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Abstract: The objective of this technical paper was to propose an approach for solving polynomials of degree 

higher than two. The main concepts were the decomposition of a polynomial of a higher degree to the product of 

two polynomials of lower degrees and the n-D Newton-Raphson method for a system of nonlinear equations. 

The coefficient of each term in an original polynomial of order m will be equated to the corresponding term 

from the collected-expanded product of the two polynomials of the lower degrees based on the concept of 

undetermined coefficients. Consequently a system of nonlinear equations was formed. Then the unknown 

coefficients of the decomposed polynomial of the lower degree of the two decomposed polynomials would be 

eliminated from the system of the nonlinear equations. After that the unknown coefficients in the decomposed 

polynomial of the higher degree would be obtained by the n-D Newton-Raphson. Finally the unknown 

coefficients for the decomposed polynomial of the lower degree would be obtained by back substitutions.  In this 

technical paper the formulations for the decomposed polynomials would be derived for the polynomials degree 

three to nine. Several numerical examples were also given to verify the applicability of the proposed approach. 

Keywords: Roots of a Polynomial of a High Degree, the n-D Newton-Raphson Method, Undetermined 

Coefficients, Jacobian of the Functions, Matrix Inversion 

 

I. Introduction 

Finding solutions to a polynomial of order higher than two has been unavoidable in engineering works. 

Mostly only real roots were required. In these cases the graphical method could give good initial guesses for 

some efficient numerical methods such as the Newton-Raphson method. However the determination of all 

possible roots has been very challenging. There are general solutions for cubic- and quartic polynomials [1]. 

Beyond the quartic polynomials some special forms and sufficient conditions for solvable polynomials have 

been studied [1-10]. 

The purpose of this technical paper was to propose a mathematical tool for solving for all possible roots 

of a polynomial of degree higher than two. It included the decomposition technique and the Newton-Raphson 

method for a system of nonlinear equations. The decomposition technique was applied for rewriting the original 

polynomial into the form of product of two polynomials of lower degrees. Based on the concept of 

undetermined coefficients each coefficient of an x power in the original polynomial would be equated to the 

corresponding collected-expanded one of the product of the two decomposed polynomials. The unknown 

coefficients in decomposed polynomials of the lower degree would be eliminated. Based on this a system of 

nonlinear equations of unknown coefficients in the decomposed polynomial of the higher degree was obtained. 

Then the n-D Newton-Raphson method was used to solve for the unknown coefficients from the system of 

nonlinear equations. The eliminated coefficients were obtained by back substitutions. The formulations and the 

concepts would be discussed in Section 2. In Section 3 the applicability of the proposed mathematical tool 

would be demonstrated in several numerical examples. From which critical conclusion could be drawn in 

Section 4. 

 

II. Decomposition of the Original Polynomial Equation 
2.1 Decomposition of a Polynomial Equation of Order m  

A polynomial equation of order m  may be generally expressed in form of (1): 
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Where miai ,...,1,0,   are the coefficients of ix and 0ma . Without losing generality 1ma  may be used 

throughout this technical paper. Thus: 
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 Given miri ,...,1,0,   are all possible roots of the polynomial equation. The polynomial equation of (2) 

can be rewritten as: 

        0321  mrxrxrxrx        (3) 
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 In the case that a root rx is found,  rxx  will be one factor of the original polynomial equation. The 

deflated equation may be obtained by the direct long division of the original equation of (2) by  rxx  as: 
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 Further deflations can be done as soon as additional roots will be found. Real roots of polynomial 

equations could be obtained in Bernstein form by numerical analysis [11]. The graphical method can be served 

as a powerful tool for determining the number of real roots, approximate values of real roots and nature of the 

real roots e.g. double real roots or triple real roots etc. Usually any value of a real root from the graphical 

method can be used as an initial guess value of a numerical method e.g. the Newton-Raphson method. 

 The rest of this technical paper will be devoted for the decomposition of an original polynomial 

equation into two decomposed polynomial equations of lower degrees. 

 

2.2 Decomposition of a Polynomial Equation 

2.2.1 Proposed Decomposition 

An original polynomial equation of order m  as in the form of (2) can always be decomposed into two 

polynomial equations of lower degrees. For an original polynomial equation of an odd degree the equation will 

be decomposed into two decomposed equations of lower degrees i.e. one decomposed polynomial equation with 

an odd degree and the other decomposed polynomial equation with an even degree. For an original polynomial 

equation of even degree, however, the function will be decomposed to two decomposed equations of even 

degrees. The reason behind is that a polynomial equation of odd degree will always have at least one real root. 

However no real root is guaranteed for a polynomial equation of an even degree. Therefore for the case of an 

original polynomial equation of even degree it is conservative to assume both two decomposed polynomial 

equations of even degrees, since a quadratic equation can always be solved in a closed form formula. Our 

discussions will be focused on the polynomial equations of degree higher than two i.e. degree three onwards. 

The orders of the two decomposed equations are summarized in Table 1. 

 

Table 1 Degrees of Two Decomposed Equations for Original Equations of Degree from 3-9 
Degree of Equation 

Original Equation 1st Decomposed Equation 2nd Decomposed Equation 

3 1 2 

4 2 2 

5 2 3 

6 2 4 

7 3 4 

8 4 4 

9 4 5 

 

2.2.2 Bairstow’s Decomposition 

Bairstow [12] proposed decomposing a polynomial of order m in form of (5) into a product of two 

lower degrees, i.e. a quadratic function and a polynomial of degree 2m , plus a remainder term in form of (6). 
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where 2,...,1,0,  mibi  are the coefficients of ix dc, are coefficients and 02 mb . The latter polynomial can 

be obtained by long dividing  xP  by  vxux 2
 and the term dcx   is the remainder. 

Once the values of u and v are assumed, All ib ’s as well as  c  and d  can be determined. By iterative 

procedures, the actual u and v  as well as all ib ’s can be obtained as soon as dcx   approaches zero. Thus, (6) 

is reduced to (7). 
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For the sake of further discussions ma  and 2mb  can be set to 1 without losing any generality. Thus, (7) 

may be rewritten as: 
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Based on (8) a polynomial equation can be decomposed to the product of two polynomial equations, 

i.e. a quadratic equation and a polynomial equation of order 2m . There can be several pairs of the 

decomposed polynomials depending on the initial guess of the iterative procedures. Since any quadratic 

equation and linear equation is always solved, all possible roots of a polynomial equation can be determined by 

the Bairstow’s method. The convergence of the method is quadratic, only if the zeros are complex conjugate 
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pairs of multiplicity one, or are real of multiplicity at most two. For higher multiplicities it is impractically slow 

or subject to failure. The modifications of the Bairstow’s method were proposed [13-14], but the details are out 

of the scope of this technical paper. 

 

2.2.3 Complete Bairstow’s Decomposition 

The decomposed polynomial equation of (8) can be further decomposed until the degree of the last 

decomposed equation is two or one. For an original polynomial equation of an even degree or an odd degree, the 

complete Bairstow’s solution can be rewritten in form of (9) or (10), respectively. 
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where  xQ  is a quadratic function. 

 

2.3 Decomposition of a Cubic Function 

Consider a general cubic equation: 
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 The cubic equation may be decomposed into a product of two equations i.e. one linear equation and 

one quadratic equation as shown below: 
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0  exexdx         (12) 

where 10 ,ed and 0e are the unknown coefficients of the equations. Expanding the product in (12) yields: 
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Equating each coefficient in (13) to the corresponding term in the original equation in (11) leads to 3 equations: 

210 aed            (14.a) 

1100 aede            (14.b) 

000 aed            (14.c) 

 0d  in (14.c) can be rewritten in term of 0a and 0e as: 
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 Thus, 0d  can be eliminated from (14.a) and (14.b) such that a system of two nonlinear equations in 

two simultaneous unknowns 1e and 0e is formed. 
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 Once 1e and 0e  are obtained from a numerical method i.e. the Newton-Raphson method in two 

dimensions, 0d can be obtained by back substitution via (15). 

 The proposed decomposition for a cubic equation has exactly the same form as the Bairstow’s method 

and it is already complete. 

 

2.4 Decomposition of a Quartic Function 

Consider a general quartic equation: 
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 The quartic equation may be decomposed into a product of two equations i.e. two quadratic equations 

as shown below: 
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where 101 ,, edd and 0e are the unknown coefficients of the equations. Expanding the product in (18) yields: 
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4  edxededxededxedx     (19) 

Equating each coefficient in (19) to the corresponding term in the original equation in (17) leads to 4 

equations: 

311 aed            (20.a) 
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21100 aeded           (20.b) 

10110 aeded            (20.c) 

000 aed            (20.d) 

 1d  in (20.a) and 0d  in (20.d), respectively, can be rewritten in term of the other terms as: 
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 Thus, 1d and 0d  can be eliminated from (20.b) and (20.c) such that a system of two simultaneous 

nonlinear equations in two unknowns 1e and 0e is formed. 
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 Once 1e and 0e  are obtained by the Newton-Raphson method in two dimensions, 1d and 0d can be 

obtained by back substitution via (21.a) and (21.b), respectively. 

The proposed decomposition for a quartic equation has exactly the same form as the Bairstow’s method 

and it is already complete. 

 

2.5 Decomposition of a Quintic Function 

2.5.1 The Proposed Decomposition 

Consider a general quintic equation: 
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The quintic equation may be decomposed into a product of two equations i.e. one quadratic equation 

and one cubic equation as shown below: 
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where 1201 ,,, eedd and 0e are the unknown coefficients of the equations. Expanding the product in (24) yields: 
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Equating each coefficient in (25) to the corresponding term in the original equation in (23) leads to 5 

equations: 
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211200 aedede           (26.c) 
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 1d  in (26.a) and 0d  in (26.e), respectively, can be rewritten in term of the other terms as: 
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 Thus, 1d and 0d  can be eliminated from (26.b), (26.c) and (26.d) such that a system of three 

simultaneous nonlinear equations in three unknowns 12 ,ee and 0e is formed. 
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Once 12 ,ee and 0e  are obtained by the Newton-Raphson method in three dimensions, 1d and 0d can be 

obtained by back substitution via (27.a) and (27.b), respectively. 
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2.5.2 Bairstow’s Decomposition 

The proposed decomposition for a quintic equation has exactly the same form as the Bairstow’s method 

and the cubic equation obtained can be further decomposed by using the proposed decomposition as discussed 

in Section 2.3. 

 

2.5.3 Complete Bairstow’s Decomposition 

The quintic equation of (23) can be rewritten in form of a complete Bairstow’s decomposition as: 
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Expanding the product in (29) yields: 
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Equating each coefficient in (30) to the corresponding term in the original equation in (23) leads to 5 equations: 

4110 aedc            (31.a) 

311101000 aedecdced          (31.b) 

211001100000 aedcededecdc         (31.c) 

101010000 aedcedced          (31.d) 

0000 aedc             (31.e) 

Thus, a system of five simultaneous nonlinear equations in five unknowns 1010 ,,, eddc and 0e is formed. 

 

2.6 Decomposition of a Sextic Function 

2.6.1 The Proposed Decomposition 

Consider a general sextic equation:        (32) 
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The sextic equation may be decomposed into a product of two equations i.e. one quadratic equation and 

one quartic equation as shown below: 
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where 12301 ,,,, eeedd and 0e are the unknown coefficients of the equations. Expanding the product in (33) 

yields: 
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Equating each coefficient in (34) to the corresponding term in the original equation in (32) leads to 6 

equations: 
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000 aed            (35.f) 

 1d  in (35.a) and 0d  in (35.f), respectively, can be rewritten in term of the other terms as: 
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Thus, 1d and 0d  can be eliminated from (35.b), (35.c), (35.d) and (35.e) such that a system of four 

simultaneous nonlinear equations in three unknowns 123 ,, eee and 0e is formed. 
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Once 123 ,, eee and 0e  are obtained by the Newton-Raphson method in four dimensions, 1d and 0d can 

be obtained by back substitution via (36.a) and (36.b), respectively. 

 

2.6.2 Bairstow’s Decomposition 

The proposed decomposition for a sextic equation has exactly the same form as the Bairstow’s method 

and the quartic equation obtained can be further decomposed by using the proposed decomposition as discussed 

in Section 2.4. 

 

2.6.3 Complete Bairstow’s Decomposition 

The sextic equation of (32) can be rewritten in form of a complete Bairstow’s decomposition as: 
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Expanding the product in (38) yields: 
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Equating each coefficient in (39) to the corresponding term in the original equation in (32) leads to 6 equations: 

5111 afed            (40.a) 

4111111000 afefdedfed          (40.b) 

3111011001100110 afedfefefdfdeded         (40.c) 

2011101110000000 afedfedfedfefded         (40.d) 

1001010100 afedfedfed           (40.e) 

0000 afed             (40.f) 

Thus, a system of six simultaneous nonlinear equations in six unknowns 10101 ,,,, feedd and 0f is formed. 

 

2.7 Decomposition of a Septic Function 

2.7.1 The Proposed Decomposition 

Consider a general septic equation: 
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The septic equation may be decomposed into a product of two equations i.e. one cubic equation and 

one quartic equation as shown below: 
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where 123012 ,,,,, eeeddd and 0e are the unknown coefficients of the equations. Expanding the product in (42) 

yields: 
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Equating each coefficient in (43) to the corresponding term in the original equation in (41) leads to 7 equations: 

632 aed            (44.a) 

53221 aeded           (44.b) 

4223110 aededed           (44.c) 

31221300 aededede          (44.d) 
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2021120 aededed           (44.e) 

10110 aeded            (44.f) 

000 aed            (44.g) 

 2d  in (44.a), 1d in (44.b) and 0d  in (44.g), respectively, can be rewritten in term of the other terms as: 
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 Thus, 12 ,dd and 0d  can be eliminated from (44.c), (44.d), (44.e) and (44.f) such that a system of four 

simultaneous nonlinear equations in four unknowns 123 ,, eee and 0e is formed. 
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Once 123 ,, eee and 0e  are obtained by the Newton-Raphson method in four dimensions, 12 ,dd and 

0d can be obtained by back substitution via (45.a), (45.b) and (45.c), respectively. 

 

2.7.2 Bairstow’s Decomposition 

The septic equation of (41) can be rewritten in form of the Bairstow’s decomposition as: 
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Expanding the product in (47) yields: 
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Equating each coefficient in (48) to the corresponding term in the original equation in (41) leads to 7 equations: 
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431402 aedede           (49.c) 

321301 aedede           (49.d) 

211200 aedede           (49.e) 
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000 aed            (49.g) 

 Thus, a system of seven simultaneous nonlinear equations in seven unknowns 101010 ,,,,, feeddc and 

0f is formed. 

 

2.7.3 Complete Bairstow’s Decomposition 

The septic equation of (41) can be rewritten in form of a complete Bairstow’s decomposition as: 
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Expanding the product in (50) and equating each coefficient to the corresponding term in the original 

equation in (41) leads to 7 equations: 

61110 afedc           (51.a) 
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4111110110011001100110000000 afedfdcedcfefefdfdededfcecdc    (51.c) 
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     (51.d) 

2011011101010001010100000000000 afedcfedcfedcfedfedfedfecfdcedc    (51.e) 

1001001001000000 afedcfedcfedcfed        (51.f) 

00000 afedc             (51.h) 

 Thus, a system of seven simultaneous nonlinear equations in seven unknowns 101010 ,,,,, feeddc and 

0f is formed. 

 

2.8 Decomposition of an Octic Function 

2.8.1 The Proposed Decomposition 

Consider a general octic equation:  
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The octic equation may be decomposed into a product of two equations i.e. two quartic equations as 

shown below: 
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where 1230123 ,,,,,, eeedddd and 0e are the unknown coefficients of the equations. Expanding the product in 

(54) and equating each coefficient to the corresponding term in the original equation in (52) leads to 8 

equations: 
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303122130 aedededed          (54.e) 

2021120 aededed           (54.f) 

10110 aeded            (54.g) 

000 aed            (54.h) 

 3d  in (54.a), 2d  in (54.b), 1d in (54.c) and 0d  in (54.h), respectively, can be rewritten in term of the 

other terms as: 
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 Thus, 123 ,, ddd and 0d  can be eliminated from (54.d), (54.e), (54.f) and (54.g) such that a system of 

four simultaneous nonlinear equations in four unknowns 123 ,, eee and 0e is formed. 
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Once 123 ,, eee and 0e  are obtained by the Newton-Raphson method in four dimensions, 123 ,, ddd and 

0d can be obtained by back substitution via (55.a), (55.b), (55.c) and (55.d), respectively. 
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2.8.2 Bairstow’s Decomposition 

The octic equation of (52) can be rewritten in form of the Bairstow’s decomposition as: 
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Expanding the product in (57) and equating each coefficient to the corresponding term in the original 

equation in (52) leads to 8 equations: 
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10110 aeded            (58.g) 

000 aed            (58.h) 

 Thus, a system of eight simultaneous nonlinear equations in eight unknowns 1234501 ,,,,,, eeeeedd and 

0e is formed. 

 

2.8.3 Complete Bairstow’s Decomposition 

The octic equation of (52) can be rewritten in form of a complete Bairstow’s decomposition as: 
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Expanding the product in (59) and equating each coefficient to the corresponding term in the original 

equation in (52) leads to 8 equations: 
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 Thus, a system of eight simultaneous nonlinear equations in eight unknowns 1010101 ,,,,,, gffeedd and 

0g is formed. 

 

2.9 Decomposition of a Nonic Function 

2.9.1 The Proposed Decomposition 

Consider a general nonic equation: 
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9  axaxaxaxaxaxaxaxax     (61) 

The nonic equation may be decomposed into a product of two equations i.e. one quartic equations and 

one quintic equation as shown below: 
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4  exexexexexdxdxdxdx     (62) 

where 12340123 ,,,,,,, eeeedddd and 0e are the unknown coefficients of the equations. Expanding the product in 

(62) and equating each coefficient to the corresponding term in the original equation in (61) leads to 9 

equations: 

843 aed            (63.a) 

74332 aeded           (63.b) 

6334221 aededed           (63.c) 
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523324110 aedededed          (63.d) 

4132231400 aedededede          (63.e) 

303122130 aedededed          (63.f) 

2021120 aededed           (63.g) 

10110 aeded            (63.h) 

000 aed            (63.i) 

 3d  in (63.a), 2d  in (63.b), 1d in (63.c) and 0d  in (63.i), respectively, can be rewritten in term of the 

other terms as: 

483 ead            (64.a) 

  448372 eeaead          (64.b) 

     348444837261 eeaeeeaeaead       (64.c) 

0

0
0

e

a
d            (64.d) 

 Thus, 123 ,, ddd and 0d  can be eliminated from (63.d), (63.e), (63.f), (63.g) and (63.h) such that a 

system of five simultaneous nonlinear equations in five unknowns 1234 ,,, eeee and 0e is formed. 
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   (65.e) 

Once 1234 ,,, eeee and 0e  are obtained by the Newton-Raphson method in five dimensions, 

123 ,, ddd and 0d can be obtained by back substitution via (64.a), (64.b), (64.c) and (64.d), respectively. 

 

2.9.2 Bairstow’s Decomposition 

The nonic equation of (61) can be rewritten in form of the Bairstow’s decomposition as: 
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Expanding the product in (66) and equating each coefficient to the corresponding term in the original 

equation in (61) leads to 9 equations: 

861 aed            (67.a) 

76150 aeded           (67.b) 

651604 aedede           (67.c) 

541503 aedede           (67.d) 

431402 aedede           (67.e) 

321301 aedede           (67.f) 

211200 aedede           (67.g) 

10110 aeded            (67.h) 

000 aed            (67.i) 

Thus, a system of nine simultaneous nonlinear equations in nine unknowns 12345601 ,,,,,,, eeeeeedd and 0e is 

formed. 
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2.9.3 Complete Bairstow’s Decomposition 

The nonic equation of (61) can be rewritten in form of a complete Bairstow’s decomposition as: 
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0  gxgxfxfxexexdxdxcx    (68) 

Expanding the product in (68) and equating each coefficient to the corresponding term in the original 

equation in (61) leads to 9 equations: 
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 (69.g) 

1000100010001000100000000 agfedcgfedcgfedcgfedcgfed      (69.h) 

000000 agfedc            (69.i) 

 Thus, a system of nine simultaneous nonlinear equations in nine unknowns 10101010 ,,,,,,, gffeeddc  

and 0g is formed. 

 

III. N-D Newton-Raphson Method and the Jacobian of the Functions 
3.1 Newton-Raphson Method for a Nonlinear Function 

The prediction of the Newton-Raphson method was based on a first order Taylor series expansion: 

       iiiii xfxxxfxf '11          (70) 

where ix  is the initial guess at the root or the previous estimate of the root and 1ix is the point at which the 

slope intercepts the x  axis. At this intercept   01 ixf  by definition and (70) can be rearranged to: 
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i
ii

xf

xf
xx

'
1           (71) 

which is the Newton-Raphson method for a nonlinear equation. 

 

3.2 Newton-Raphson Method in more than one Dimension 

3.2.1 Newton-Raphson Method in two Dimensions 

The Newton-Raphson method for two simultaneous nonlinear equations can be derived in the similar 

fashion. However, a multivariate Taylor series has to be taken into account for the fact of more than one 

independent variables contributing to the determination of the root. For the two-variable case, a first order 

Taylor series can be written for each nonlinear equation as: 
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Just as for the single-equation case, the root estimate corresponds to the points which 01 iu  

and 01 iv . (72.a) and (72.b) can be rearranged to: 
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 11        (73.b) 

In (73) only 1ix  and 1iy are unknown.  Thus (73) is a set of two simultaneous linear equations with 

two unknowns. Consequently, with simple algebraic manipulations, e.g. Cramer’s rule, 1ix  and 1iy  can be 

solved as: 
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 The denominator of each of (74) is the determinant of the Jacobian of the system. (73) is the equation 

for the Newton-Raphson method in two dimensions. 

 For the benefits of further discussions on the method for more than two dimensions, (74) should be 

rewritten in term of the matrix notation i.e. the Jacobian of the function –  Z . 
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where  Z  is the Jacobian of the function and   1
Z is the inverse of  Z . 

 

3.2.2 Newton-Raphson Method in More Than Two Dimensions 

Consider a system of n simultaneous nonlinear equations: 
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 The solution of this system consists of a set of x values that simultaneously result in all the equations 

equaling zero. Just for the case of two nonlinear equations a Taylor series expansion is written for each equation 
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where the subscript, l , represents the equation or unknown and the second subscript denotes whether the value 

of function under consideration is at the present value ( i ) or at the next vale ( 1i ). 

 Equations in the form of (78) are written for each of the original nonlinear equations. All 1, ilf  terms 

are set to zero and (78) can be rewritten as: 
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 Notice that only the njx ij ,...,2,1,1,  terms on the right-hand side are unknowns. As a result, a set of 

n  linear simultaneous equation is obtained. 
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 The partial derivatives can be expressed in term of matrix notation as: 
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The present and the next values can be expressed in the vector form as  

   inii
T

i xxxX ,,2,1          (81) 

   1,1,21,11   inii
T

i xxxX        (82) 

 The function values at i can be expressed as 

   inii
T

i fffF ,,2,1          (83) 

 Using these relationships, (79) can be rewritten as 

    ii WXZ 1           (84) 

      iii XZFW           (85) 

 Assumed that the inverse of  Z  can be obtained.  Then  1iX  in (84) can be solved. 

                       iiiiii XZZFZXZFZWZX 



1111

1    (86) 

In (86)      IZZ 
1

 is a unit matrix. Thus, (86) can be rewritten as:  

       iii FZXX 



1

1         (87) 

 

3.3 Functions from the Decomposed Equations and the Jacobian of the Functions 

For the benefits of applications the system of simultaneous nonlinear equations derived for the 

decomposed equations discussed in Section 2.3 – Section 2.9 are summarized in the following subsections. 

 

3.3.1 Original Cubic Equations 
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3.3.2 Original Quartic Equations 
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3.3.3 Original Quintic Equations 

3.3.3.1 The Proposed Decomposition 
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3.3.3.2 Bairstow’s Decomposition 
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3.3.3.3 Complete Bairstow’s Decomposition 
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3.3.4 Original Sextic Equations 

3.3.4.1 The Proposed Decomposition and Bairstow’s Decomposition 
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3.3.4.2 Complete Bairstow’s Decomposition 
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3.3.5 Original Septic Equations 

3.3.5.1 The Proposed Decomposition 
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3.3.5.2 Bairstow’s Decomposition 
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3.3.5.3 Complete Bairstow’s Decomposition 
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1111110001,3 fefdedfedz         (108.a) 
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1110110011001101,4 fedfefefdfdededz       (108.e) 

111010002,4 fefcecfez          (108.f) 

110011000003,4 fecfefefcecz         (108.g) 
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111010004,4 fdfcdcfdz          (108.h) 

110011000005,4 fdcfdfdfcdcz         (108.i) 
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3.3.6 Original Octic Equations 

3.3.6.1 The Proposed Decomposition 
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3.3.6.2 Bairstow’s Decomposition 
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3.3.6.3 Complete Bairstow’s Decomposition 
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1111110002,3 gfgefegfez         (116.a) 

1111110004,3 gfgdfdgfdz         (116.b) 

1111110006,3 gegdedgedz         (116.c) 

1111110008,3 fefdedfedz         (116.d) 

1111110001,4 gfgefegfez         (116.e) 

1110110011001102,4 gfegfgfgegefefez       (116.f) 

1111110003,4 gfgdfdgfdz         (116.g) 

1110110011001104,4 gfdgfgfgdgdfdfdz       (116.h) 

1111110005,4 gegdedgedz         (116.i) 
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1110110011001106,4 gedgegegdgdededz       (116.j) 

1111110007,4 fefdedfedz         (116.k) 

1110110011001108,4 fedfefefdfdededz       (116.l) 

1110110011001101,5 gfegfgfgegefefez       (116.m) 

0111011100000002,5 gfegfegfegfgefez        (116.n) 

1110110011001103,5 gfdgfgfgdgdfdfdz       (116.o) 

0111011100000004,5 gfdgfdgfdgfgdfdz       (116.p) 

1110110011001105,5 gedgegegdgdededz       (116.q) 

0111011100000006,5 gedgedgedgegdedz        (116.r) 

1110110011001107,5 fedfefefdfdededz       (116.s) 

0111011100000008,5 fedfedfedfefdedz        (116.u) 

1010111100000001,6 gfegfegfegfgefez        (116.v) 

001101002,6 gfegfegfez          (116.w) 

0111011100000003,6 gfdgfdgfdgfgdfdz       (116.x) 

1000010104,6 gfdgfdgfdz          (116.z) 

1100111010000005,6 gedgedgedgegdedz        (116.aa) 

0010101006,6 gedgedgedz          (116.ab) 

0111011100000007,6 fedfedfedfefdedz        (116.ac) 

0100011008,6 fedfedfedz          (116.ad) 

0010101001,7 gfegfegfez          (116.ae) 

0010101003,7 gfdgfdgfdz          (116.af) 

0010101005,7 gedgedgedz          (116.ag) 

0010101007,7 fedfedfedz          (116.ah) 

 

3.3.7 Original Nonic Equations 

3.3.7.1 The Proposed Decomposition 
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448374,1 322 eeaeaz          (119.a) 

3
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3
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         (119.h) 

3
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411804,4 2 eeeaez          (119.j) 

2
41418314017085,4 3222 eeeeaeeeeeaeaz      (119.k) 

3
443

2
484738262

0

10
1,5 2 eeeeaeaeaea

e

ea
z 


     (119.l) 

2
4040830075,5 322 eeeeaeeeaz        (119.m) 

 

3.3.7.2 Bairstow’s Decomposition 
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3.3.7.3 Complete Bairstow’s Decomposition 
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11111,2 gfedz           (124.a) 

11103,2 gfecz           (124.b) 

11105,2 gfdcz           (124.c) 

11107,2 gedcz           (124.d) 

11109,2 fedcz           (124.e) 

11111111111100001,3 gfgefegdfdedgfedz      (124.f) 
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11102,3 gfecz           (124.g) 

1111111010100003,3 gfgefegcfcecgfez       (124.h) 
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0010010010000005,7 gfdcgfdcgfdcgfdz        (124.at) 

0110101011000010101000000000006,7 gedcgedcgedcgedgedgedgecgdcedcz   (124.au) 
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0010010010000004,8 gfdcgfdcgfdcgfdz        (124.bb) 

00005,8 gfdcz            (124.bc) 

0010010010000006,8 gedcgedcgedcgedz        (124.bd) 

00007,8 gedcz            (124.be) 

0010010010000008,8 fedcfedcfedcfedz        (124.bf) 

00009,8 fedcz            (124.bg) 

00001,9 gfedz            (124.bh) 

00002,9 gfecz            (124.bi) 

00004,9 gfdcz            (124.bj) 

00006,9 gedcz            (124.bk) 

00009,9 fedcz            (124.bl) 
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IV.  Numerical Examples 
Seven numerical examples will be demonstrated in this section to verify the applicability of the 

proposed procedures. The first four examples are selected from real applications in civil engineering. They are 

the cubic-, quartic-, quintic- and sextic equations, respectively. The last three examples are beyond the sextic 

equation demonstrated in technical papers of the other author [7-9]. The intention is just to serve the researchers 

to exercise some challenging problems and the formulas given herein should be useful for some existing 

applications, if any. All calculations in this technical paper were done in the environments of Software Mathcad 

Prime 3.0. Only results from the proposed decomposition will be shown rather in details. The results from the 

other two alternative decompositions were also calculated to verify the correctness of the equations and to 

compare the efficiency with the proposed method, but the results from the alternative methods will be excluded 

because of the space limitation. 

 

Example 1: Roots of a Cubic Equation 

The required depth of a square timber section could be determined by solving the a cubic equation, 

0103.55872101.40368 -3-23  xx . This equation can be decomposed to the product of a linear equation 

and a quadratic equation as shown in (12). Firstly the two unknown 1e and 0e may be obtained by the Newton-

Raphson method in 2 dimensions via (75). In this case  F and  Z  are calculated via (88) and (89), 

respectively. The results of calculation are summarized as shown below. 

Initial guess 

















2.0

01.0

1

0

e

e
 

Iteration 1: 

















2.0

01.0

1

0

e

e
,  


















2-

-1

104.71376

101.55872
F ,   












 1-103.558728.11744

00000.1103.55872
Z  

   



















1.71241103.90601

104.81188101.71241
1-

-2-2
1

Z  

  



































































1-

-2

2-

-1

1-

-2-2

1

0

101.80165

101.49374

104.71376

101.55872

1.71241103.90601

104.81188101.71241

2.0

01.0

e

e
 

Iteration 2: 
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Iteration 5: 
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Then the estimates of 1e and 0e are 0.019447 and 0.182998, respectively. Then 0d can be obtained 

from (9). 
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e

a
d . The decomposed equation becomes, 

    0101.94478101.829880.18299 -2-12  xxx  

ix 105.0091.0,183.0  . However, for the design purpose only the positive real root 183.0x m 

is taken. 

 

Example 2: Roots of a Quartic Equation 

The minimum anchored length of a sheet pile can be obtained from the equilibrium of the lateral earth 

pressure acting on a sheet pile in form of a quartic equation 0496.109925.87132.12971.5 234  xxxx . 

This equation can be decomposed into the product of two quadratic equations as shown in (18). Firstly the two 

unknown 1e and 0e may be obtained by the Newton-Raphson method in 2 dimensions via (75). In this case 

 F and  Z  are calculated via (90) and (91), respectively. The results of calculation are summarized as shown 

below. 
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Iteration 3: 
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Thus the estimates of 1e and 0e are 3.94432 and 4.45452, respectively. Then 1d and 0d from can be 

obtained from (15.a) and (15.b), respectively. 

02668.21 d and 24.580430 d . The decomposed equation becomes, 

    045452.43.9443224.5804302668.2 22  xxxx  

ix 752.0972.1,047.4,074.6  . However, for the design purpose only the positive real root 

497.4x m is taken. 

 

Example 3: Roots of a Quintic Equation 

The diameter of a circular steel column subjected to an axial force may be determined by solving a 

quintic equation 010850.910951.410866.5 825335   xxx . This equation can be decomposed into 

the product of two equations i.e. one quadratic equation and one cubic equation as shown in (24). Firstly the 

three unknown 12 ,ee and 0e may be obtained by the Newton-Raphson method in 3 dimensions via (87). In this 

case  F and  Z  are calculated via (92) and (93), respectively. The results of calculation are summarized as 

shown below. 

Initial guess 

































1

1

1

2

1

0

e

e

e

 

Iteration 1: 

 

































1

1

1

2

1

0

e

e

e

, 























1-

5-

-3

1010.00000

104.94163

105.86581

F ,  
























1.00000109.849841.00000

1010.000001.000001010.00000

00000.21.00000109.84984

8-

1-1-

-8

Z

  

























1-1-1-

1-1-1-

-1-1-1

1

102.50000102.50000102.50000

105.00000105.00000105.00000

107.50000102.50000102.50000

Z  








































































































1-

1-

-1

1-

5-

-3

1-1-1-

1-1-1-

-1-1-1

2

1

0

107.51454

104.97042

102.48546

1010.00000

104.94163

105.86581

102.50000102.50000102.50000

105.00000105.00000105.00000

107.50000102.50000102.50000

1

1

1

e

e

e

 

Iteration 2: 








































1-

1-

-1

2

1

0

107.51454

104.97042

102.48546

e

e

e

, 























1-

1-

-2

101.86771

101.25008

106.17748-

F ,  























1-7-1-

1-1-1-

-6

102.48546103.96299107.51455

104.97042107.51454109.99999

1.502911.00000101.59447

Z  

  

























1-1-1-

1-1-

-1-1

1

106.79939105.10944103.83951

1.02189107.67902104.22957

1.10586101.68996101.26993

Z  














































































































1-

1-

-2

1-

1-

-2

1-1-1-

1-1-

-1-1

1-

1-

-1

2

1

0

105.36871

102.36318

107.09744

101.86771

101.25008

106.17748-

106.79939105.10944103.83951

1.02189107.67902104.22957

1.10586101.68996101.26993

107.51454

104.97042

102.48546

e

e

e
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Iteration 3: 








































1-

1-

-2

2

1

0

105.36871

102.36318

107.09744

e

e

e

, 























2-

2-

-2

103.81038

105.59467

104.60452-

F ,  























2-6-1-

1-1-1-

-5

107.09744101.38780105.36876

102.36317105.36871109.99990

1.073741.00000101.95536

Z  

  

























1.971051.05823105.68132

2.116441.13627103.89974

1.60206101.39894107.51075

1-

1-

-1-2

1
Z  






































































































1-

1-

-2

2-

2-

-2

1-

1-

-1-2

1-

1-

-2

1

0

103.76402

101.10060

102.12147

103.81038

105.59467

104.60452-

1.971051.05823105.68132

2.116441.13627103.89974

1.60206101.39894107.51075

105.36871

102.36318

107.09744

e

e

 After 13 cycles of iteration the estimates of 12 ,ee and 0e are 1.0075110
-1

, 2.1228310
-3

 and 

4.5556410
-5

, respectively. Then 
-1

1 101.00751 d and 
-3

0 102.16212 d  can be obtained from (27.a) and 

(27.b), respectively. 

The decomposed equation becomes, 

    0104.55564102.122831000751.11016212.2101.00751 -5-32133-12   xxxxx  

ix 23222 10160.21059.9,10975.6,10100.3,10157.8   . However, for the design 

purpose the larger value of the positive real roots 06975.0x m is taken. 

 

Example 4: Roots of a Sextic Equation 

The critical water height (unit in m) in an open channel of a trapezoidal section may be considered by 

solving a sextic equation 010982.310964.7100030030 543456  xxxxx . This equation can be 

decomposed into the product of one quadratic equation and one quartic equation as shown in (33). Firstly the 

four unknown 123 ,, eee and 0e may be obtained by the Newton-Raphson method in 4 dimensions via (87). In 

this case  F  and  Z  are calculated via (98) and (99), respectively. The results of calculation are summarized 

as shown below. 

Initial guess 























































1

20

100

2000

3

2

1

0

e

e

e

e

 

Iteration 1: 























































1

20

100

2000

3

2

1

0

e

e

e

e

,  
































3101.73000

918.00000 

320.90000

51.90000-

F , 

 























3 10 2.000000199.1000019.04500

100.00000199.1000029.000002.99100

179.1000029.0000010.09955

1100.09955

Z  

 






























0.000080.000740.005060.00143

0.000660.004350.004980.00967

0.003640.010940.041220.98312

0.005780.03618-0.1008510.12801

1
Z  
















































































































































1.87166

26.22340

160.49717

1054993.1

101.73000

918.00000 

320.90000

51.90000-

0.000080.000740.005060.00143

0.000660.004350.004980.00967

0.003640.010940.041220.98312

0.005780.03618-0.1008510.12801

1

20

100

2000 3

3
3

2

1

0

e

e

e

e
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Iteration 2: 























































1.87166

26.22340

160.49717

1054993.1 3

3

2

1

0

e

e

e

e

,  





























3105.19106-

672.75595

57.98137

35.78562

F , 

 























3 101.549930256.915621.52433

160.49717256.9156228.128345.34679

230.6922228.1283410.31025

1100.16576

Z  

   






























0.000040.000510.004390.00793

0.000480.004340.000790.13705

0.003640.003230.026330.08827

0.002650.02309-0.031276.81178

1
Z  













































































































































1.87966

25.68058

139.07837

101.76259

105.19106-

672.75595

57.98137

35.78562

0.000040.000510.004390.00793

0.000480.004340.000790.13705

0.003640.003230.026330.08827

0.002650.02309-0.031276.81178

1.87166

26.22340

160.49717

1054993.1 3

3

3

3

2

1

0

e

e

e

e

 After 8 cycles of iteration the estimates of 3e , 2e , 1e and 0e are 1.96104, 24.95821, -131.34117 and      

-1.8095410
3
, respectively. Then 28.038961 d and 220.056270 d  can be obtained from (36.a) and (36.b), 

respectively. 

The decomposed equation becomes, 

    01076259.107837.13968058.12587966.105627.22003896.28 32342  xxxxxx  

Again the quartic equation can be decomposed further to two quadratic equations as discussed earlier in 

Example 2. 

iix 505.7375.1,949.4019.14,983.5,198.5  . However, for the design purpose the larger value 

of the positive real roots 983.5x m is taken. 

 

Example 5: Roots of a Septic Equation 

Let’s consider a septic equation 0352835142814 234567  xxxxxxx . This equation can 

be decomposed into the product of one cubic equation and one quartic equation as shown in (42). Firstly the 

four unknown 123 ,, eee and 0e may be obtained by the Newton-Raphson method in 4 dimensions via (87). In 

this case  F  and  Z  are calculated via (102) and (103), respectively. The results of calculation are 

summarized as shown below. 

Initial guess 



















































1

1

1

1

3

2

1

0

e

e

e

e

 

Iteration 1: 



















































1

1

1

1

3

2

1

0

e

e

e

e

,  



























48.00000-

13.00000

35.00000-

7.00000

F , 

 



























3.000001.0000035.00000-50.00000

2.0000036.00000-15.0000033.00000

33.00000-14.000002.0000036.00000

17.000003.00000135.00000

Z  
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0.00199-0.008720.01655-0.02808

0.010710.02527-0.011540.02725

0.02725-0.002820.010710.02527

0.000830.001990.008720.01655

1
Z  































































































































0.24219

1.0274

0.14689

1.20319

48.00000-

13.00000

35.00000-

7.00000

0.00199-0.008720.01655-0.02808

0.010710.02527-0.011540.02725

0.02725-0.002820.010710.02527

0.000830.001990.008720.01655

1

1

1

1

3

2

1

0

e

e

e

e

 

Iteration 2: 




















































0.24219

1.0274

0.14689

1.20319

3

2

1

0

e

e

e

e

,  



























7.75658-

1.66935

6.02241-

0.70239

F , 

 



























1.786011.2031929.08923-9.72217

1.42123-28.94235-13.2734523.59696

27.41728-12.246051.242196.85544

12.605561.48439124.17667

Z  

   


























0.00369-0.012130.02650-0.02084

0.013020.02944-0.014420.02988

0.03323-0.001960.002650.01070

0.002500.004440.014590.03189

1
Z  
































































































































0.05959

1.04138

0.39944

1.28065

7.75658-

1.66935

6.02241-

0.70239

0.00369-0.012130.02650-0.02084

0.013020.02944-0.014420.02988

0.03323-0.001960.002650.01070

0.002500.004440.014590.03189

0.24219

1.0274

0.14689

1.20319

3

2

1

0

e

e

e

e

  

After 5 cycles of iteration the estimates of 123 ,, eee and 0e are 0.04747, 1.04274, -0.41342 and 

1.29095, respectively. Then 13.00698,1.047472 1  dd and 27.111720 d  can be obtained from (45.a), 

(45.b) and (45.c), respectively. 

The decomposed equation becomes, 

    01.290950.41342-1.042740.0474727.1117213.006981.04747 23423  xxxxxxx  

Again the cubic equation can be decomposed further to one linear equation and one quadratic equation 

as discussed earlier in Example1. Whereas the quartic equation can be decomposed further to two quadratic 

equations as discussed earlier in Example 2. 

iiix 80211.055115.0,01612.157489.0,79022.340902.0,86552.1  . 

 

Example 6: Roots of an Octic Equation 

Let’s consider an octic equation 020352830142510 2345678  xxxxxxxx . This 

equation can be decomposed into the product of two quartic equations as shown in (52). Firstly the four 

unknown 123 ,, eee and 0e may be obtained by the Newton-Raphson method in 4 dimensions via (87). In this 

case  F  and  Z  are calculated via (109) and (110), respectively. The results of calculation are summarized as 

shown below. 

Initial guess 
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0

e
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e
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Iteration 1: 



















































0

0

0

1

3

2

1

0

e

e

e

e

,  




























10.00000

18.00000

29.00000

33.00000-

F , 

 

























10.000001.0000021.00000-25.00000-

1.0000021.00000-25.00000-10.00000

21.00000-25.00000-10.000001.00000-

25.0000010.000001.0000021.00000

Z  

 


























0.01449-0.007030.01501-0.02132-

0.007030.01501-0.02132-0.01449

0.01501-0.02132-0.014490.00703

0.02132-0.014490.007030.01501

1
Z  

































































































































0.00320

0.75608

0.88578

2.17302

10.00000

18.00000

29.00000

33.00000-

0.01449-0.007030.01501-0.02132-

0.007030.01501-0.02132-0.01449

0.01501-0.02132-0.014490.00703

0.02132-0.014490.007030.01501

0

0

0

1

3

2

1

0

e

e

e

e

 

Iteration 2: 




















































0.00320

0.75608

0.88578

2.17302

3

2

1

0

e

e

e

e

,  



























7.66411-

5.84943

1.91850

13.22536-

F , 

 

























18.45816-2.1869111.37681-27.13699-

12.2682512.26825-22.49952-12.44951

18.69062-21.73860-8.491040.98965

21.76576-8.494261.006405.23550

Z  

   




























0.00567-0.000420.01234-0.03072-

0.000430.01234-0.03076-0.02128

0.01663-0.03108-0.011950.01003

0.02606-0.012320.000910.02682

1
Z  





































































































































0.42048-

1.16540

0.98694

2.25417

7.66411-

5.84943

1.91850

13.22536-

0.00567-0.000420.01234-0.03072-

0.000430.01234-0.03076-0.02128

0.01663-0.03108-0.011950.01003

0.02606-0.012320.000910.02682

1.87166

26.22340

160.49717

1054993.1 3

3

2

1

0

e

e

e

e

 After 5 cycles of iteration the estimates of 123 ,, eee and 0e are -0.47893, 1.26342, -1.02269 and 

2.28307, respectively. Then -0.521073 d , 8.487022 d , 19.254281 d and 8.760120 d  can be obtained 

from (55.a),  (55.b), (55.c) and (55.d), respectively. 

The decomposed equation becomes, 

    02.283071.02269-1.263420.47893-8.7601219.254288.487020.52107x 234234  xxxxxxx  

Again each of the quartic equations can be decomposed further to two quadratic equations as discussed 

earlier in Example 2. 

iix 0.879190.79499,1.14734i0.55552,3.288870.56419,2.03588,0.38643  . 

 

Example 7: Roots of a Nonic Equation 

Let’s consider a nonic equation 020352830142510 23456789  xxxxxxxxx . This 

equation can be decomposed into the product of one quartic equation and one quintic equation as shown in (62). 

Firstly the five unknown 1234 ,,, eeee and 0e may be obtained by the Newton-Raphson method in 5 dimensions 
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via (87). In this case  F  and  Z  are calculated via (117) and (118), respectively. The results of calculation are 

summarized as shown below. 

Initial guess 

























































0

0

0

0

1

4

3

2

1

0

e

e

e

e

e

 

Iteration 1: 

























































0

0

0

0

1

4

3

2

1

0

e

e

e

e

e

,  









































4

4

0

3

4

101.88607

101.00561

10254.00000-

101.88700-

101.46880

F , 

 



































56.000002.000001.00000101.34400172.70100

2.000001.00000101.34400172.7010056.00000

1.00000101.34400172.7010056.000002.00000

101.34400172.7010056.000002.000001.00000

172.7010056.000002.000001101.34400-

4

4

4

4

4

Z  

 




































9-7-7-9-

7-7-9-9-

7-9-9-7-

9-9-7-7-

-9-9-7-7

1

102.94706-103.22306109.561290.00007104.37329

103.22306109.561290.00007104.37329102.94706

109.561290.00007104.37329102.94706103.22306-

0.00007104.37329102.94706103.22306-109.56129

104.37329102.94706103.22306-109.56129-0.00007

Z































































































































































0.13728

0.01533

0.72545

1.41672

2.09103

101.88607

101.00561

10254.00000-

101.88700-

101.46880

102.94706-103.22306109.561290.00007104.37329

103.22306109.561290.00007104.37329102.94706

109.561290.00007104.37329102.94706103.22306-

0.00007104.37329102.94706103.22306-109.56129

104.37329102.94706103.22306-109.56129-0.00007

0

0

0

0

1

4

4

0

3

4

9-7-7-9-

7-7-9-9-

7-9-9-7-

9-9-7-7-

-9-9-7-7

4

3

2

1

0

e

e

e

e

e

Iteration 2: 

























































0.13728

0.01533

0.72545

1.41672

2.09103

4

3

2

1

0

e

e

e

e

e

,  





































3

3

3

109.92559

105.09890

114.13033-

962.57836-

107.65213

F , 

 



































118.191683.607932.09103106.42746104.51904

76.469794.53548106.42604164.27898102.17364

45.54030106.42730163.5535356.2710545.25232-

106.42816163.5799856.286381.86272420.98764-

155.8202456.523251.725431103.07383-

33

33

3

3

3

Z  

 




































8-6-6-

6-6-7-6-

6-6-7-

8-6-6-

-8-8-6-6

1

102.85265101.45978103.769440.000160.00002-

101.46370103.969850.00016109.85295101.77027-

103.970290.00016101.04307106.067940.00010

0.00016101.59255102.12775-108.39269-0.00023

102.44886105.96497-103.05244-107.88201-0.00032

Z  
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0.43521

0.04187

2.27552

4.69446

4.56508

109.92559

105.09890

114.13033-

962.57836-

107.65213

102.85265101.45978103.769440.000160.00002-

101.46370103.969850.00016109.85295101.77027-

103.970290.00016101.04307106.067940.00010

0.00016101.59255102.12775-108.39269-0.00023

102.44886105.96497-103.05244-107.88201-0.00032

0.13728

0.01533

0.72545

1.41672

2.09103

3

3

3

8-6-6-

6-6-7-6-

6-6-7-

8-6-6-

-8-8-6-6

4

3

2

1

0

e

e

e

e

e

 After 10 cycles of iteration the estimates of 1234 ,,, eeee and 0e are 1.87305, 20.41547, -20.31628, 

71.49813 and 49.90072, respectively. Then 0.126953 d , -76.653262 d -11.401341 d and 269.33480 d  

can be obtained from (64.a), (64.a), (64.c)  and (64.d), respectively. 

The decomposed equation becomes, 

 
  049.9007271.4981320.31628-20.415471.87305

269.334811.40134-76.653260.12695

2345

234





xxxxx

xxxx
 

Again the quartic equation   0269.334811.40134-76.653260.12695 234  xxxx  can be 

decomposed further to two quadratic equations as discussed earlier in Example 2. Whereas the quintic equation 

 049.9007271.4981320.31628-20.415471.87305 2345  xxxxx  can be decomposed further to one 

quadratic equation and one cubic equation as discussed earlier in Example 3. Finally the cubic equation can be 

decomposed to one linear equation and one quadratic equation as discussed earlier in Example1. 

iix 1.730630.99909,4.422891.65546,556921.84408,8.,0.56031,2.00192,8.52604  . 

 

V. Conclusion 
1) An approach for solving polynomial equations of degree higher than two was proposed. 

2) The main concepts were decomposition of a polynomial of higher degrees to the product of two 

polynomials of lower degrees and the n-D Newton-Raphson method for a system of nonlinear equations. 

3) The coefficient of each term in an original polynomial of order m will be equated to the corresponding term 

from the collected-expanded product of the two polynomials of the lower degrees based on the concept of 

undetermined coefficients. Consequently a system of m nonlinear equations was formed. Then the unknown 

coefficients of the decomposed polynomial of the lower degree of the two decomposed polynomials would 

be eliminated from the system of nonlinear equations. Therefore the number of nonlinear equations would 

be reduced to the number of unknown coefficients in the decomposed polynomial equation of higher 

degree. 

4) The unknown coefficients in the decomposed polynomial of the higher degree would be obtained by the 

Newton-Raphson method for simultaneous nonlinear equations. Then the unknown coefficients for the 

decomposed polynomial of the lower degree would be obtained by back substitutions. 

5) The formulations for the decomposed polynomials would be derived for the original polynomials of degree 

from three to nine. 

6) The system of nonlinear equations and supplementary equations for determining the unknown coefficients 

of the decomposed polynomials were also summarized for the original polynomial for degree from three to 

nine. 

7) For the case of an original polynomial equation of an odd degree the original polynomial equation will be 

decomposed to two polynomial equations i.e. one equation of an odd degree and the other equation of an 

even degree. Whereas for the case of an original polynomial equation of an even degree, two decomposed 

polynomial equations of even degrees were proposed to guarantee obtaining all possible roots i.e. complex 

conjugates, distinct real roots, double real root, triple real root etc. 

8) Two alternative forms of decomposed polynomial equations were also given i.e. Bairstow’s decomposition 

and complete Bairstow’s decomposition. For the polynomial equation of degree five or higher the vector of 

nonlinear equations and the corresponding Jacobian matrix from the Bairstow’s decomposition were 

simpler than the proposed decomposition. Whereas those from the complete Bairstow’s decomposition 

were more complex than the proposed decomposition. Both alternative forms involved larger systems of 

simultaneous nonlinear equations. 

9) Seven numerical examples were also given to verify the applicability of the proposed approach. Four 

numerical examples for polynomial equations of degree three, four, five and six were demonstrated. These 

problems were selected from the real applications in civil engineering. The other three problems for 

polynomial equations of degree seven, eight and nine were given to challenge to the researchers. Numerical 

results were given rather in details so that the readers can keep track for all steps of calculations. 

10) For a given polynomial equation there exist several possible pairs of decomposed polynomial equations, but 

any pair of decomposed equations will always give the same final results. 

11) The Newton-Raphson method in two and more dimensions were proved to be a very efficient tool for 
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solving a system of simultaneous nonlinear equations at least in the extent of numerical examples shown in 

this technical paper and author’s experience on finding roots of a polynomial equation. 

12) The decomposed polynomial equations can always decomposed further to the equations of lower degrees. 

Finally the original polynomial equations can be rewritten in form of a product of linear equations and 

quadratic equations. Therefore all possible roots can always be determined. 

13) The method proposed can be extended for a polynomial equation of any degree beyond nine, but with 

longer equations and a larger system of simultaneous nonlinear equations. Further extension was not shown 

in this technical paper because of the limitation of the paper space, but it can be done systematically in form 

of matrix notations and computer programming. 
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