On Regular Mildly Generalized (RMG) Open sets in Topological Spaces

R. S. Wali¹, Nirani Laxmi²

¹Department of Mathematics, Bhandari and Rathi College, Guledagudd-587 203, Karnataka- India. ²Department of Mathematics, Rani Channamma University, Belagavi-591 156, Karnataka- India.

Abstract: In this paper we introduce and study the new class of sets, namely Regular Mildly Generalized Open (briefly, RMG-open) sets, Regular Mildly Generalized neighborhoods (briefly, RMG-nhd), RMG-interior and RMG-closure in topological space and also some properties of new concept has been studied. **Keywords** – RMG-closed sets, RMG-open sets, RMG-neighborhoods, RMG-interior, RMG-closure.

I. Introduction

Levine [9, 10] introduces a generalized open and semi-open sets in topological spaces. Regular open sets, pre-open sets, rg-open sets, Mildly-g-open sets have been introduced and studied by stone [18], A.S. Mashhur.et.al[5], N. Palaniappan et. al[14], J. K. Park et. al[16] respectively. In this paper the concept of Regular Mildly Generalized (briefly RMG) open set is introduced and their properties are investigated and Regular Mildly Generalized neighborhood (briefly RMG-nhd), RMG-interior and RMG- closure in a topological spaces.

Throughout this paper X and Y represent the topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of topological space X, cl(A) and int(A) denote the closure of A and interior of A respectively. X – A or A^c Denotes the complement of A in X. Now, we recall the following definitions.

II. Preliminaries

Definition 2.1 A subset A of X is called regular open (briefly r-open) [18] set if A = int(cl(A)) and regular closed (briefly r-closed) [18] set if A = cl(int(A)).

Definition 2.2 A subset A of X is called pre-open set [5] if $A \subseteq int(cl(A))$ and pre-closed [5] set if $cl(int(A)) \subseteq A$.

Definition 2.3 A subset A of X is called semi-open set [8] if $A \subseteq cl(int(A))$ and semi-closed [8] set if $int(cl(A)) \subseteq A$.

Definition 2.4 A subset A of X is called α -open [11] if A \subseteq int(cl(int(A))) and α -closed [11] if cl(int(cl(A))) \subseteq A.

Definition 2.5 A subset A of X is called β -open [1] if A \subseteq cl(int(cl(A))) and β -closed [1] if int(cl(int(A))) \subseteq A.

Definition 2.6 A subset A of X is called δ -closed [19] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{x \in X : int(cl(U)) \cap A \neq \emptyset, U \in A\}$.

Definition 2.7 Let X be a topological space. The finite union of regular open sets in X is said to be π -open [4]. The compliment of a π -open set is said to be π -closed.

Definition 2.8 A subset of a topological space (X, τ) is called

1. Generalized closed (briefly g-closed) [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

2. Generalized α -closed (briefly g α -closed) [6] if α -cl(A) \subseteq U whenever A \subseteq U and U is α -open in X.

3. Weakly generalized closed (briefly wg-closed) [10] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

4. Strongly generalized closed (briefly g*-closed) [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.

5. Weakly closed (briefly w-closed) [17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.

6. Mildly generalized closed (briefly mildly g-closed) [16] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.

7. Regular weakly generalized closed (briefly rwg-closed) [10] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

8. Weakly π -generalized closed (briefly w π g -closed)[13] if cl(int(A)) \subseteq U whenever A \subseteq U and U is π -open in X.

9. Regular weakly closed (briefly rw-closed)[2] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semiopen in X.

10. Generalized pre closed (briefly gp-closed)[7] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

11. A subset A of a space (X, τ) is called regular generalized closed (briefly rg-closed) [14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open set in X.

12. π -generalized closed (briefly π g-closed)[3] if cl(A) \subseteq U whenever A \subseteq U and U is open in X.

The complements of the above mentioned closed sets are their respective open sets.

The semi-pre-closure (resp. semi-closure, resp. pre-closure, resp. α -closure) of a subset A of X is the intersection of all semi-pre- closed (resp. semi- closed, resp. pre- closed, resp. α -closed) sets containing A and is denoted by spcl(A)(resp. scl(A), resp. pcl(A), resp. cl(A)).

Definition 2.3 Regular Mildly Generalized closed (briefly RMG-closed)[20] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is rg-open in X. We denote the family of all RMG-closed sets, RMG-open sets of X by RMGC(X), RMGO(X) respectively.

III. Regular Mildly Generalized Open (Briefly RMG-Open) Sets

In this section, we introduce and studied RMG-open sets in topological space and obtain some of their basic properties. Also we introduce RMG-neighborhood (briefly RMG-nhd) in topological spaces by using the notation of RMG-open sets.

Definition 3.1: A subset A of X is called Regular Mildly Generalized open (briefly, RMG-open) set in X. If X - A is RMG-closed set in X. The family of all RMG- open sets is denoted by RMGO(X).

Theorem 3.2: Every pre-open set is RMG-open set in X.

Proof: Let A be a pre-open set in X. Then by X - A is pre-closed. By Theorem 3.2[20] every pre-closed set is RMG-closed, X - A is RMG-closed set in X. Therefore A is RMG-open set in X.

The converse of the above theorem need not be true as seen from the following example.

Example3.3: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then $A=\{c\}$ is RMG-open set but not pre-open set in X.

Theorem3.4: Every RMG-open set is Mildly-g-open set in X.

Proof: Let A be a RMG-open set in X. Then X - A is RMG -closed. By Theorem 3.4[20] Every RMG-closed set is Mildly-g-closed, X - A is RMG-closed. Therefore A is Mildly-g-open set in X.

The converse of above Theorem need not be true as seen from the following examples.

Examples3.5: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then $A = \{a c\}$ and $B = \{b, c\}$ are mildly-g-open set but not RMG-open set in X.

Corollary 3.6: 1. Every ga-open set is RMG-open set in X.

- 2. Every w-open set is RMG-open set in X.
- **3**. Every open set is RMG-open set in X.
- **4.** Every δ-open set is RMG-open set in X.
- **5.** Every π -open set is RMG-open set in X.
- 6. Every regular open set is RMG-open set in X.

Proof:

1. Let A be a $g\alpha$ -open set in X. Then X – A is $g\alpha$ –closed set. By Theorem 3.6.1[20] every $g\alpha$ -closed set is RMG- closed, X – A is RMG-closed. Therefore A is RMG-open set in X.

2. Let A be a w-open set in X. Then X - A is w-closed. By Theorem 3.6.2[20] every w-closed set is RMG-closed, X - A is RMG-closed .Therefore A is RMG-open set in X.

3. Let A be a open set in X. Then X - A is closed. By Theorem 3.6.3[20] every closed set is RMG-closed, X - A is RMG-closed .Therefore A is RMG-open set in X.

4. Let A be a δ -open set in X. Then X – A is δ -closed. By Theorem 3.6.4[20] every δ - closed set is RMG-closed, X – A is RMG-closed .Therefore A is RMG-open set in X.

5. Let A be a π -open set in X. Then X – A is π -closed. By Theorem 3.6.5[20] every π - closed set is RMG-closed, X – A is RMG-closed. Therefore A is RMG-open set in X.

6. Let A be a regular open set in X. Then X - A is regular closed. By Theorem 3.6.6[20] every regular closed set is RMG-closed, X - A is RMG-closed. Therefore A is RMG-open set in X.

The converse of Corollary 3.6 is not true as shown in below examples.

Example 3.7: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$.

- 1. Let $A = \{c\}$ is RMG-open but not g α -open set in X.
- 2. Let $A = \{c\}$ is RMG-open but not w-open set in X.
- 3. Let $A = \{c\}$ is RMG-open but not open set in X.
- 4. Let $A = \{c\}$ is RMG-open but not δ -open set in X.
- 5. Let $A = \{c\}$ is RMG-open but not π -open set in X.
- 6. Let $A = \{c\}$ is RMG-open but not regular open set in X.

Corollary 3.8:

- 1. Every RMG-open set is wg-open set in X.
- 2. Every RMG-open set is w πg -open set in X.
- 3. Every RMG-open set is rwg-open set in X.

Proof: 1. Let A be a RMG-open set in X. Then X - A is RMG-closed. By Theorem 3.8.1[20] every RMG-closed set is wg-closed, X - A is RMG-closed. Therefore A is wg-open set in X.

2. Let A be a RMG-open set in X. Then X - A is RMG-closed. By Theorem 3.8.2[20] every RMG-closed set is w π g-closed, X - A is RMG-closed. Therefore A is w π g-open set in X.

3. Let A be a RMG-open set in X. Then X - A is RMG-closed. By Theorem 3.8.3[20] every RMG- closed set is rwg-closed, X - A is rwg-closed. Therefore A is rwg-open set in X.

The converse of corollary 3.8 is not true as shown in below examples.

Example3.9: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$.

1. Let $A = \{c\}$ is wg-open but not RMG-open set in X.

2. Let $A = \{b, d\}$ is w π g-open but not RMG-open set in X.

3. Let $A = \{d\}$ is rwg-open but not RMG-open set in X.

Remark 3.10: The concept of semi-open, semi-pre-open, g-open, g*-open, rg-open, rw-open, π g-open sets are independent with the concept of RMG-open sets as shown in the following example.

Example 3.11: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then the set $\{a, b, d\}$ is RMG-open set. However it can be verified that it is not g-open, not g*-open, not π g-open, not rg-open, not rw-open, Also $\{b, d\}$ is both semi-open and semi pre open but not RMG-open.

Remark 3.12From the above discussions and known results we have the following implications in the following diagram, by

Remark s3.13: The intersection of two RMG-open sets in X is need not be a RMG- open set in X.

Examples 3.14: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Now $A = \{a, b, d\}$ and $B = \{a, b, c\}$.

c, d} are RMG-open sets in X, then $A\cap B = \{a, b, d\} \cap \{a, c, d\} = \{a, d\}$ which is not RMG- open set in X

Remark 3.15: The union of two RMG-open subsets of X is need not be RMG-open set in X.

Example 3.16: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Now $A = \{a\}$ and $B = \{c\}$ are RMG-open sets in X, then $A \cup B = \{a\} \cup \{c\} = \{a, c\}$ which is not RMG-open set in X.

Remark 3.17: Complement of a RMG-open set need not be RMG-open set in X.

Example 3.18: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then $A = \{a, b\}$ is RMG-open set but $X - \{a, b\} = \{c, d\}$ is not RMG-open set in X.

Theorem 3.19: A subset A of a topological space X is RMG-open iff $F \subset int(cl(A))$ whenever $F \subset A$ and F is rgclosed set in X.

Proof: Assume A is RMG-open then X - A is RMG-closed. Let F be a rg-closed set in X contained in A. Then X - F is a rg-open set in X containing X - A. Since X - A is RMG-closed, $cl(int(X - A)) \subset X - F$ this implies $X - int(cl(A)) \subset X - F$. Consequently $F \subset int(cl(A))$.

Conversely, let $F \subset int(cl(A))$ whenever $F \subset A$ and F is rg-closed in X. Let G be rg-open set containing X – A then X – G $\subset int(cl(A))$. Hence $cl(int(X – A)) \subset G$. This prove that X – A is RMG-closed and hence A is RMG-open set in X.

Theorem 3.20: If $A \subseteq X$ is RMG-closed set in X, then cl(int(A)) - A is RMG-open set in X.

Proof: Let $A \subseteq X$ is RMG-closed and let F be a rg-closed set such that $F \subseteq cl(int(A)) - A$. Then by Theorem 3.21[20], $F = \emptyset$, that implies $F \subseteq int(cl(cl(int(X - A)))) - A$. This proves that cl(int(A)) - A is RMG-open.

Theorem 3.21: Every singleton point set in a space X is either RMG-open or rg-closed.

Proof: Let X be a topological space. Let $x \in X$. To prove $\{x\}$ is either RMG-open or rg-closed. That is to prove X- $\{x\}$ is either RMG-closed or rg-open. Which follows from Theorem 3.23 of [20].

Theorem 3.22: If $int(cl(A)) \subseteq B \subseteq A$ and A is RMG-open, then B is RMG-open.

Proof: Let A be RMG-open and $int(cl(A)) \subseteq B \subseteq A$. Then $X - A \subseteq X - B \subseteq X - int(cl(A))$ that implies $X - A \subseteq X - B \subseteq cl(int(X - A))$. Since X - A is RMG-closed, by Theorem 3.24 of [20] X - B is RMG-closed. This proves that B is RMG-open.

The converse of above Theorem 3.24 need not be true in general.

Example 3.23: Let $X=\{a, b, c, d\}$ with topology $\tau=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Now $A=\{a, b, c\}$ and $B=\{b, c\}$. Now A and B both are RMG-open sets. But $int(cl(A)) \not\subseteq B \subseteq A$

Theorem 3.24: Let $A \subset Y \subset X$ and A is RMG-open set in X. Then A is RMG-open in Y provided Y is open set in X.

Proof: Let A be RMG-open in X and Y be a open sets in X. Let U be any rg-open in Y such that $A \subset U$. Then $U \subset A \subset Y \subset X$ by the lemma 3.26[20], U is rg-open in X. Since A is RMG-open in X, $U \subseteq int(cl(A))$. Also $int(cl(A)) \subset int_y(cl_y(A))$. Hence A is an RMG-open set in Y.

Theorem 3.25: If a subset A is RMG-open in X and if G is rg-open in X with $int(cl(A) \cup (X - A) \subseteq G$ then G=X.

Proof: Suppose that G is an rg-open and $int(cl(A)) \cup (X - A) \subseteq G$. Now $(X - A) \subseteq (X - int(cl(A))) \cap X - (X - A)$ implies that $(X - G) \subseteq cl(int(X - A)) \cap A$. Suppose A is RMG-open. Since X - G is rg-closed and X - A is RMG-closed, then by Theorem 3.21of [20], $X - G = \emptyset$ and hence G = X.

The converse of the above Theorem need not be true in general as shown in example 3.24.

Example3.26: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then

 $RMGO(X) = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$ and

 $RGO(X) = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}\}.$ Let $A = \{b, d\}$ is not an RMG-open set in X. However $int(cl(A)) \cup (X - A) = \{b, c\} \cup \{a, c\} = \{a, b, c\}.$ So for some rg-open set G, such that $int(cl(A)) \cup (X - A) = \{a, b, c\} \subset G$ gives G = X but A is not RMG-open set in X.

Int(cl(A)) \cup (X – A) = {a, b, c} \subseteq G gives G = X but A is not KNG-open set in X.

Theorem3.27: Let X be a topological space and A, $B \subseteq X$. If B is RMG-open and $int(cl(B)) \subseteq A$, then $A \cap B$ is RMG-open in X.

Proof: Since B is RMG-open and $int(cl(B)) \subseteq A$, then $int(cl(B)) \subseteq A \cap B \subseteq B$, then by Theorem 3.24, $A \cap B$ is RMG-open set in X.

IV. Regular Mildly Generalized Neighborhoods (Briefly RMG-Nhd)

Definition 4.1 Let (X, τ) be a topological space and let $x \in X$. A subset N is said to be RMG- neighborhood (briefly, RMG-nhd) of x, if and only if there exists an RMG-open set G such that $x \in G \subset N$.

Definition 4.2(i) A subset N of X is a RMG-nhd of $A \subseteq X$ in topological space(X, τ), if there exists an RMG-open set G such that $A \subset G \subset N$.

(ii) The collection of all RMG-nhd of $x \in X$ is called RMG-nhd system at $x \in X$ and shall be denoted by RMG-N(x).

Theorem 4.3: Every neighborhood N of $x \in X$ is a RMG-nhd of x.

Proof: Let N be neighborhood of point $x \in X$. To prove that N is a RMG-nhd of x. By definition of neighborhood, there exists an open set G such that $x \in G \subset N$. As every open set is RMG-open, G is an RMG-open set in X. Then there exists a RMG-open set G such that $x \in G \subset N$. Hence N is RMG-nhd of x.

Remark4.4: In general, a RMG-nhd N of x in X need not be nhd of x in X, as shown from example 4.5.

Example4.5: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then RMGO(X) = $\{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, d\}\}$. The set $\{a, c\}$ is RMG-nhd of the point c, since the RMG-open set $\{c\}$ is such that $c \in \{c\} \subset \{a, c\}$. However, the set $\{a, c\}$ is not a neighbourhood of the point c, since no open set G exists such that $c \in G \subset \{a, c\}$.

Theorem4.6: If a subset N of a space X is RMG-open, then N is a RMG-nhd of each of its points.

Proof: Suppose N is RMG-open. Let $x \in N$ we claim that N is a RMG-nhd of x. For N is a RMG-open set such that $x \in N \subset N$. Since x is an arbitrary point of N, it follows that N is a RMG-nhd of each of its points.

Remark4.7: The converse of the above theorem is not true in general as seen from the following example 4.8. **Example4.8:** Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then RMGO(X) = $\{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, c$ set {c} is such that $c \in \{c\} \subset \{a, c\}$ i.e. $\{a, c\}$ is a RMG-nhd of each of its points. However the set $\{a, c\}$ is not a RMG-open set in X.

Theorem4.9: Let X be a topological space. If F is a RMG-closed subset of X and $x \in (X - F)$, then there exists a RMG-nhd N of x such that $N \cap F = \emptyset$.

Proof: Let F be RMG-closed subset of X and $x \in (X - F)$. Then (X - F) is an RMG-open set of X. By Theorem 4.6, (X - F) contains a RMG-nhd of each of its points. Hence there exists a RMG-nhd N of x such that $N \subset X - F$. That is $N \cap F = \emptyset$.

Theorem 4.10: Let X be a topological space and for each $x \in X$, let RMG-N(x) be the collection of all RMG-nhds of x. Then we have the following results.

i) $\forall x \in X, RMG - N(x) \neq \emptyset.$

ii) $N \in RMG - N(x) \Rightarrow x \in N.$

iii) $N \in RMG - N(x)$ and $N \subset M \Rightarrow M \in RMG - N(x)$.

iv)N ∈ RMG − N(x) ⇒ ∃ M ∈ RMG − N(x) such that M ⊂N and M ∈RMG-N(y) for every y ∈ M.

Proof: i) Since X is an RMG-open set, it is a RMG-nhd of every $x \in X$. Hence \exists at least one RMG-nhd(X) for each $x \in X$. Hence RMG – N(x) $\neq \emptyset$ for every $x \in X$.

ii) If $N \in RMG-N(x)$, then N is a RMG-nhd of x. So by definition of RMG-nhd $x \in N$.

iii) Let $N \in RMG - N(x)$ and $N \subset M$, then there is an RMG-open set G such that $x \in G \subset N$. Since $N \subset M$,

 $x \in G \subset$ M and so M is a RMG-nhd of x. Hence $M \in RMG - N(x)$.

iv) If $N \in RMG - N(x)$, then there exists an RMG-open set M such that $x \in M \subset N$. Since M is an RMG-open set, it is a RMG-nhd of each of its points. Therefore $M \in RMG - N(y)$ for all $y \in M$.

V. Regular Mildly Generalized Interior (Rmg-Interior) Operator.

In this section, the notation of RMG-interior is defined and some of its basic properties are studied. **Definition 5.1 (i):** Let A be a subset of (X, τ) . A point $x \in A$ is said to be RMG-interior point of A if and only if A is RMG-neighbourhood of x. The set of all RMG-interior points of A is called the RMG-interior of A and is denoted by RMG-int(A).

Definition (ii): Let (X, τ) be a topological space and $A \subset X$. Then RMG-int (A) is the union of all RMG – open sets contained in A.

Theorem 5.2: Let A is a subset of (X, τ) , then RMG-int $(A) = \bigcup \{G: G \text{ is RMG-open, } G \subseteq A \}$.

Proof: Let A be a subset of (X, τ) . $x \in RMG$ -int(A)

 \Leftrightarrow x is a RMG-interior point of A.

 \Leftrightarrow A is a RMG-nhd of point x.

 $\Leftrightarrow \text{There exists an RMG-open set G such that } x \in G \subset A$

 $\Leftrightarrow x \in \bigcup \{G:G \text{ is RMG-open, } G \subseteq A \}.$

Hence RMG-int(A) = \cup {G:G is RMG-open G \subseteq A}.

Theorem 5.3: Let A and B are subsets of (X, τ) . Then

i) RMG-int(\emptyset) = \emptyset and RMG-int(X) = X.

ii) RMG-int(A) \square A.

ii) If B is any RMG-open sets contained in A, then $B \subseteq RMG$ -int(A).

iv) If $A \subseteq B$, then RMG-int(A) \subseteq RMG-int(B).

v) RMG-int (RMG-int(A))=RMG-int(A).

Proof: i) Obvious

ii) Let $x \in RMG$ -int(A) \Rightarrow x is a RMG-interior point of A

 \Rightarrow A is a RMG-nhd of x

Thus $x \in RMG$ -int(A) $\Rightarrow x \in A$. Hence RMG-int(A) $\subseteq A$.

iii) Let B be a any RMG-open set such that $B \subseteq A$. Let $x \in B$. Then since B is an RMG open set contained in A. x is an RMG-interior point of A. That is $x \in RMG-int(A)$. Hence $B \subseteq RMG-int(A)$.

iv) Let A and B are subsets of X such that $A \subseteq B$. Let $x \in RMG$ -int(A). Then x is an RMG-interior point of A and so A is a RMG-nhd of x. since $A \subseteq B$, B is also a RMG-nhd of x. This implies that $x \in RMG$ -int(B). Thus we have show that $x \in RMG$ -int(A) $\Rightarrow x \in RMG$ -int(B). Hence RMG-int(A) $\subset RMG$ -int(B).

v) Since RMG-int(A) is a RMG-open set in X, it follows that RMG-int(RMG-int(A))=RMG-int(A).

Theorem 5.4: If a subset A of space X is RMG-open, then RMG-int(A)=A.

Proof: Let A be a RMG-open subset of X and we know that RMG-int(A) \subset A. Since A is RMG-open set contained in A. From the Theorem 5.3(iii), A \subset RMG-int(A) and hence we get RMG-int(A)=A.

The converse of the above theorem need not be true as seen in the following example. (x + (x) + (y) + (y)

Example 5.5: Let X = {a, b, c, d} with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then RMGO(X) = $\{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Note that RMG-int({a, c})={a}U {c}U $\emptyset = \{a, c\}$. But {a, c} is not a RMG-open set in X.

Theorem 5.6: If A and B are sub sets of X, then RMG-int(A) \cup RMG-int(B) \subseteq RMG-int(A \cup B).

Proof: Since $A \sqsubset A \cup B$ and $B \sqsubset A \cup B$. Using the Theorem 5.3(iv), RMG-int(A) \subset RMG-int(A \cup B) and RMG-int(B) \subset RMG-int(A \cup B)This implies RMG-int(A) \cup RMG-int(B) \subset RMG-int(A \cup B).

Theorem5.7: If A and B are subsets of a space X, then RMG-int($A\cap B$) \subset RMG-int(A) \cap RMG-int(B).

Proof: Let A and B be subsets of X. Clearly $A \cap B \subseteq A$ and $A \cap B \subseteq B$. By Theorem 5.3(iv). RMG-int($A \cap B) \subseteq A$

 $RMG-int(A) and RMG-int(A\cap B) \sqsubset RMG-int(B). Hence RMG-int(A\cap B) \sqsubset RMG-int(A) \cap RMG-int(B).$

Theorem 5.8: If A is a subset of X, then int(A)⊂RMG-int(A).

Proof: Let A be a subset of a space X.

 $x \in int(A) \Rightarrow x \in \bigcup \{G: G \text{ open, } G \subseteq A \}.$

- \Rightarrow There exists an open set G such that $x \in G \subset A$
- ⇒ There exists an RMG-open set G such that x∈G⊂A, as every open set is an RMG-open set in X.
- \Rightarrow x $\in \cup$ {G:G is RMG-open, G \subseteq A}.

 \Rightarrow x \in RMG-int(A).

Thus, $x \in int(A) \Rightarrow x \in RMG-int(A)$. Hence $int(A) \subset RMG-int(A)$.

Remark 5.9: Containment relation in the above Theorem 5.8 may be proper as seen from the following example.

Example 5.10: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then RMGO(X) = $\{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$. Let $A = \{a, b\}$. Now RMG-int(A) = $\{a, b\}$ and

 $int(A) = \{a\}$. It follows that $int(A) \subset RMG-int(A)$ and $int(A) \neq RMG-int(A)$.

Remark5.11: If A is sub set of X, then

i) w-int(A) \square RMG-int(A).

ii) $g\alpha$ -int(A) \subset RMG-int(A).

iii) $p-int(A) \square RMG-int(A)$.

Theorem5.12: If A is a subset of X, then RMG-int(A)⊂Mildly-g-int(A).

Proof: let A be a subset of a space X.

 $x \in RMG$ -int(A) $\Rightarrow x \in \bigcup \{G: G RMG$ -open, $G \subseteq A \}$.

- \Rightarrow There exists an RMG-open set G such that $x \in G \subseteq A$
- ⇒ There exists an Mildly-g-open set G such that x∈G⊂A, as every RMG-open set is an Mildly-g-open set in X.
- \Rightarrow x $\in \cup$ {G:G is Mildly-g-open, G \subseteq A}.
- \Rightarrow x∈Mildly-g-int(A).

Thus, $x \in RMG$ -int(A) $\Rightarrow x \in Mildly$ -g-int(A). Hence RMG-int(A) $\subset Mildly$ -g-int(A).

Remark5.13: If A is sub set of X, then $RMG-int(A) \sqsubset wg-int(A)$.

VI. Regular Mildly Generalized Closure (Rmg-Closure) Operator.

Now we introduced the notation of RMG-closure in topological spaces by using the notation of RMG-closed sets and obtained some of their properties. For any A X, it is proved that the complement of RMG-interior of RMG-closure of the complement of A.

Definition 6.1: Let A be a subset of a space (X, τ) . We defined the RMG-closure of A to be a intersection of all RMG-closed sets containing A. In symbol we have RMG-cl(A)= \cap {F:A \subseteq F \in RMGC(X)}.

Theorem 6.2: Let A and B are subsets of (X, τ) . Then

i) RMG-cl(\emptyset) = \emptyset and RMG-cl(X) = X.

ii) A⊂RMG-cl(A).

iii) If B is any RMG-closed sets contained in A, then RMG-cl(A) \sqsubset B

iv) If $A \subseteq B$, then RMG-cl(A) \subseteq RMG-cl(B).

v) RMG-cl(RMG-cl(A)) = RMG-cl(A).

Proof: i) Obvious.

ii) By the definition of RMG-closure of A, it is obvious that $A \subseteq RMG$ -cl(A).

iii) Let B be any RMG-closed set containing A. Since RMG-cl(A) is the intersection of all RMG-closed set containing A, RMG-cl(A) is contained in every RMG-closed set containing A. Hence in particular RMG-cl(A) \sqsubset B.

iv)]Let A and B be subsets of X. such that $A \subseteq B$. By the definition of RMG-closure, RMG-cl(B) = $\cap \{F:B \subseteq F \in RMGC(X)\}$. If $B \subseteq F \in RMGC(X)$, then RMG-cl(B) $\subseteq F$. Since $A \subseteq B$, $A \subseteq B \subseteq F \in RMGC(X)$, We have RMG-cl(A) $\subseteq F$. Therefore RMG-cl(A) $\subseteq \cap \{F:B \subseteq F \in RMGC(X)\}$ = RMG-cl(B). That is RMG-cl(A) $\subseteq RMG$ -cl(B).

v) Since RMG-cl(A) is a RMG-closed set in X, if it follows that RMG-cl(RMG-cl(A))=RMG-cl(A).

Theorem 6.3: If $A \sqsubset X$ is RMG-closed, then RMG-cl(A)=A.

Proof: Let A be a RMG-closed subset of X. We know that $A \subseteq RMG$ -cl(A). Also $A \subseteq A$ and A is RMG-closed. By the theorem 6.2 (iii) RMG-cl(A) $\subseteq A$. Hence RMG-cl(A)=A.

The converse of the above theorem need not be true as seen from the following example.

Example 6.5: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then RMGC(X) = $\{X, \emptyset, \{c\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Now RMG-cl{b}= $\{a, b, d\} \cap \{b, c, d\} \cap X = \{b, d\}$, but $\{b, d\}$ is not a RMG-closed subset in X.

Theorem 6.7: If A and B are sub sets of X, then RMG-cl(A)U RMG-cl(B) \subset RMG-cl(AUB).

Proof: Let A and B are subsets of a space X. Clearly $A \subseteq A \cup B$ and $B \subseteq A \cup B$. By Theorem6.2 (iv). RMGcl(A) \subseteq RMG-cl(AUB) and RMG-cl(B) \subseteq RMG-cl(AUB). This implies that RMG-cl(A) \cup RMG-cl(B) \subseteq RMGcl(AUB).

Theorem 6.8: If A and B are subsets of a space X, then RMG-cl(A \cap B) \subset RMG-cl(A) \cap RMG-cl(B). **Proof:** Let A and B be subsets of X. Clearly A \cap B \subset A and A \cap B \subset B. By Theorem 6.2(iv). RMG-cl(A \cap B) \subset RMG-cl(A) and RMG-cl(A \cap B) \subset RMG-cl(B). Hence RMG-cl(A \cap B) \subset RMG-cl(A) \cap RMG-cl(B).

Theorem 6.9: Let A be a subset of X and $x \in X$. Then $x \in RMG-cl(A)$ if and only if $V \cap A \neq \emptyset$ for every RMG-open set V containing x.

Proof: Let $x \in X$ and $x \in RMG$ -cl(A). To prove that $V \cap A \neq \emptyset$ for every RMG-open set V containing x. Prove the results by contradiction. Suppose there exists a RMG-open set V containing x such that $V \cap A = \emptyset$. Then $A \subset X$ -V and X-V is RMG-closed. We have RMG-cl(A) $\subset X$ -V. This shows that $x \notin RMG$ -cl(A). Which is contradiction. Hence $V \cap A \neq \emptyset$ for every RMG-open set V containing x.

Conversely, let $V \cap A \neq \emptyset$ for every RMG-open set V containing x. To prove that $x \in RMG$ -cl(A). We prove the result by contradiction. Suppose $x \notin RMG$ -cl(A). Then there exists a RMG-closed subset F containing A such that $x \notin F$. Then $x \in X$ -F and X-F is RMG-open. Also (X-F) $\cap A = \emptyset$, which is a contradiction. Hence $x \in RMG$ -cl(A).

Theorem 6.10: Let A be A RMG-open set and B be any open set in X. If $A \cap B = \emptyset$, then $A \cap RMG\text{-cl}(B) = \emptyset$. **Proof:** Suppose $A \cap RMG\text{-cl}(B) \neq \emptyset$ and $x \in A \cap RMG\text{-cl}(B)$. Then $x \in A \cap RMG\text{-cl}(B)$. by above Theorem 6.9 $A \cap B \neq \emptyset$ which is contrary to the hypothesis. Hence $A \cap RMG\text{-cl}(B) \neq \emptyset$.

Theorem 6.11: If A is a subset of (X, τ) , Then RMG-cl(A) \subset cl(A).

Proof: Let A be a subset of X. By definition of closure, $cl(A) = \cap \{F \subseteq X: A \subseteq F \in C(X)\}$. If $A \subseteq F \in C(X)$, then $A \subseteq F \in RMGC(X)$, because every closed set is RMG-closed. That is RMG-cl(A) $\subseteq F$. Therefore RMG-cl(A) $\subset \cap \{F \subseteq X: A \subseteq F \in C(X)\} = cl(A)$. Hence RMG-cl(A) $\subseteq cl(A)$.

Remark 6.12: Containment relation in the above Theorem 5.34 may be proper as seen from the following example.

Example 6.13: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then RMGC(X) = $\{X, \emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Let A= $\{c\}$. Now RMG-cl(A) = $\{c\}$ and cl(A) = $\{c, d\}$. It follows that RMG-cl(A) = cl(A) and RMG-cl(A) \neq cl(A).

Remark6.14: If A be a subset of space X, then

i) $RMG-cl(A) \square w-cl(A)$.

ii) RMG-cl(A) \sqsubset g α -cl(A).

iii) RMG-cl(A)⊂p-cl(A).

Theorem 6.1:5 If A is a subset of space (X, τ) , Then Mildly-g-cl(A) \sqsubset RMG-cl(A).

Proof: Let A be a subset of X. By definition of Mildly-g -closure, Mildly-g-cl(A)= \cap {F \subset X:A \subset F \in Mildly-g-C (X)}. If A \subset F \in RMGC(X), then A \subset F \in Mildly-g-(X), because every RMG-closed set is Mildly-g-closed. That is Mildly-g-cl(A) \subset F. Therefore Mildly-g-cl(A) $\subset \cap$ {F \subset X:A \subset F \in RMC(X)}=RMG-cl(A). Hence Mildy-g-cl(A) \subset RMG-cl(A).

Remark 6.16: If A subset of space X, then wg-cl(A)⊂RMG-cl(A).

- Lemma 6.17: Let A be a subset of a space X. Then
- i) X-(RMG-int(A)) = RMG-cl(X-A).
- ii) RMG-int(A)=X-(RMG-cl(X-A)).
- iii) RMG-cl(A) = X (RMG-int(X-A)).

Proof: Let $x \in X - (RMG-int(A))$. Then $x \notin RMG-int(A)$. That is every RMG-open set U containing x is such that $U \notin A$. That is every RMG-open set U containing x such that $U \cap (X-A) \neq \emptyset$. By the Theorem 6.9, $x \notin RMG-cl(X - A)$ and therefore $X - (RMG-int(A)) \subset RMG-cl(X - A)$.

Conversely, let $x \in RMG$ -cl(X–A), Then by Theorem 6.9, every RMG-open set U containing x such that $U \not\subset A$. This implies by definition of RMG-interior of A, $x \not\in RMG$ -int(A). That is $x \in X - (RMG$ -int(A)) and RMG-cl(X–A) and RMG-cl(A^C) $\subset (RMG$ -int(A))^C. Thus (RMG-int(A))^C = RMG-cl(A^C).

ii) Follows by taking complements in (i).

iii) Follows by replacing A by X–A in (i).

References

- [1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [2] S. S. Benchalli and R.S. Wali, On RW-closed sets in topological spaces, Bull.Malaysian.Math. Sci. Soc. (2) 30(2) (2007), 99-110.
- [3] J. Dontchev and T. Noiri, Quasi-normal spaces and π -g-closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
- [4] T.Kong, R. Kopperman and P. Meyer, A topological approach to digital topology, Amer. Math. Monthly, 98 (1991), 901-917.
- [5] A.S. Mashhour, M.E. Abd. El-Monsef and S.N. El-Deeb, On pre continuous mappings and weak pre-continuous mappings, Proc Math, Phys. Soc. Egypt, 53(1982), 47-53.
- [6] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Sci. Kochi Univ.Ser. A. Math., 15(1994), 51-63.
- [7] H.Maki, J.Umehara and T.Noiri, Every topological space is pre-T1/2, Mem.Fac. Sci. Kochi. Univ. Ser. A. Math., 17(1966), 33-42.
- [8] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math. Monthly, 70(1963), 36-41.
- [9] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [10] N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D.Thesis, Bharathiar University, Coimbatore, 1999.
- [11] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [12] O. Ravi1*, I. Rajasekaran1 and M. Sathyabama2, Weakly g*-closed Sets, International Journal of Current Research in Science and Technology, Volume 1, Issue 5 (2015), 45-52.
- $[13] O. Ravi, S. Ganesan and S. Chandrasekar, On weakly \pi g-closed sets in topological spaces, Italian Journal of Pure and Applied Mathematics (To Appear).$
- [14] N. Palaniappan and K.C.Rao, Regular generalised closed sets, kyungpook math, J.,33(1993), 211-219.
- [15] A.Pushpalatha, Studies on generalizations of mappings in topolopgical spaces, Ph.D., Thesis, Bharathiar University, coimbatore(2000).
- [16] J.K. Park and J.H. Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solitions and Fractals, 20(2004), 1103-1111.
- [17] M.Sheik John, On w-closed sets in topology, Acta Ciencia Indica, 4(2000),389-392.
- [18] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math.Soc., 41(1937), 374-481.
- [19] N.V. Velicko, H-closed Topological Spaces, Tran. Amer. Math. Soc., 78 (1968), 103-118.
- [20] R. S. Wali and Nirani Laxmi, On Regular Mildly Generalized (RMG) Closed set in topological spaces. International Journal of Mathematical Archive-Manuscript ref. No. 7212, 2016.