G- Frame Operator in C* Algebra

P. Kalyani
Department of Mathematics, Aurora's Technological and Research Institute, Uppal, Hyderabad

> Abstract: The g-frame operator for g-frames in C^{*} algebra is introduced. The results on g-frame operators are proved. Frame identities are shown. Result on direct sum of g-frame operators on direct sum of Hilbert Spaces is presented.

I. Introduction

Frames are generalization of bases .D. Han and D. R. Larson have developed a number of basic concepts of operator theoretic approach to frame theory in C^{*} algebra. Peter G Casazza presented a tutorial on frame theory and he suggested the major directions of research in frame theory. Radu V. Balan and Peter G. Casazza have analyzed decomposition of a normalized tight frame and obtained identities for frames. A. Najati and A. Rahimi have developed the generalized frame theory and introduced methods for generating g-frames of a C* algebra.
1.1. Banach Algebra:- A Banach Algebra is a complex Banach space A together with an associative and distributive multiplication such that $\lambda(a b)=\lambda(a) \lambda(b)$,
$\|a b\| \leq\|a\|\|b\| \forall \mathrm{a}, \mathrm{b} \in A$ and $\lambda \in C$
For any $\mathrm{x}, x^{1}, y, y^{1} \in A$ we have $\left\|x y-x^{1} y^{1}\right\| \leq$
$\|x\|\left\|\left\|y-y^{1}\right\|+\right\| x-x^{1} \|$
The algebra A is said to be commutative if $\mathrm{ab}=\mathrm{ba} \forall a, b \in A$
1.2. Definition (Involution of an algebra):- Let A be a Banach algebra .An involution on A is a map *: $\mathrm{A} \rightarrow \mathrm{A}$ such that

1. $a^{*^{*}}=\mathrm{a}$
2. $(\lambda a+\mu b)^{*}=\bar{\lambda} \mathrm{a}^{*}+\bar{\mu} \mathrm{b}^{*}$
3. $(a b)^{*}=\mathrm{b}^{*} \mathrm{a}^{*}$
1.3. Definition:- (C^{*} algebra) If A is a Banach algebra with involution and also $\|a a *\|=\|a\|^{2}$ then A is called a c* algebra.
Example:- $\mathrm{C}(\mathrm{X})$ let X be a compact space and $\mathrm{C}(\mathrm{X})$ is a Banach space of all complex valued functions on X with norm $\|f\|=\sup _{x \in X}|f(x)|$ Multiplication on $\mathrm{C}(\mathrm{X})$ is defined as pointwise ief. $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$
And involution by complex conjugation $\mathrm{f} *(\mathrm{x})=\overline{f(x)}$

II. G- Frame And G-Frame Operator

Throughout this paper $\left\{A_{j} \mathrm{j} \in \mathrm{J}\right\}$ will denote a sequence of C^{*} algebras .Let $\mathrm{L}\left(\mathrm{A}, A_{j}\right)$ be a collection of bounded linear operators from A to A_{j} and $\left\{\Delta_{j} \in \mathrm{~L}\left(\mathrm{~A}, A_{j}\right) ; \mathrm{j} \in \mathrm{J}\right\}$ we obtain some characterization of g-frame operator. They are the generalizations of results of frame operator.
2.1. Definition: - A sequence of operators $\left\{\Delta_{j}\right\}_{j \in J}$ is said to be g -frame for $\mathrm{C} *$ algebra A with respect to sequence of C^{*} algebras $\left\{A_{j}, \mathrm{j} \in \mathrm{J}\right\}$ if there exists two constants $0<\mathrm{A} \leq \mathrm{B}<\infty$ for any vector $\mathrm{f} \in \mathrm{H}$,

$$
\mathrm{A}\|\bar{f}\|^{2} \leq \sum_{j \in J}\left\|\Delta_{j} \bar{f}\right\|^{2} \leq \mathrm{B}\left\|f^{2}\right\| \text { where } \bar{f}(\mathrm{x})=\mathrm{f}^{*}(\mathrm{x})
$$

The above inequality is called a g-frame inequality. The numbers A, B are called the lower frame bound and upper frame bound respectively.
2.2. Definition: -A g-frame for $\left\{\Delta_{j}\right\}_{j \in J}$ is said to be g-tight frame if $\mathrm{A}=\mathrm{B}$, then we have

$$
\mathrm{A}\|\bar{f}\|^{2}=\sum_{j \in J}\left\|\Delta_{j} \bar{f}\right\|^{2} \text { for all } \mathrm{f}^{*} \in \mathrm{~A}
$$

2.3. Definition: - $\mathrm{A} g$-frame $\left\{\Delta_{j}\right\}_{j \in J}$ for A is said to be a g-normalized tight frame for A if $\mathrm{A}=\mathrm{B}=1$. Then we have $\|\bar{f}\|^{2}=\sum_{j \in J}\left\|\Delta_{j} \bar{f}\right\|^{2}$ for all $\mathrm{f} \in \mathrm{H}$
2.4. Definition: -Let $\left\{\Delta_{j}\right\}_{j \in J}$ be a g-frame for c^{*} algebra. G-frame operator

$$
S^{g}: \mathrm{A} \rightarrow \mathrm{~A} \text { is defined as }
$$

$$
S^{g} f=\sum_{j \in J} \Delta_{j}^{*} \Delta_{j} \mathrm{f}^{*} \text { for all } \mathrm{f}^{*} \in \mathrm{~A}
$$

By using above definitions we have the following theorems.

III. Main Result

3.1. Theorem: If S^{g} is a g-frame operator, then we have

1) $\left\langle S^{g} \mathrm{f}, \mathrm{f}>=\sum_{j \in J}\left\|\Delta_{j} f\right\|^{2}\right.$ for all $\mathrm{f} \in \mathrm{A}$
2) S^{g} is a positive operator
3) S^{g} is a self-adjoint operator.

Proof: - S^{g} is a g -frame operator means
$S^{g} f=\sum_{j \in J} \Delta_{j}^{*} \Delta_{j} \mathrm{f}^{*}$ for all $f^{*} \in \mathrm{~A}$

1) $<S^{g} \mathrm{f}, \mathrm{f}>=<\sum_{j \in J} \Delta_{j}^{*} \Delta_{j} \mathrm{f}^{*} \mathrm{f}, \mathrm{f}>$

$$
\begin{aligned}
& =\sum<\Delta_{j}^{\times} \Delta_{j} f, \Delta_{j}^{\star} \Delta_{j} f> \\
& =\sum\left\|\Delta_{j} \mathrm{f}\right\|^{2}\left[\because<_{\mathrm{x}, \mathrm{x}}>=\left\|x^{2}\right\|\right]
\end{aligned}
$$

(2) Clearly S^{g} is a positive operator by definition
(3) It is left to the reader
3.2. Theorem: Suppose $\left\{\Delta_{j}\right\}_{j \in J}$ is a g - frame if and only if $\mathrm{AI} \leq S^{g} \leq \mathrm{BI}$ and $\left\{\Delta_{j}\right\}_{j \in J}$ is a g-normalized tight frame if and only if $S^{g}=\mathrm{I}$ where I is an identity operator on A.
Proof: Since $\left\{\Delta_{j}\right\}_{j \in J}$ is a g-frame so we have

$$
\mathrm{A}\left\|\bar{f}^{2}\right\| \leq\left\|\Delta_{j} \bar{f}\right\|^{2} \leq \mathrm{B}\left\|\bar{f}^{2}\right\| \text { for all } \bar{f} \in \mathrm{~A}
$$

Consider $\langle A I \bar{f}, \bar{f}\rangle=\mathrm{A}\langle\bar{f}, \bar{f}\rangle=\mathrm{A}\left\|\bar{f}^{2}\right\| \leq \sum_{j \in J} \llbracket \Delta_{j} \bar{f} \rrbracket^{2} \leq B\|f\|^{2}$

$$
=\mathrm{B}\langle\bar{f}, \bar{f}\rangle=\langle B I \bar{f}, \bar{f}\rangle
$$

Conversely suppose $\mathrm{AI} \leq S^{g} \leq B I$
$\Rightarrow\langle A I \bar{f}, \bar{f}\rangle \leq\left\langle S^{g} \bar{f}, \bar{f}\right\rangle \leq\langle I B \bar{f}, \bar{f}\rangle$ for all $\bar{f} \in \mathrm{~A}$
$\Rightarrow \mathrm{A}\left\|\bar{f}^{2}\right\| \leq \sum_{j \in J}\left\|\Delta_{j} \bar{f}\right\|^{2} \leq B\|\bar{f}\|^{2}$
Which implies $\left\{\Delta_{j}\right\}_{j \in J}$ is a g-frame for A.
Suppose $\left\{\Delta_{j}\right\}_{j \in J}$ is a g-normalized tight frame for A
$\Leftrightarrow \sum_{j \in J}\left\|\Delta_{j} \bar{f}\right\|^{2}=\|\bar{f}\|^{2}$ for all $\bar{f} \in \mathrm{~A}$
If and only if $\left\langle s^{g} f, f\right\rangle=\langle I f, f\rangle$
If and only if $S^{g}=\mathrm{I}$
Note: We can easily see that frame operator S^{g} is invertible and $S^{g^{-1}}$ is a positive operator.
3.3. Theorem: Let S^{g} be a g -frame operator for the g -frame $\left\{\Delta_{j}\right\}_{j \in J}$ with frame bounds A, B in the C^{*} algebra A . Then $B^{-1} \mathrm{I} \leq S^{g^{-1}} \leq A^{-1} \mathrm{I}$
Proof: Since $\left\{\Delta_{j}\right\}_{j \in J}$ is a g-frame for C^{*} algebra A , we have $\mathrm{AI} \leq S^{g} \leq \mathrm{BI}$
Since $\mathrm{AI} \leq S^{g} \Rightarrow 0 \leq\left(S^{g}-\mathrm{AI}\right) S^{g^{-1}} \Rightarrow 0 \leq \mathrm{I}-\mathrm{A} S^{g^{-1}}$

$$
\begin{equation*}
\Rightarrow S^{g^{-1}} \leq A^{-1} \mathrm{I} \tag{1}
\end{equation*}
$$

Similarly, we can prove $B^{-1} \mathrm{I} \leq S^{g^{-1}}$
Hence from (1) and (2) $B^{-1} \mathrm{I} \leq S^{g^{-1}} \leq A^{-1} \mathrm{I}$
3.4. Theorem: A sequence of operators $\left\{\Delta_{j}\right\}_{j \in J}$ where $\overline{\Delta_{j}}=\Delta_{j} S^{g^{-1}}$ is a G-frame for C^{*} algebra with frame bounds $1 / \mathrm{B}$ and $1 / \mathrm{A}$
Proof: Consider $\sum_{j \in J}\left\|\Delta_{j}^{*} f\right\|^{2}=\sum_{j \in J}\left\|\bar{\Delta}_{j} f\right\|^{2}$

$$
\begin{aligned}
&=\sum_{j \in J}\left\|\Delta_{j} S^{g^{-1}} f\right\|^{2} \\
&=\sum_{j \in J}\left\langle\Delta_{j}^{*} \Delta_{j} S^{g^{-1}} f, S^{g^{-1}} f\right\rangle \\
&=\left\langle\sum_{j \in J} \Delta_{j}^{*} \Delta_{j} S^{g^{-1}} f, S^{g^{-1}} f\right\rangle \\
&=\left\langle S^{g} S^{\left.g^{-1} f, S^{g^{-1}} f\right\rangle}\right. \\
&=\left\langle f, S^{g^{-1}} f\right\rangle \leq \frac{1}{A}\|f\|^{2} \\
& \Rightarrow \sum_{j \in J}\left\|\bar{\Delta}_{j} f\right\|^{2} \leq \frac{1}{A}\|f\|^{2} \\
&\|f\|^{2}=\left\langle\sum_{j \in J} \bar{\Delta}_{j}^{*} \Delta_{j} f, f\right\rangle=\sum_{j \in J}\left\langle\Delta_{j}^{*} \Delta_{j} f, f\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j \in J}\left\langle\Delta_{j} f \bar{\Delta}_{j} f\right\rangle \\
& \leq\left[\sum_{j \in J}\left\|\Delta_{j} f\right\|^{2}\right]^{\frac{1}{2}}\left[\sum_{j \in J}\left\|\bar{\Delta}_{j} f\right\|^{2}\right]^{\frac{1}{2}} \\
& \leq \sqrt{B}\|f\|\left[\sum_{j \in J}\left\|\bar{\Delta}_{j} f\right\|^{2}\right]^{1 / 2} \\
& \Rightarrow\|f\|^{2} \leq \sqrt{B}\|f\|\left[\sum_{j \in J}\left\|\bar{\Delta}_{j} f\right\|^{2}\right]^{1 / 2} \\
& \quad \Rightarrow \frac{1}{B}\|f\|^{2} \leq \sum_{j \in J}\left\|\bar{\Delta}_{j} f\right\|^{2}
\end{aligned}
$$

Hence $\Rightarrow \frac{1}{B}\|f\|^{2} \leq \sum_{j \in J}\left\|\bar{\Delta}_{j} f\right\|^{2} \leq \frac{1}{A}\|f\|^{2}$
Which shows that the sequence of operators $\left\{\bar{\Delta}_{j}\right\}_{j \in J}$ is a g-frame for the C^{*} algebra A with frame bounds $\frac{1}{B}$ and $\frac{1}{A}$
3.5. Theorem: - Let $\left\{\Delta_{j}\right\}_{j \in J}$ be a g-frame for C^{*} algebra A with respect to $\left\{A_{j}, \mathrm{j} \in \mathrm{J}\right\}$ and $\mathrm{V} \in \mathrm{B}(\mathrm{H})$ be an invertible operator. Then $\left\{\Delta_{j} \mathrm{~V}\right\}_{j \in J}$ is a G-frame for A with respect to $\left\{A_{j}, \mathrm{j} \in \mathrm{J}\right\}$ and its g -frame operator is $V^{*} S^{g} \mathrm{~V}$.

Proof: - Since $V \in \mathrm{~B}(\mathrm{H}), \forall \mathrm{f} \in \mathrm{H}$, we have $V f \in \mathrm{H}$ given that $\left\{\Delta_{j}\right\}_{j \in J}$ is a G-frame for H , so for all $V \mathrm{f} \in \mathrm{H}$ we have $\|\mathrm{Vf}\|^{2} \leq \sum_{j \in J}\left\|\Delta_{j} V f\right\|^{2} \leq \mathrm{B}\|\mathrm{Vf}\|^{2}$
Since V is invertible operator, therefore we have

$$
\|\mathrm{Vf}\|^{2} \leq\|\mathrm{V}\|^{2}\|f\|^{2} \text { and }\left\|V^{-1}\right\|^{-2}\|f\|^{2} \leq\|\mathrm{Vf}\|^{2}
$$

By above inequalities, the equation become

$$
\mathrm{A}\left\|V^{-1}\right\|^{-2}\|\mathrm{f}\|^{2} \leq \sum_{j \in J}\left\|\Delta_{j} V f\right\|^{2} \leq \mathrm{B}\|\mathrm{~V}\|^{2}\|\mathrm{f}\|^{2}, \forall \mathrm{f} \in \mathrm{H}
$$

$\Rightarrow\left\{\Delta_{j} V\right\}_{j \in J}$ is a g-frame for A.
For each, $\mathrm{f} \in \mathrm{A}$. We have $S^{g} \mathrm{~V} \mathrm{f}=\sum_{j \in J} \Delta_{j}^{*} \Delta_{j} \mathrm{Vf}$

$$
\begin{aligned}
& \Rightarrow V^{*} S^{g} \mathrm{Vf}=\sum_{j \in J} V^{*} \Delta_{j}^{*} \Delta_{j} \mathrm{Vf} \\
& \Rightarrow V^{*} S^{g} \mathrm{~V} \text { is a } \mathrm{g} \text {-frame operator for the frame }\left\{\Delta_{j} V\right\}_{j \in J}
\end{aligned}
$$

Frame Identities for g -frames
3.6. Proposition: If, T_{1} and T_{2} are two operators in a C^{*} algebra A satisfying $T_{1}+T_{2}=\mathrm{I}$,

$$
\text { Then } T_{1}-T_{2}=T_{1}^{2}-T_{2}^{2}
$$

Proof: Consider $T_{1}-T_{2}=T_{1}-\left(\mathrm{I}-T_{1}\right)=T_{1}^{2}-\left(\mathrm{I}-2 T_{1}+T_{1}^{2}\right)$

$$
\begin{aligned}
& =T_{1}^{2}-\left(\mathrm{I}-T_{1}\right)^{2} \\
& =T_{1}^{2}-T_{2}^{2}
\end{aligned}
$$

3.7. Theorem: - Let $\left\{\Delta_{j}\right\}_{j \in J}$ be a g-normalize d tight frame for A for ICJ, then

$$
\sum_{j \in J}\left\|\Delta_{j} f\right\|^{2}=\left\|\sum_{j \in J} \Delta_{j}^{*} \Delta_{j}\right\|^{2} \Leftrightarrow S_{I}^{g} S_{I^{c}}^{g}=0
$$

Proof: Consider $\sum_{j \in J}\left\|\Delta_{j} f\right\|^{2}=\left\|\sum_{j \in J} \Delta_{j}^{*} \Delta_{j}\right\|^{2} \Leftrightarrow \sum_{j \in J}\left\|\Delta_{j} f\right\|^{2}$

$$
\begin{aligned}
& \qquad \Leftrightarrow\left\|\sum_{j \in J} \Delta_{j}^{*} \Delta_{j}\right\|^{2}=0 \\
& \Leftrightarrow<\sum_{j \in J}\left\|\Delta_{j} \mathrm{f}\right\|^{2}-<\sum_{j \in J} \Delta_{j}^{*} \Delta_{j} f, \sum_{j \in J} \Delta_{j}^{*} \Delta_{j} f>=0 \\
& \Leftrightarrow<\left(\mathrm{S}_{\mathrm{I}}^{\mathrm{g}} \mathrm{f}-\mathrm{f}>\mathrm{S}_{\mathrm{I}}^{\mathrm{g}}\right)^{2} \mathrm{f}, \mathrm{f}, \mathrm{~S}>=0 \\
& \Leftrightarrow \mathrm{~S}_{\mathrm{I}}^{\mathrm{g}} \mathrm{f}, \mathrm{~S}_{\mathrm{I}}^{\mathrm{g}} \mathrm{f}\left(\mathrm{I}-\mathrm{S}_{\mathrm{I}}^{\mathrm{g}}\right) \mathrm{f}=0 \\
& \Leftrightarrow \mathrm{~S}_{\mathrm{I}}^{\mathrm{g}} \mathrm{~S}_{\mathrm{I}^{\mathrm{c}}}^{\mathrm{g}}=0
\end{aligned}
$$

3.8. Theorem: Let $\left\{\Delta_{j}\right\}_{j \in J}$ be a g-normalized tight frame for H , for ICJ with respect to $\left[H_{j}, \mathrm{j} \in \mathrm{J}\right]$. Then for ICJ and for all $f \in H$.

$$
\sum_{j \in J}\left\|\Delta_{j} \mathrm{f}\right\|^{2}+\left\|S_{I^{c}}^{g} \mathrm{f}\right\|^{2}=\sum_{j \in J}\left\|\Delta_{j} \mathrm{f}\right\|^{2}+\left\|S_{I}^{g} \mathrm{f}\right\|^{2}
$$

Proof: Science $\left\{\Delta_{\mathrm{j}}\right\}_{\mathrm{j} \in \mathrm{J}}$ is a g-normalized tight frame for H ,
Therefore $S^{g}=\mathrm{I}$ and $S_{I}^{g}+S_{I^{c}}^{g}=\mathrm{I}$, for all $\mathrm{f} \in \mathrm{H}$.

$$
\begin{aligned}
\text { Consider } \sum_{j \in J}\left\|\Delta_{j} \mathrm{f}\right\|^{2}+\left\|S_{I^{c}}^{g} \mathrm{f}\right\|^{2} & \left.=<S_{I}^{g} \mathrm{f}, \mathrm{f}\right\rangle+\left\langle S_{I^{c}}^{g} \mathrm{f}, S_{I^{c}}^{g} \mathrm{f}\right\rangle \\
& =<\left(S_{I}^{g}+S_{I^{c}}^{g}\right)^{2} \mathrm{f}, \mathrm{f}> \\
& =<\left(S_{I}^{g}+\left(\mathrm{I}-S_{I}^{g}\right)^{2} \mathrm{f}, \mathrm{f}>\right. \\
& =<\left(\mathrm{I}-S_{I}^{g}+S_{I}^{g}\right)^{2} \mathrm{f}, \mathrm{f}> \\
& =<\left(S_{I^{c}}^{g}+S_{I}^{g}\right)^{2} \mathrm{f}, \mathrm{f}> \\
& =<S_{I^{c}}^{g} \mathrm{f}, \mathrm{f}>+<S_{I}^{g} \mathrm{f}, S_{I}^{g} \mathrm{f}> \\
& =\sum_{j \in I^{c}}\left\|\Delta_{j} \mathrm{f}\right\|^{2}+\left\|S_{I}^{g} \mathrm{f}\right\|^{2}
\end{aligned}
$$

References

[1]. M.R.Abdollahpour ,M.H. Faroughi and A.Rahimi " PG-Frames in Banach spaces" Methods of Functional analysis and topology [2]. Vol. 13 no.3(2007),pp.201-210
[3]. R.Balan P.G.Casazza, D.Edidin and G.Kutynoik " Decomopostion of frames and a new frame identity " Wavelet XI (San
[4]. Diego),CA(2005) pp.379-388 SPIE Proc 5914 ,SPIE Bellinginam WA.
[5]. P.G.Casazza,, "The art of Frame theory", Taiwanese Journal of Mathematics Vol.4,No.2(2000) pp 129-201
[6]. D.Han and D.R.Larson "Frames Bases and Group Representations",Memories Ams Nov 7 (2000) Providence RI
[7]. A.Najati and A.Rahimi "Generalized frames in Hilbert spaces" ,Bulletin of the Iranian Mathematical society Vol.35,No.1(2009) pp.97-109.
[8]. A.Najati and M.H.Faroughi " P- frames of subspaces of separable Hilbert spaces",South east Asian Bulletin of Mathematics 31(2007) pp.713-726.
[9]. G. Upender Reddy and N.Gopal Reddy, "Some results of Frame operator in Hilbert space", Journal of Mathematical Education, Volume XLV, No.. 3 September 2011.

