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Abstract: This work deals with exact solutions of (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) 

equation. Solutions so obtained are derived by using similarity transformations method via Lie-group theory. 

Exploiting Lie-symmetries and using invariance property, the number of independent variables is reduced by one 

by using the method, which turns the CBS equation into a new ordinary differential equation. Thereafter, Author 

attained the explicit solution of the system under the restrictions imposed upon the functions and arbitrary 

constants involved in the infinitesimals which are derived by the STM. The importance of analytical solution 

increased since their physical analysis is described on the basis of graphical representation of profiles with the 

help of numerical simulations. 
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I. Introduction 
Several nonlinear evolution equations (NLEEs) occur in various fields of mathematical and physical 

sciences as well as in Engineering like biology, fluid dynamics, quantum and plasma physics, thermal engineering 

and optics [1-5] etc. To understand the complex phenomena of NLEEs, it is quite demanding to get its closed form 

solutions since such solutions are much helpful to analyze directly the physical nature of the systems. Author 

added his contribution in the same direction since he is seeking the closed form solution of the following (2+1)-

dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation 

𝑢𝑥𝑡 + 𝑢𝑥𝑥𝑥𝑧 + 4 𝑢𝑥𝑢𝑥𝑧 + 2𝑢𝑥𝑥𝑢𝑧 = 0,                                                                                (1.1) 

where  𝑢 = 𝑢(𝑥, 𝑧, 𝑡)  is used for brevity. In the article, subscript occurring with a term denotes its partial 

derivative with respect to the subscript variable. In Eq. (1.1), 𝑢𝑡  describes the time evolution of the wave, while 

the terms 𝑢𝑥𝑥𝑢𝑧  and 𝑢𝑥  𝑢𝑥𝑧  etc. account for nonlinearity of the wave. 

 

The CBS equation has some physical oriented history like it can be written as potential form [6]. The 

CBS equation was initially constructed by Bogoyavlenskii and Schiff in different ways [7-10]. Recent history of 

some past researches show that several effective methods for obtaining exact solutions of the CBS equation are 

contributed by a diverse group of researchers across the globe [9-14], for example, the periodic and soliton 

solutions of the CBS equation were obtained by Gandarias et al. [11]. Its integrability has been proved by Zhang 

et al.[12] and derived also the symmetry reductions of the equation. Li and Chen [13] found the exact solutions by 

using the generalized Raccati equation expansion method. Wang and Yang [14] employed the Hirota Bilinear 

method for construction of the quasi-periodic wave solutions in terms of theta functions for a Hirota bilinear 

equation. Finally, the result is applied to the CBS equation.  

The researches [7-14] motivate the author to solve Eq. (1.1) analytically by using the similarity 

transformations method (STM). The fundamental idea behind the method is to reduce the number of independent 

variables by one in the PDE. The reduction of variables occurs exploiting the symmetries and using invariance 

property of the PDE under Lie-group theory. The theory and its applications can be grasped by the researches and 

text books [15-20]. Once the PDE reduces into another PDE with lesser number of independent variable, one can 

obtain semi analytical/analytical solution of the PDE. On getting analytical solutions, it is easier to analysis 

physically to the PDE. 

 

II. Exact Solutions 

In this section, author explained briefly all the steps of the STM method to keep the work self-confined. 

The detailed description of the method and their applications may be studied in the literature [1-4, 15-20] and 

references therein.  

Author considered the one--parameter (ϵ) Lie group of infinitesimal transformations in (𝑥, 𝑧, 𝑡, 𝑢) which are given 

by 

𝑥∗ = 𝑥 + 𝜖 𝜉 1  𝑥, 𝑧, 𝑡, 𝑢 + 𝑂 𝜖2 ,  

𝑧∗ = 𝑧 + 𝜖 𝜉 2  𝑥, 𝑧, 𝑡, 𝑢 + 𝑂 𝜖2 , 
𝑡∗ = 𝑡 + 𝜖 𝜏 𝑥, 𝑧, 𝑡, 𝑢 + 𝑂 𝜖2 ,                         (2.1) 
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𝑢∗ = 𝑢 + 𝜖 𝜂 𝑥, 𝑧, 𝑡, 𝑢 + 𝑂 𝜖2 , 

where 𝜖 is a parameter and 𝜉 1 , 𝜉 2 , τ, η are corresponding to the variables 𝑥, 𝑧, 𝑡 and 𝑢 respectively. Using 

invariance property, the following infinitesimals can be found after performing rather tedious calculations which 

can be done by hand or using any symbolic program in Maple 

𝜉 1 = 𝐹1 𝑡 +
1

4
(c1t + 2c2 − 2c4)𝑥, 

𝜉 2 =
1

2
c1zt + c6t + c4z + c5, 

𝜏 =
1

2
c1t2 + c2 t + c3, 

𝜂 = −
1

2
F1

′  t z + F2 t +
1

8
 −2c1t − 4c2 + 2c4 u +

1

8
c1 xz +

1

4
c6 x,                    (2.2) 

where ci
′s are arbitrary parameters and 𝐹1 𝑡 , 𝐹2 𝑡   are arbitrary functions. 

 

Similarity solution of the CBS equation is obtained by choosing the appropriate choice of arbitrary 

constants and regular arbitrary functions 𝐹1 𝑡  and  𝐹2 𝑡  so that it can be solved in explicit form. Since, the 

explicit solution is quite helpful to explain physically meaningful solution on the basis of its graphical 

representation. Further, author have taken the choice of arbitrary function 𝐹1 𝑡 = 𝐴 while 𝐹2 𝑡  is arbitrary, then 

adjusting the parameters as c2 ≠ c4 ≠ 0, 𝑐1 = 𝑐3 = 𝑐5 = 0. Thus to get the exact solution of the CBS equation 

(1.1), the corresponding characteristic equation is 
𝑑𝑥

𝜉 1  𝑥 ,𝑧 ,𝑡 ,𝑢 
=

𝑑𝑧

𝜉 2  𝑥 ,𝑧 ,𝑡 ,𝑢 
=

𝑑𝑡

𝜏 𝑥 ,𝑧 ,𝑡 ,𝑢 
=

𝑑𝑢

𝜂 𝑥 ,𝑧 ,𝑡 ,𝑢 
                                                                        (2.3) 

Inserting infinitesimals to get similarity form of 𝑢 for the Eq. (1.1) 
𝑑𝑥

𝐹1 𝑡 +
1

2
(𝑐2−𝑐4)𝑥

=
𝑑𝑧

𝑐4𝑧
=

𝑑𝑡

𝑐2𝑡
=

𝑑𝑢

𝐹2 𝑡 +
1

2
 −𝑐2+𝑐4 𝑢

                  (2.4) 

The similarity form of the solution of Eq. (1.1) can be written as 

𝑢 =
𝑡
𝑎−1

2

𝑐2
 

𝐹2 𝑡 

𝑡
𝑎+1

2

𝑑𝑡 +
1

𝑡
𝑎−1

2

 𝐹(𝑋, 𝑍),                                                                                         (2.5) 

where 𝑋 = 𝑡
𝑎−1

2 (−
2𝐴

𝑐2(𝑎−1)
)𝑥   and 𝑍 =

𝑧

𝑡𝑎
 are similarity variables, F is similarity function and new introduced 

arbitrary constant is given by 𝑎 =
𝑐4

𝑐2
. 

Inserting the value of 𝑢 from Eq. (2.5) into (1.1), we get  
𝑎−1

2
𝑋𝐹𝑋𝑋 − 𝑎 𝑍𝐹𝑋𝑍 +  𝑎 − 1 𝐹𝑋 + 𝐹𝑋𝑋𝑋𝑍 + 4𝐹𝑋𝐹𝑋𝑍 + 2𝐹𝑋𝑋𝐹𝑍 = 0.    (2.6) 

Since the PDE (2.6) is nonlinear and it has two independent and one dependent variable, so again applying STM 

on (2.6) provides the following infinitesimals 

𝜉 1      = −
𝑘1𝑋

2
+ 𝑘2, 

𝜉 2      = 𝑘1𝑍, 

𝜂 =
𝑘1𝐹

2
−  𝑎 − 1 𝑘2

𝑍

4
+ 𝑘3,         (2.7) 

where ki
′ s are arbitrary constants. 

Therefore, the corresponding Lagrange's system for (2.6) is  
𝑑𝑋

−
𝑘1𝑋

2
+𝑘2

=
𝑑𝑍

𝑘1𝑍
=

𝑑𝐹
𝑘1𝐹

2
− 𝑎−1 𝑘2

𝑍

4
+𝑘3,

.                                                                                          (2.8)                                          

Treating k1 ≠ 0, 𝐵 =
𝑘2

𝑘1
 and C= −

2𝑘3

𝑘1
, then similarity transformation predicts the following form of the function 

𝐹 for the Eq. (2.6) 

𝐹 = 𝐵(1 − 𝑎)𝑍 + 𝑍
1

2𝐺(𝑋1) + 𝑐,         (2.9) 

with similarity variable, 𝑋1 = (𝑋 − 4𝐵)Z
1

2 . 

It reduces to Eq. (2.6) as follows 

𝑋1𝐺
′′′′ + 4𝐺 ′′′ + 6𝑋1𝐺

′G′′ − 𝑋1G′′ + 2𝐺𝐺 ′ + 8  G′ 2 − 2𝐺 ′ = 0,                                         (2.10) 

where prime denotes the derivative of G with respect to 𝑋1.  

Eq. (2.10) can be satisfied by  

𝐺 =
𝑋1

4
+ B1,                    (2.11) 

where B1 is an arbitrary constant of integration. Consequently the solution of CBS Eq. (1.1) can be furnished by 

𝑢 𝑥, 𝑧, 𝑡 =
𝑡
𝑡−1

2 

𝑐2

+
𝐶

𝑡
(1−𝑎)

2 
+

𝐵(1 − 𝑎)

𝑡
(1+𝑎)

2 
𝑧 +

𝑧

4𝑡
(𝑥𝑡

 𝑎−1 
2 − 2𝐴

𝑡
 𝑎−1 

2 

𝑐2 𝑎 − 1 
− 4𝐵 + B1) 

                 + 
𝐹2 𝑡 

𝑡
𝑎+1

2

𝑑𝑡.                                                                                                            (2.12) 
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III. Analysis and Discussions 
A similarity solution has been found explicitly in terms of 𝑥, 𝑧 and 𝑡 for CBS equation which is different 

from previous findings [9-14]. The Eq. (2.12) is explicit solution of the problem (1.1). Since the solutions involve 

arbitrary constants k1, k2 etc., as well as function 𝐹2 𝑡 , therefore evolutionary profile can be observed via Fig. 1 

at 𝑡 = 0.5 and 𝑡 = 5.28 for all −10≤x,y ≤10. Physical structure of the quantities 𝑢 show elasticity in amplitude 

of the wave. Author have set 𝑐2  =  1.9063 , k1  =  1.8797 , k2 = 0.8178 ,  k3  = 0.4253,  B1  =  0.5944 , c4  =

 1.0225,  B = 0.3127,  𝐴 =  0.2607,  𝑎 = 0.5364,  𝑎_4 =  0.1788, 𝐹2 𝑡 = 𝑡
𝑎+1

2 sin(𝑎4t) in Fig. 1. The value of 

an arbitrary constant is taken as a random number in MATLAB code to get physically meaningful profile of a 

solution, Author have read that specific value and put here. Thus, analytical solution (2.12) is supplemented by 

numerical simulation. 

 

IV. Conclusions 
Exact solution of (2+1)-CBS equation is obtained by employing STM successfully which is different 

from previous findings [10-14]. This work may lead to further research in this important area. As discussed in the 

above, Lie-group theory is applied to obtain a new closed form solution of the CBS equation and given by the Eq. 

(2.12). The solutions reflect elastic soliton behaviour of the wave which can be used to test accuracy, comparison 

and analysis of numerical results in the field. This appears to be more suitable than the previous findings [9-14] as 

it provides physical analysis of an exact solution of the (2+1)-CBS equation. Again the STM used here can be 

extended to other exact solutions of NLEEs which are arising in theoretical and applied Physics, Engineering and 

the like. 

 

 
Fig. 1: Variation 𝑖𝑛 𝑢(𝑥, 𝑧, 𝑡) for (3.12) with varying time at 𝑡 = 0.5 and 5.28 
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