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Abstract 

Background:This research work deals with the travelling salesman problem, the aim of this research is to 

obtain the cheapest possible route to be taken during the distribution of product (water) in some districts in 

Obio-Apkor Port Harcourt by Junac Table Water Company in other to maximize the company’s profit. 

MaterialsandMethods: The metric method is adopted in solving the problem analytically, and the result was 

also confirmed and compared with aid of a statistical software (TSP solver and Generator v0.1). 

Results: The route with the minimum cost from both the matrix method and the statistical software is N1010 

(one thousand and ten naira only). 

Conclusions: The cheapest route to be a taken is  

Choba→Mbuogba→Location→MileIII→MileI→Rumuola→ Artillery→Rumuokurusi→ 

Tank→Eneka→Eliozu→Rumuodara→Rumuokwuta→Rumuigbo→Rumuokoro→Rumuosi→Choba. 

Keywords: Transportation, Travelling salesman problem, routing, genetic algorithm, greedy algorithm, metric 

method. 

 

I. Introduction 

The problem consisting a salesman and a set of cities in which the salesman has to visit each one of the 

cities starting from a certain city and returning back to the same city he started is known as the Traveling 

Salesman Problem (TSP). Knox [5] notes that an intriguing aspect of the TSP is the relative ease with which it 

can be described and the extreme difficulty it presents in finding the optimal solution. In a TSP, the connections 

between the cities are called edges. Each edge has an assigned cost or distance which represents the cost and 

distance of traveling between two cities connected by an edge. The objective of this problem is to find the 

cheapest route, shortest distance or quickest time to travel to all the cities only once and return back to where he 

started. The TSP can be classified into symmetric and asymmetric TSP. The symmetric TSP deals with the 

situation whereby the cost (distance) of an edge is independent of the direction of travel (i.e., the cost(distance) 

of traveling from city A to city B is always the same as traveling from city B to city A for any pair of cities 

A,B). In the asymmetric TSP the cost (distance) of an edge may be dependent on the direction of travel along 

the edge (i.e., the cost(distance) of traveling from city A to city B may be more than the cost of traveling from 

city B to city A)[5].Other types of the Traveling Salesman Problem includes the Multiple Traveling Salesman 

Problem (mTSP) and the Modified Traveling Salesman Problem (MTSP). The Traveling Salesman Problem has 

been widely studied as it is a great tool in the global market trade especially through logistics and supply chain 

management[10][4]. It can be applied in different ways to solve different problems as shown in the literature. 

Different methods have been used to solve the Traveling Salesman Problem for instance, Fereidouni[3] 

developed a linear programming algorithm for solving the TSP; Moon et al[8], Alhamdyet al.[2], Sadiq[12], 

MohdRazali[7] used the generic algorithm to solve TSP problems while Stencek[13], 

Ochiai&Kanoh[9]combined different methods to find an optimal solution. In this present study, a TSP on 

vehicle routing problem where a salesman has to drive through different routes to deliver a product to his 

customers across different cities with the objective of finding the best route for the truck so that cost of 

distribution is minimized, is considered. A metric method was adopted to solve this problem. The study 

examines a table water company (JUNAC Table Water, Choba Port Harcourt) in Nigeria whose aim is to 

minimize cost of production, packaging and distribution in order to maximize profit.The rest of the paper is 

organised as follows: Section two deals with some literatures on the Traveling Salesman Problem; Section 3 

explains the methodology used in analysing the data; Section 4 presents the data; Section 5 shows the analysis 

using the metric method and the results and finally, Section 6 concludes the study. 

 

II. Literature Review 

Lin & Kernighan [[6]]developed a highly effective heuristic algorithm for the symmetric traveling 

salesman problem. They tested their methods on some „classical‟ problems and randomly generated test 
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problems, up to 110 cities obtaining optimum solutions. Knox[[5]] described the tabu search heuristic method 

and applied it to the symmetric TSP noting some factors which influence the performance of the tabu search 

method. 

Sadiq[[12]] worked on traveling salesman problem using Genetic algorithm to optimize delivery 

routes. Their application was to a company whose delivery routes scheduling from a central warehouse that has 

one hundred packages to be delivered with five trucks optimally. They concluded that they genetic algorithm is 

a good alternative to the greedy algorithm. Alhamdyet al[[2]] used ant colony optimization (ACO) algorithm to 

solve traveling salesman problem. They also compared the approach with Tabular search, simulated Annealing 

and Genetic algorithm and observed that in larger scales, the ant colony algorithm is more efficient than other 

algorithm in solving traveling salesman problem. Moon et al[[8]] presented an efficient genetic algorithm for 

solving traveling salesman problem with procedure constraints. The main concept in their proposed algorithm 

was a topological sort (TS); defined as an ordering of vertices in a directed graph. It was also observed that the 

result of the numerical experiments show a superior performance compared to other algorithms and produces an 

optimal solution as well. 

Fereidouni[[3]] used a fuzzy multi-objective linear programming (FMOLP) in solving travelling 

salesman problem (TSP). This problem was applied to an uncertain environment and a numerical example was 

used to ascertain the effectiveness of the proposed method and the results show that the FMOLP model achieves 

higher satisfaction degrees. MohdRazali[[7]] developed a new genetic algorithm procedure which takes care of 

chromosome`s repairing strategy based on topological sort, and also to generate only feasible solution during the 

evolutional process. The new developed method was compared to the existing ones and was observed that this 

new method by MohdRazali[[7]] was capable of tackling large size problems and reach for optimal solutions. 

Stencek[[13]] developed an algorithm and compared his solution with the solution of four different algorithms. 

He also developed a software using Java programming language to solve traveling salesman problem. 

Rostamiet al[[11]] modified the Gravitational Emulation Local Search (GELS) algorithm to solve the 

symmetric MTSP. The performance of the modified GELS was compared with other well-known optimization 

algorithm. Also both the efficiency and superiority of the modified GELS were compared based on the 

computed total travelled distance and time required to solve the modified traveling salesman problem. 

Akandwanahoet al[[1]] used a Dynamic Gaussian Regression method to solve a dynamic traveling salesman 

problem. They applied a non-stationary covariance function in GPR for the optimal tour of 22 city data set. 

When their results were compared to other existing approaches, it was found out that their proposed approach 

demonstrated superiority in obtaining good traveling salesman problem tour with less computational time in 

non-stationary conditions. 

Filip &Otakar[[4]] reviewed the some method of solving traveling salesman problem and its 

application in logistic practice providing task solutions in a distribution company within specific conditions and 

other requirements of the transport management of that company on Czech Republic. The problem encountered 

by that company was how to optimally distribute chemical product to about 20 customers in 16 cities. 

Ochiai&Kanoh[[9]] provided a solution to real world delivery problems for home delivery services where there 

exist a large number of roads in a city. Their approach was a combination of ant colony optimization with 

Dijkstra algorithm under a hybrid meta-heuristics. The experimental result of their work showed that the 

proposed method is effective in a wide area road network. 

Wang & Regan [[14]] worked on assignment models for local truck load trucking problems with 

stochastic service time and time window constraint. They developed an integer model for minimizing the total 

cost of transportation with fixed fleck size. And also they were able to present a solution to a multiple traveling 

salesman problem (MTSP) with time windows. 

 

III. Methodology 
In this work, the metric TSP, also known as delta-TSP or Δ-TSP was employed, the intercity distance 

satisfies the triangular inequality. A very natural restriction of the TSP is to require that the distance between 

cities form a metric to satisfy the triangular inequality, that is the direct connection from A to B is never farther 

than the route via intermediate C. Mathematically,𝑑𝐴𝐵 < 𝑑𝐴𝐶 + 𝑑𝐵𝐶 . 
The metric TSP satisfies the triangular inequality. In the metric TSP, the graph which contains all the 

nodes or locations to be visited by the salesman is been transformed into a metric form. The metric TSP collects 

the corresponding distance, time or cost of all the routes between each node in the graph and puts it in a matrix 

form. The metric TSP deals mostly with symmetric traveling salesman problem. While computing it in the 
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metric form, the corresponding distance, cost or time of travel is given between city 1 to city 2, city 1 to city 3, 

city 1 to city 4, and from city 1 to city n, where n is the number of cities or nodes to be visited, likewise, city 2 

to city 3, city 2 to city 4 and city 2 to city n, similarly city 3 to city4 and from city 3 to city n. 

The edge spans then build a metric on the set of vertices. When the cities are viewed as points in the 

plane, many natural distance functions are metrics, and so many natural instances of TSP satisfy this constraint. 

The locations under this survey are given below. 

 

Table 1: Locations 
city 1 Choba city 9 Rumuigbo 

city 2 Rumuosi city 10 Artillery 

city 3 Rumuokoro city 11 Rumuola 

city 4 Eliozu city 12  

city 5 Eneka city 13  

city 6 Rumuodara city 14 Mbougba 

city 7 Tank city 15 Mile III 

city 8 Rumuokurusi city 16 Mile I 

 

 
Figure 1: Graphical representation of the data. 

 

IV. Results and Discussions 
In this section, the data presented above is analysed and discussed below. 

 

Table 2: Matrix representation of the graphical problem. 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 - 50 - - - - - - - - - - - 50 - - 

2 50 - 50 - - - - - - - - - - - - - 

3 - 50 - 50 - 100 - - 50 - - - - - - - 

4 - - 50 - 70 50 - - - - - - - - - - 

5 - - - 70 - 100 100 - - - - - - - - - 

6 - - 100 50 100 - 50 - - 50 - 40 - - - - 

7 - - - - 100 50 - 50  - - - - - - - 

8 - - - - - - 50 - - 50 - - - - - - 

9 - - 50 - - - - - - - - 50 - - - - 

10 - - - - - 50 - 50 - - 100 - - - - - 

11 - - - - - - - - - 100 - 50 - - - 100 

12 - - - - - 40 - - 50 - 50 - 100 - 100 - 

13 - - - - - - - - - - - 100 - 50 100 - 

14 50 - - - - - - - - - - - 50 - - - 

15 - - - - - - - - - - - 100 100 - - 50 

16 - - - - - - - - - - 100 - - - 50 - 

 

Table 3: Row minimization 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 - 0 - - - - - - - - - - - 0 - - 

2 0 - 0 - - - - - - - - - - - - - 

3 - 0 - 0 - 50 - - 0 - - - - - - - 
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4 - - 0 - 20 0 - - - - - - - - - - 

5 - - - 0 - 30 30 - - - - - - - - - 

6 - - 60 10 60 - 10 - - 10 - 0 - - - - 

7 - - - - 50 0 - 0  - - - - - - - 

8 - - - - - - 0 - - 0 - - - - - - 

9 - - 0 - - - - - - - - 0 - - - - 

10 - - - - - 0 - 0 - - 50 - - - - - 

11 - - - - - - - - - 50 - 0 - - - 50 

12 - - - - - 0 - - 10 - 10 - 60 - 60 - 

13 - - - - - - - - - - - 50 - 0 50 - 

14 0 - - - - - - - - - - - 0 - - - 

15 - - - - - - - - - - - 50 50 - - 0 

16 - - - - - - - - - - 50 - - - 0 - 

  

Table 4: Column minimization column 5 and 11 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 - 0 - - - - - - - - - - - 0 - - 

2 0 - 0 - - - - - - - - - - - - - 

3 - 0 - 0 - 50 - - 0 - - - - - - - 

4 - - 0 - 0 0 - - - - - - - - - - 

5 - - - 0 - 30 30 - - - - - - - - - 

6 - - 60 10 40 - 10 - - 10 - 0 - - - - 

7 - - - - 30 0 - 0  - - - - - - - 

8 - - - - - - 0 - - 0 - - - - - - 

9 - - 0 - - - - - - - - 0 - - - - 

10 - - - - - 0 - 0 - - 40 - - - - - 

11 - - - - - - - - - 50 - 0 - - - 50 

12 - - - - - 0 - - 10 - 0 - 60 - 60 - 

13 - - - - - - - - - - - 50 - 0 50 - 

14 0 - - - - - - - - - - - 0 - - - 

15 - - - - - - - - - - - 50 50 - - 0 

16 - - - - - - - - - - 40 - - - 0 - 

 

Table 5:Penalty 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 - 00 - - - - - - - - - - - 0 - - 

2 00 - 00 - - - - - - - - - - - - - 

3 - 00 - 00 - 50 - - 010 - - - - - - - 

4 - - 00 - 030 00 - - - - - - - - - - 

5 - - - 030 - 30 30 - - - - - - - - - 

6 - - 60 10 40 - 10 - - 10 - 010 - - - - 

7 - - - - 30 00 - 00  - - - - - - - 

8 - - - - - - 010 - - 010 - - - - - - 

9 - - 00 - - - - - - - - 00 - - - - 

10 - - - - - 00 - 00 - - 40 - - - - - 

11 - - - - - - - - - 50 - 050 - - - 50 

12 - - - - - 00 - - 10 - 040 - 60 - 60 - 

13 - - - - - - - - - - - 50 - 050 50 - 

14 00 - - - - - - - - - - - 050 - - - 

15 - - - - - - - - - - - 50 50 - - 0100 

16 - - - - - - - - - - 40 - - - 090 - 

The assignment is from city 15 to city 16 (15 → 16) 

Reduced matrix 

 

Table 6:Row minimization for row 16 and column minimization for column 15 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 - 00 - - - - - - - - - - - 0 - 

2 00 - 00 - - - - - - - - - - - - 

3 - 00 - 00 - 50 - - 010 - - - - - - 

4 - - 00 - 030 00 - - - - - - - - - 

5 - - - 030 - 30 30 - - - - - - - - 

6 - - 60 10 40 - 10 - - 10 - 010 - - - 

7 - - - - 30 00 - 00  - - - - - - 

8 - - - - - - 010 - - 010 - - - - - 

9 - - 00 - - - - - - - - 00 - - - 

10 - - - - - 00 - 00 - - 40 - - - - 

11 - - - - - - - - - 50 - 050 - - - 

12 - - - - - 00 - - 10 - 00 - 60 - 10 

13 - - - - - - - - - - - 50 - 00 010 
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14 00 - - - - - - - - - - - 060 - - 

16 - - - - - - - - - - 00 - - - - 

The second assignment is from city 14 to city 13 (14 → 13) 

 

Table 7:Reduced matrix 
 1 2 3 4 5 6 7 8 9 10 11 12 14 15 

1 - 00 - - - - - - - - - - 0 - 

2 00 - 00 - - - - - - - - - - - 

3 - 00 - 00 - 50 - - 010 - - - - - 

4 - - 00 - 030 00 - - - - - - - - 

5 - - - 030 - 30 30 - - - - - - - 

6 - - 60 10 40 - 10 - - 10 - 010 - - 

7 - - - - 30 00 - 00  - - - - - 

8 - - - - - - 010 - - 010 - - - - 

9 - - 00 - - - - - - - - 00 - - 

10 - - - - - 00 - 00 - - 40 - - - 

11 - - - - - - - - - 50 - 050 - - 

12 - - - - - 00 - - 10 - 00 - - 10 

13 - - - - - - - - - - - 50 - 060 

16 - - - - - - - - - - 00 - - - 

The next assignment is from city 13 to city 15 (13 → 15) 

Since city 14 has only one route, which is city one, city 14 is assigned to city 1 

 

Table 8:Reduced matrix 
 1 2 3 4 5 6 7 8 9 10 11 12 14 

1 - 00 - - - - - - - - - - 00 

2 00 - 00 - - - - - - - - - - 

3 - 00 - 00 - 50 - - 010 - - - - 

4 - - 00 - 030 00 - - - - - - - 

5 - - - 030 - 30 30 - - - - - - 

6 - - 60 10 40 - 10 - - 10 - 010 - 

7 - - - - 30 00 - 00  - - - - 

8 - - - - - - 010 - - 010 - - - 

9 - - 00 - - - - - - - - 00 - 

10 - - - - - 00 - 00 - - 40 - - 

11 - - - - - - - - - 50 - 050 - 

12 - - - - - 00 - - 10 - 00 - - 

16 - - - - - - - - - - 00 - - 

The route is from city 1 to city 14 (1→ 14) 

Since city 2 has only one route, which is city 1, city 2 is assigned to city 1 

 

Table 9:Reduced matrix 
 1 2 3 4 5 6 7 8 9 10 11 12 

2 00 - 00 - - - - - - - - - 

3 - 00 - 00 - 50 - - 010 - - - 

4 - - 00 - 030 00 - - - - - - 

5 - - - 030 - 30 30 - - - - - 

6 - - 60 10 40 - 10 - - 10 - 010 

7 - - - - 30 00 - 00  - - - 

8 - - - - - - 010 - - 010 - - 

9 - - 00 - - - - - - - - 00 

10 - - - - - 00 - 00 - - 40 - 

11 - - - - - - - - - 50 - 050 

12 - - - - - 00 - - 10 - 00 - 

16 - - - - - - - - - - 00 - 

The assignment is from city 2 to city 1 (2 → 1) 

Since city 2 has only one route, which is city 3, city 3 is assigned to city 2 

 

Table 10:Reduced matrix 
s 2 3 4 5 6 7 8 9 10 11 12 

3 00 - 00 - 50 - - 010 - - - 

4 - 00 - 030 00 - - - - - - 

5 - - 030 - 30 30 - - - - - 

6 - 60 10 40 - 10 - - 10 - 010 

7 - - - 30 00 - 00  - - - 

8 - - - - - 010 - - 010 - - 

9 - 00 - - - - - - - - 00 
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10 - - - - 00 - 00 - - 40 - 

11 - - - - - - - - 50 - 050 

12 - - - - 00 - - 10 - 00 - 

16 - - - - - - - - - 00 - 

 

The assignment is from city 3 to city 2 

Since city 9 has only one route, which is city 12, city 12 is assigned to city 9 

 

Table 11:Reduced matrix 
 3 4 5 6 7 8 9 10 11 12 

4 00 - 030 00 - - - - - - 

5 - 030 - 30 30 - - - - - 

6 60 10 40 - 10 - - 10 - 010 

7 - - 30 00 - 00  - - - 

8 - - - - 010 - - 010 - - 

9 00 - - - - - - - - 00 

10 - - - 00 - 00 - - 40 - 

11 - - - - - - - 50 - 050 

12 - - - 00 - - 10 - 00 - 

16 - - - - - - - - 00 - 

The assignment is from city 12 to city 9 (12→ 9) 

Since city 16 has only one route, which is city 11, city 16 is assigned to city 11 

 

Table 12:Reduced matrix 
 3 4 5 6 7 8 10 11 12 

4 00 - 030 00 - - - - - 

5 - 030 - 30 30 - - - - 

6 60 10 40 - 10 - 10 - 010 

7 - - 30 00 - 00 - - - 

8 - - - - 010 - 010 - - 

9 00 - - - - - - - 00 

10 - - - 00 - 00 - 40 - 

11 - - - - - - 50 - 050 

16 - - - - - - - 00 - 

The assignment is from city 16 to city 11  

Since city 9 has only one route, which is city 3, city 9 is assigned to city 3 

 

Table 13: Reduced matrix 

 

The assignment is from city 9 to city 3 (9→ 3) 

Since city 12 has only one route, which is city 6, city 6 is assigned to city 12 

 

Table 14:Reduced matrix 
 4 5 6 7 8 10 12 

4 - 030 00 - - - - 

  5 030 - 30 30 - - - 

 6 10 40 - 10 - 10 010 

7 - 30 00 - 00 - - 

8 - - - 010 - 00 - 

10 - - 00 - 00 - - 

11 - - - - - 0 - 

The assignment is from city 6 to city 12 (6→ 12) 

Since city 11 has only one route, which is city 10, city 11 is assigned to city 10 

 

Table 15:Reduced matrix 
 4 5 6 7 8 10 

4 - 030 00 - - - 

  5 030 - 30 30 - - 

 3 4 5 6 7 8 10 12 

4 00 - 030 00 - - - - 

5 - 030 - 30 30 - - - 

6 60 10 40 - 10 - 10 010 

7 - - 30 00 - 00 - - 

8 - - - - 010 - 010 - 

9 00 - - - - - - - 

10 - - - 00 - 00 - - 

11 - - - - - - 50 050 
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7 - 30 00 - 00 - 

8 - - - 010 - 00 

10 - - 00 - 00 - 

11 - - - - - 0 

 

The assignment is from city 11 to city 10 (11→ 10) 

Since city 8 has only one route, which is city 7, city 8 is assigned to city 7 

 

Table 16:Reduced matrix 
 4 5 6 7 8 

4 - 030 00 - - 

  5 030 - 30 30 - 

7 - 30 00 - 00 

8 - - - 010 - 

10 - - 00 - 00 

The assignment is from city 8 to city 7 (8 → 7) 

Since city 8 has only one route, which is city 10, city 10 is assigned to city 8 

 

Table 17:Reduced matrix 
 4 5 6 8 

4 - 030 00 - 

  5 030 - 30 - 

7 - 30 00 - 

10 - - 00 00 

The assignment is from city 10 to city 8 

Since city 5 has only one route, which is city 4, city 5 is assigned to city 4 

 

Table 18:Reduced matrix 
 4 5 6 

4 - 030 00 

  5 030 - 30 

7 - 30 00 

The assignment is from city 5 to city 4 (5→ 4) 

 

Table 19:Reduced matrix 
 5 6 

4 - 00 

7 30 00 

 

From the above table, the assignment is from city 4 to city 6 and from city 7 to city 5. 

The best possible routes are from city 15 to city 16, city 14 to 13, city 1 to city 14, city 2 to city 1, city 

3 to city 2, city 12 to city 9, city 16 to city 11, city 9 to city 3, city 6 to city 12, city 11 to city 10, city 8 to city 7, 

city 10 to city 8, city 5 to city 4, city 7 to city 5 and finally from city 4 to city 6. 

 

Therefore desired route is given as: 

Choba →  Mbuogba →  Location →  Mile III →  Mile I →  Rumuola →  Artillery →  Rumuokurusi →  Tank 

→  Eneka →  Eliozu →  Rumuodara →  Rumuokwuta →  Rumuigbo →  Rumuokoro →  Rumuosi →  Choba. 

 

And the cost of the route is given as  

50+50+100+50+100+100+50+50+100+70+50+40+50+50+50+50= N1010 

The above solution is the analytical solution to the problem. Using the software “TSP SOLVER AND 

GENERATOR”, from the result given by the software, the optimum routes are: 

Resulting path: 

City 1 →  City 14→  City 13→  City 15 →  City 16 →  City 11 →  City 10 → City 8 → City 7 →  City 5 →  

City 4 →  City 6 →  City 12 →  City 9 →  City 3 →  City 2 →  City 1. 

The price is 1010 units 

Which is the same as 

Choba → Mbuogba→ Location → Mile III → Mile I → Rumuola → Artillery → Rumuokurusi → Tank → 

Eneka → Eliozu → Rumuodara → Rumuokwuta → Rumuigbo → Rumuokoro → Rumuosi → Choba. 

And this is the same route gotten from the analytical solution. The details of the software solution is given in 

Appendix. 

 

V. Conclusion 
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The aim and objective of this project is to minimize the cost of distribution of product (water) in Junac 

table Water Company to various locations in Port Harcourt. In other to achieve this, the matrix method of 

solving TSP was adopted and also a software (TSP solver and Generator, v0.1) was used to also to determine the 

best (cheapest) route to be taken during the distribution of the product. 

The best route gotten from the analytical solution (matrix method) has a minimum cost of N1010, also 

the best route gotten from the TSP solver and generator has a minimum cost of N1010.  

It can be concluded that the company would make a higher profit if they can adhere to the above 

method gave the minimum cost of the route to be taken by one of their trucks. This method will yield maximum 

profit in the area of distribution if it is applied to all their trucks and their corresponding route. 
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APPENDIX A. 

Variant #1 Task 

Task: 
--- 50 --- --- --- --- --- --- --- --- --- --- --- 50 --- --- 

50 --- 50 --- --- --- --- --- --- --- --- --- --- --- --- --- 

--- 50 --- 50 --- 100 --- --- 50 --- --- --- --- --- --- --- 

--- --- 50 --- 70 50 --- --- --- --- --- --- --- --- --- --- 

--- --- --- 70 --- 100 100 --- --- --- --- --- --- --- --- --- 

--- --- 100 50 100 --- 50 --- --- 50 --- 40 --- --- --- --- 

--- --- --- --- 100 50 --- 50 --- --- --- --- --- --- --- --- 

--- --- --- --- --- --- 50 --- --- 50 --- --- --- --- --- --- 

--- --- 50 --- --- --- --- --- --- --- --- 50 --- --- --- --- 

--- --- --- --- --- 50 --- 50 --- --- 100 --- --- --- --- --- 

--- --- --- --- --- --- --- --- --- 100 --- 50 --- --- --- 100 

--- --- --- --- --- 40 --- --- 50 --- 50 --- 100 --- 100 --- 

--- --- --- --- --- --- --- --- --- --- --- 100 --- 50 100 --- 

50 --- --- --- --- --- --- --- --- --- --- --- 50 --- --- --- 

--- --- --- --- --- --- --- --- --- --- --- 100 100 --- --- 50 

--- --- --- --- --- --- --- --- --- --- 100 --- --- --- 50 --- 

 

Variant #1 Solution 

Step #1 

Selected route with (15;1Q126) part.  

Step #2 

Selected route with (14; 13) part. 

Step #3 

Selected route with (1; 14) part. 

2 alternate candidates for branching: (2; 1), (16; 11). 
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Step #4 

Selected route with (2;1) part. 

2 alternate candidates for branching: (3;2), (16;11). 

Step #5 

Selected route with (3;2) part. 

1 alternate candidate for branching: (16;11). 

Step #6 

Selected route with (12;9) part. 

1 alternate candidate for branching: (16;11). 

Step #7 

Selected route with (9;3) part. 

2 alternate candidates for branching: (13;15), (16;11). 

Step #8 

Selected route with (13;15) part. 

1 alternate candidate for branching: (16;11). 

Step #9 

Selected route with (16;11) part. 

Step #10 

Selected route with (6;12) part. 

1 alternate candidate for branching: (11;10). 

Step #11 

Selected route with (5;4) part. 

1 alternate candidate for branching: (11;10). 

Step #12 

Selected route with (4;6) part. 

2 alternate candidates for branching: (8;7), (11;10). 

Step #13 

Selected route with (7;5) part. 

3 alternate candidates for branching: (8;7), (10;8), (11;10). 

Step #14 

Selected route with (10;8) part. 

Step #15 

Selected route with (8;7) part. 

1 alternate candidate for branching: (11;10). 

Resulting path: 

City 1 → City 14→ City 13 → City 15 → City 16 → City 11 → City 10 → City 8 → City 7 → City 5 →City 

4 → City 6 → City 12 → City 9 → City 3 → City 2 →  City 1 

The price is 1010 units. 

 


