailty distributions are given in Clayton and Cuzick[1985], Oakes[1989]. The gamma distribution is most 

commonly used to model the frailty [Oakes, 1989; Clayton, 1991]. As for example Aslanidou et al.[1998] 

assumed that zi’s to be independent with 

zi  ̴  Gamma( k
 -1

, k
 -1

), i=1,2,…,n…………(5.2.1) 

so that k
 
 is the unknown variance of zi’s and the density of Gamma (a,b) is proportional to  

x
a-1 

exp (-bx). Thus, higher value of k signifies greater heterogeneity among different individuals. 

 

5.3 Derivation of Posterior Distributions 

The Bayes theorem leads to the following joint posterior density function of the parameter vector   

f (  | data) = 
( | ) ( )

( )

f data f

f data

 
........................(5.3.1) 

The Bayes theorem can also be applied to one of the parameters  j while conditioning on the other 

parameters. We will denote the parameter vector without the j
th

 component j by  (-j). For j
th 

component
 
of   

the following conditional posterior density 

f ( j | data,  (-j)) = 
( )

( )

( | ) ( | )

( | )

j j

j

f data f

f data

  







………………………….(5.3.2) 

Furthermore, since the conditioning of the prior density of  j on the other parameters in not 

instrumental (we assume independence of prior densities) we drop here this type of conditioning. In the right-

hand side of the conditional posterior density (5.3.2) the denominator does not depend on  j. therefore, the 

numerator on the right-hand side of (5.3.2) and the conditional posterior density of  j are proportional: 

f ( j | data,  (-j)) ( | ) ( )jf data f   ………………………….(5.3.3) 

using the likelihood functions (5.1.6) and (5.1.11) we will make use of the unnormalised conditional posterior 

densities of form (5.3.3) for all the parameters since the normalizing factor (i.e, the denominator on the right-

hand side of (5.3.2) is in most cases, difficult to obtain. 

 The data likelihood of the parameters in the frailty model can be obtained by integrating out the frailty 

variable zi’s from the likelihoods (5.1.6) and (5.1.11). The final forms of the data likelihoods after integration 

are too complicated to work with. Thus, it is not easy to evaluate the marginal posterior distributions of the 

parameters analytically. To circumvent this problem, we use a Markov chain Monte Carlo method Gibbs 

sampler, see e.g., Gelfand and Smith [1990] and Gilks et al. [1996] with the data augmentation method (Tanner 

and Wong, 1987) to generate samples from the appropriate marginal posterior distributions. 

 

5.4 MCMC Methods in Frailty Models 

Aslanidou et al.[1998] analysed a multivariate survival data from a Bayesian perspective using Markov 

Chain Monte Carlo(MCMC) methods.  Mallick et al. [1999] used a Bayesian approach to model univariate and 

multivariate survival data with censoring. They described a MCMC algorithm to obtain the estimate of the 

hazard function as well as the survival curve. Walker and Mallick [1999] used a Bayesian semiparametric 

approach for accelerated failure time model and they described a MCMC algorithm to obtain a predictive 

distribution for a future observation given both uncensored and censored data. They explained how the resultant 

model is implemented via MCMC methods. Sinha and Maiti [2004] developed a Bayesian analysis based on a 

MCMC algorithm for the analysis of Panel- Count Data with Dependent Termination of a data set from a 

clinical trial. They used Bayesian approach using MCMC methods with the help of a comprehensive simulation 

study. Yin and Ibrahim [2006] used the MCMC algorithm for a real data set from a melanoma clinical trial. 

Again Basu and Tiwari [2010] developed a model that unifies the mixture cure and competing risk approaches 

and that can handle the masked causes of death in a natural way. In this development the Markov Chain 

sampling is used. 

 

VI. Further Scope of the Study 
From the above discussion, it is observed that the Bayesian analysis of frailty models in survival 

analysis attains vast attention by the researchers. The study of frailty models under Bayesian mechanism has 

been continuing from various view points, but yet there is a vast scope of extending the Bayesian approach in 

survival modeling in presence of unobserved random effect (frailty) in different directions. Moreover, it is to be 

noted that the behavior of the unobserved covariates are different according to different socio-demographic 

variables, method of diagnosis of the disease and effect of correlated variables.  
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So far our knowledge goes still there are some frailty models in survival analysis which are remained 

undiagnosed under Bayesian mechanism. For example some data arises in real life which is known to be 

symmetric often exhibits departure from symmetry i.e, presence of skewness. In most of the cases it is observed 

that skewness is also present in survival data. An ordinary method for reducing the skewness is the use of square 

root or logarithm transformations of responses. In most of the survival data sets, because of high rate of 

missingness, skewness is remained even after using the transformations. An alternative is to develop skew 

models (by introducing skewness) starting from symmetric models, which can effectively deal with introduced 

skewness in otherwise symmetric data. Skew normal distribution of Azzalini (1985) and its further extension by 

Chakraborty et al. [2015] are such kind of distributions (for more details about skewed distributions see 

Chakraborty and Hazarika [2011]). A few number of works are done using skewed distribution to model 

survival data. For example Callegaro [2012] used Log-skew-normal distribution to fit accelerated failure time 

models. Again Baghfalaki and Ganjali [2015] used a skew-normal mixed effect model for longitudinal 

measurements and a Cox proportional hazard model for time to event variable using a real HIV data set. 

Bayesian approach using Markov chain Monte Carlo is adopted by them for parameter estimation. Also Sahu 

and Day [2004] developed a class of log-skew-t distribution for the frailty. This class includes the log-normal 

distribution along many other heavy tailed distributions e.g. Cauchy or log-t as special cases. But, most of the 

above skewed distributions are not considered under Bayesian mechanism. So there is a vast scope to extend the 

work of frailty models to some skewed distributions under Bayesian mechanism. 
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