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Abstract 
In this paper we resolve the question of whether or not P and BPP are unequal.We do this by showing the 

existence of a set that is a subset of P and not in P,then using a property of the definition of this set to show it is 

within BPP. 

 

I. Introduction 
In this paper we use the definition of BPP in terms of NP from 28 and use aproperty of this definition 

and proof of the existence of a certain class of setsand their non inclusion in P, followed by their inclusion in 

BPP, and the trivialproof that P is an improper subset of BPP to show P is a proper subset of BPP. 

 

II. Informal outline 
We assume the definition of addition, subtraction and the complexity classes,however we assume a 

more abstract set of numerical definition as this allows forgreater expressive capability (i.e changing base 

without changing context). Weassume the definition of BPP in terms of NP seer28s. Our first theorem is that Pis 

an improper subset of BPP, this proof is trivial as if a is an element of P thenthere exists a polynomial time 

deterministic turing machine that solves a. Whereobviously if there exists a polynomial time deterministic turing 

machine thatsolves a then there exists a polynomial time non deterministic turing machinesuch that if b is in a 

then at least two thirds of the computation paths areaccepting and if b is not in a then less that one third of the 

computation pathsaccept. Our next theorem is that there exists a subset of P defined using the setof elements in a 

(where a is solvable by the polynomial time deterministic turingmachine b) such that every polynomial non 

deterministic accepting computationpaths in c is in d where a is a subset of d and d is in not within P and the 

stateset input alphabet et al of c is the same as that for b. The proof of this is simpleby constructing the functions 

f1 and f2 see section 6. Theorem 3 is the existenceof a subset of P that is within BPP but not P. We prove this 

from the fact thatif the set we proved with theorem 2 is not exists then it is not within P thenit is within BPP and 

we have obviously previously shown its existence. Our final theorem and its proof are trivial, that is P is a 

proper subset of BPP, wehave from theorem one that P is an improper subset of BPP and we have fromtheorem 

three that there exists a set in BPP that is not in P. 

 

III. Informal definitions and axioms 
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IV. Informal Theorems and proof 

 
 

 



Using Recursively Defined Subsets Of The Power Set Of P To Show An Inequality Between P And.. 

DOI: 10.9790/5728-120402124136                                        www.iosrjournals.org                                130 | Page 

 
  

V. Formal de_nitions, axioms and proof 
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VI. English nomenclature 
a L b in this section means every formal mathematical statement in the languageof the paper about b has an 

equivalent formation in the english language about 
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