G- Frame Operator in C* Algebra

P. Kalyani

Department of Mathematics, Aurora's Technological and Research Institute, Uppal, Hyderabad

Abstract: The g-frame operator for g-frames in C* algebra is introduced. The results on g-frame operators are proved. Frame identities are shown. Result on direct sum of g-frame operators on direct sum of Hilbert Spaces is presented.

I. Introduction

Frames are generalization of bases .D. Han and D. R. Larson have developed a number of basic concepts of operator theoretic approach to frame theory in C^* algebra. Peter G Casazza presented a tutorial on frame theory and he suggested the major directions of research in frame theory. Radu V. Balan and Peter G. Casazza have analyzed decomposition of a normalized tight frame and obtained identities for frames. A. Najati and A. Rahimi have developed the generalized frame theory and introduced methods for generating g-frames of a C^* algebra.

1.1. Banach Algebra:- A Banach Algebra is a complex Banach space A together with an associative and distributive multiplication such that $\lambda(ab) = \lambda(a) \lambda(b)$,

 $||ab|| \le ||a|||b|| \forall a, b \in A \text{ and } \lambda \in C$ For any $x, x^1, y, y^1 \in A$ we have $||xy - x^1y^1|| \le ||x|| ||y - y^1|| + ||x - x^1||$ The algebra A is said to be commutative if $ab=ba\forall a, b \in A$

1.2. Definition (Involution of an algebra):- Let A be a Banach algebra .An involution on A is a map $*: A \rightarrow A$ such that

1. $a^{**}=a$

2. $(\lambda a + \mu b)^* = \overline{\lambda} a^* + \overline{\mu} b^*$

3. (*ab*)*=b*a*

1.3. Definition:- (C* algebra) If A is a Banach algebra with involution and also $||aa *|| = ||a||^2$ then A is called a c* algebra.

Example:- C(X) let X be a compact space and C(X) is a Banach space of all complex valued functions on X with norm $||f|| = sup_{x \in X} |f(x)|$ Multiplication on C(X) is defined as pointwise ief.g(x)=f(x)g(x) And involution by complex conjugation $f^*(x) = \overline{f(x)}$

II. G- Frame And G-Frame Operator

Throughout this paper $\{A_j \ j \in J\}$ will denote a sequence of C* algebras .Let L (A, A_j) be a collection of bounded linear operators from A to A_j and $\{\Delta_j \in L \ (A, A_j); j \in J\}$ we obtain some characterization of g-frame operator. They are the generalizations of results of frame operator.

2.1. Definition: - A sequence of operators $\{\Delta_i\}_{i \in I}$ is said to be g-frame for C* algebra A with respect to

sequence of C* algebras $\{A_j, j \in J\}$ if there exists two constants $0 \le A \le B < \infty$ for any vector $f \in H$,

A $\|\bar{f}\|^2 \le \sum_{i \in I} \|\Delta_i \bar{f}\|^2 \le B \|f^2\|$ where $\bar{f}(x) = f^*(x)$

The above inequality is called a g-frame inequality. The numbers A, B are called the lower frame bound and upper frame bound respectively.

2.2. Definition: -A g-frame for $\{\Delta_j\}_{j \in J}$ is said to be g-tight frame if A=B, then we have

$$\mathbf{A} \| \bar{f} \|^2 = \sum_{j \in J} \| \Delta_j \bar{f} \|^2 \text{ for all } \mathbf{f}^* \in \mathbf{A}$$

2.3. Definition: - A g-frame $\{\Delta_j\}_{j \in J}$ for A is said to be a g-normalized tight frame for A if A = B = 1. Then we have $\|\bar{f}\|^2 = \sum_{i \in J} \|\Delta_i \bar{f}\|^2$ for all $f \in H$

2.4. Definition: -Let $\{\Delta_i\}_{i \in I}$ be a g-frame for c* algebra. G-frame operator

 $S^g : A \rightarrow A$ is defined as

$$S^g f = \sum_{j \in J} \Delta_j^* \Delta_j f^*$$
 for all $f^* \in A$

By using above definitions we have the following theorems.

III. Main Result

- **3.1. Theorem:** If S^g is a g-frame operator, then we have
- 1) $\langle S^g f, f \rangle = \sum_{i \in I} \|\Delta_i f\|^2$ for all $f \in A$
- 2) S^g is a positive operator
- 3) S^g is a self-adjoint operator.

Proof: $-S^g$ is a g-frame operator means

(2) Clearly S^g is a positive operator by definition

(3) It is left to the reader

3.2. Theorem: Suppose $\{\Delta_j\}_{j \in J}$ is a g- frame if and only if AI $\leq S^g \leq$ BI and $\{\Delta_j\}_{j \in J}$ is a

g-normalized tight frame if and only if $S^g = I$ where I is an identity operator on A. **Proof:** Since $\{\Delta_i\}_{i \in I}$ is a g-frame so we have

 $\begin{aligned} A \| \bar{f}^2 \| &\leq \| \Delta_j \bar{f} \|^2 \leq B \| \bar{f}^2 \| \text{ for all } \bar{f} \in A \\ \text{Consider} \langle AI\bar{f}, \bar{f} \rangle = A \langle \bar{f}, \bar{f} \rangle = A \| \bar{f}^2 \| \leq \sum_{j \in J} \left[\Delta_j \bar{f} \right] \right]^2 \leq B \| f \|^2 \\ &= B \langle \bar{f}, \bar{f} \rangle = \langle BI\bar{f}, \bar{f} \rangle \\ \text{Conversely suppose } AI \leq S^g \leq BI \\ \Rightarrow \langle AI\bar{f}, \bar{f} \rangle &\leq \langle S^g \bar{f}, \bar{f} \rangle \leq \langle IB\bar{f}, \bar{f} \rangle \text{ for all } \bar{f} \in A \\ \Rightarrow A \| \bar{f}^2 \| \leq \sum_{j \in J} \| \Delta_j \bar{f} \|^2 \leq B \| \bar{f} \|^2 \\ \text{Which implies } \{ \Delta_j \}_{j \in J} \text{ is a g-frame for } A. \\ \text{Suppose } \{ \Delta_j \}_{j \in J} \text{ is a g-normalized tight frame for } A \\ \Leftrightarrow \sum_{j \in J} \| \Delta_j \bar{f} \|^2 = \| \bar{f} \|^2 \text{ for all } \bar{f} \in A \\ \text{ If and only if } \langle S^g f, f \rangle = \langle If, f \rangle \\ \text{ If and only if } S^g = I \end{aligned}$

Note: We can easily see that frame operator S^g is invertible and $S^{g^{-1}}$ is a positive operator.

3.3. Theorem: Let S^g be a g- frame operator for the g-frame $\{\Delta_j\}_{j \in J}$ with frame bounds A,B in the C* algebra A. Then $B^{-1} I \leq S^{g^{-1}} \leq A^{-1}I$ **Proof:** Since $\{\Delta_j\}_{j \in J}$ is a g-frame for C* algebra A, we have $AI \leq S^g \leq BI$ Since $AI \leq S^g \implies 0 \leq (S^g - AI)S^{g^{-1}} \implies 0 \leq I - AS^{g^{-1}}$ $\implies S^{g^{-1}} \leq A^{-1}I$ (1) Similarly, we can prove $B^{-1}I \leq S^{g^{-1}} \leq A^{-1}I$ (2) Hence from (1) and (2) $B^{-1} I \leq S^{g^{-1}} \leq A^{-1}I$

3.4. Theorem: A sequence of operators $\{\Delta_j\}_{j \in J}$ where $\overline{\Delta_j} = \Delta_j S^{g^{-1}}$ is a G-frame for C* algebra with frame bounds 1/B and 1/A

Proof: Consider $\sum_{j \in J} \|\Delta_j^* f\|^2 = \sum_{j \in J} \|\overline{\Delta}_j f\|^2$ $= \sum_{j \in J} \|\Delta_j^S S^{g^{-1}} f\|^2$ $= \sum_{j \in J} \langle \Delta_j^* \Delta_j S^{g^{-1}} f, S^{g^{-1}} f \rangle$ $= \langle S^g S^{g^{-1} f}, S^{g^{-1}} f \rangle$ $= \langle f, S^{g^{-1} f} \rangle \leq \frac{1}{A} \|f\|^2$ $\Longrightarrow \sum_{j \in J} \|\overline{\Delta}_j f\|^2 \leq \frac{1}{A} \|f\|^2$ $\|f\|^2 = \langle \Sigma_{j \in J} \overline{\Delta}_j^* \Delta_j f, f \rangle = \sum_{j \in J} \langle \Delta_j^* \Delta_j f, f \rangle$

DOI: 10.9790/5728-1204040104

$$=\sum_{j \in J} \langle \Delta_j f \, \overline{\Delta}_j f \rangle$$

$$\leq \left[\sum_{j \in J} \left\| \Delta_j f \right\|^2 \right]^{\frac{1}{2}} \left[\sum_{j \in J} \left\| \overline{\Delta}_j f \right\|^2 \right]^{\frac{1}{2}}$$

$$\leq \sqrt{B} \left\| f \right\| \left[\sum_{j \in J} \left\| \overline{\Delta}_j f \right\|^2 \right]^{\frac{1}{2}}$$

$$\Rightarrow \left\| f \right\|^2 \leq \sqrt{B} \left\| f \right\| \left[\sum_{j \in J} \left\| \overline{\Delta}_j f \right\|^2 \right]^{\frac{1}{2}}$$

$$\Rightarrow \frac{1}{B} \left\| f \right\|^2 \leq \sum_{j \in J} \left\| \overline{\Delta}_j f \right\|^2$$

Hence $\Rightarrow \frac{1}{B} ||f||^2 \le \sum_{j \in J} \left\| \overline{\Delta}_j f \right\|^2 \le \frac{1}{A} ||f||^2$

Which shows that the sequence of operators $\{\overline{\Delta}_j\}_{j \in J}$ is a g-frame for the C* algebra A with frame bounds $\frac{1}{B}$ and $\frac{1}{A}$

3.5. Theorem: - Let $\{\Delta_j\}_{j \in J}$ be a g-frame for C* algebra A with respect to $\{A_j, j \in J\}$ and $V \in B$ (H) be an invertible operator. Then $\{\Delta_j V\}_{j \in J}$ is a G-frame for A with respect to $\{A_j, j \in J\}$ and its g-frame operator is V^*S^g V.

Proof: - Since V \in B (H), $\forall f \in$ H, we have $V f \in$ H given that $\{\Delta_j\}_{j \in J}$ is a G-frame for H, so for all $Vf \in H$ we have $\|\nabla f\|^2 \le \sum_{i \in I} \|\Delta_i Vf\|^2 \le B \|\nabla f\|^2$ Since V is invertible operator, therefore we have $\|Vf\|^2 \le \|V\|^2 \|f\|^2$ and $\|V^{-1}\|^{-2} \|f\|^2 \le \|Vf\|^2$ By above inequalities, the equation become $\mathbf{A} \| V^{-1} \|^{-2} \| \mathbf{f} \|^2 \leq \sum_{j \in J} \| \Delta_j \, V f \|^2 \leq \mathbf{B} \| \mathbf{V} \|^2 \| \mathbf{f} \|^2, \, \forall \mathbf{f} \epsilon \mathbf{H}$ $\implies \{\Delta_i V\}_{i \in I}$ is a g-frame for A. For each, f A. We have $S^g V f = \sum_{j \in I} \Delta_j^* \Delta_j V f$ $\implies V^* S^g V f = \sum_{j \in J} V^* \Delta_j^* \Delta_j V f$ $\implies V^*S^g V$ is a g-frame operator for the frame $\{\Delta_j V\}_{j \in J}$ Frame Identities for g-frames **3.6. Proposition:** If, T_1 and T_2 are two operators in a \mathcal{L}_{----} . Then $T_1 - T_2 = T_1^2 - T_2^2$ **Proof:** Consider $T_1 - T_2 = T_1 - (I - T_1) = T_1^2 - (I - 2T_1 + T_1^2)$ $= T_1^2 - (I - T_1)^2$ $= T_1^2 - T_2^2$ **3.7. Theorem:** - Let $\{\Delta_j\}_{j \in J}$ be a g-normalize d tight frame for A for ICJ, then $\sum_{j \in J} ||\Delta_j f||^2 = ||\sum_{j \in J} \Delta_j^* \Delta_j||^2 \Leftrightarrow S_I^g S_{I^c}^g = 0$ **3.6. Proposition**: If, T_1 and T_2 are two operators in a C* algebra A satisfying $T_1 + T_2 = I$, **Proof:** Consider $\sum_{j \in J} \|\Delta_j f\|^2 = \|\sum_{j \in J} \Delta_j^* \Delta_j\|^2 \Leftrightarrow \sum_{j \in J} \|\Delta_j f\|^2$
$$\begin{split} & \Longleftrightarrow \|\sum_{j \in J} \Delta_j^* \Delta_j \|^2 = 0 \\ & \Leftrightarrow \sum_{j \in J} \|\Delta_j f\|^2 - \langle \sum_{j \in J} \Delta_j^* \Delta_j f, \sum_{j \in J} \Delta_j^* \Delta_j f \rangle = 0 \end{split}$$
 $\Leftrightarrow < S_{I}^{g}f, f > - < S_{I}^{g}f, S_{I}^{g}f > = 0$ $\Leftrightarrow < (S_I^g - S_I^g)^2 \text{ f, } f \ge 0$ $\Leftrightarrow S_{I}^{g} (I - S_{I}^{g}) f = 0$ $\Leftrightarrow S_{I}^{g} S_{I^{c}}^{g} = 0 \text{ for all } f \in H$ **3.8. Theorem:** Let $\{\Delta_j\}_{j \in J}$ be a g-normalized tight frame for H, for ICJ with respect to $[H_j, j \in J]$. Then for ICJ and for all $f \in H$. $\sum_{j \in J} \|\Delta_j f\|^2 + \|S_{I^c}^g f\|^2 = \sum_{j \in J} \|\Delta_j f\|^2 + \|S_{I}^g f\|^2$ **Proof:** Science $\{\Delta_i\}_{i \in I}$ is a g-normalized tight frame for H, Therefore $S^g = I$ and $S_I^g + S_{I^c}^g = I$, for all $f \in H$.

Consider $\sum_{j \in J} \|\Delta_j f\|^2 + \|S_{I^c}^g f\|^2 = \langle S_I^g f, f \rangle + \langle S_{I^c}^g f, S_{I^c}^g f \rangle$ $= \langle (S_{I}^{g} + S_{I^{c}}^{g})^{2} f, f \rangle$ $= < (S_{I}^{g} + (I - S_{I}^{g})^{2} f, f >$ $= \langle (I - S_I^g + S_I^g)^2 f, f \rangle$ $= \langle (S_{I^c}^g + S_I^g)^2 f, f \rangle$ $= \langle S_{I^c}^g \mathbf{f}, \mathbf{f} \rangle + \langle S_{I}^g \mathbf{f}, S_{I}^g \mathbf{f} \rangle \\= \sum_{j \in I^c} ||\Delta_j \mathbf{f}||^2 + |S_{I}^g \mathbf{f}||^2$

References

- M.R.Abdollahpour ,M.H. Faroughi and A.Rahimi "PG-Frames in Banach spaces" Methods of Functional analysis and topology [1].
- [2]. Vol.13 no.3(2007),pp.201-210
- R.Balan P.G.Casazza, D.Edidin and G.Kutynoik "Decomopostion of frames and a new frame identity" Wavelet XI (San Diego), CA(2005) pp.379-388 SPIE Proc 5914 , SPIE Bellinginam WA. [3].
- [4].
- P.G.Casazza,, "The art of Frame theory", Taiwanese Journal of Mathematics Vol.4, No.2(2000) pp 129-201 [5].
- D.Han and D.R.Larson "Frames Bases and Group Representations", Memories Ams Nov 7 (2000) Providence RI [6]. [7]. A.Najati and A.Rahimi "Generalized frames in Hilbert spaces", Bulletin of the Iranian Mathematical society Vol.35, No.1 (2009)
- pp.97- 109. A.Najati and M.H.Faroughi "P- frames of subspaces of separable Hilbert spaces", South east Asian Bulletin of Mathematics [8]. 31(2007) pp.713-726.
- [9]. G. Upender Reddy and N.Gopal Reddy, "Some results of Frame operator in Hilbert space", Journal of Mathematical Education, Volume XLV, No..3 September 2011.