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I. Introduction 

Zadeh [13] introduced the notion of fuzzy sets In 1965. presently many authors have widely developed 

the theory of fuzzy sets and their  application. The suggestion of fuzzy metric space introduced by Kramosil and 

Michalek [4] was adapted by George and Veeramani [3]. In [8] Popa proved theorem for weakly compatible 

continuous mappings using implicit relation. Singh et. al. [10] introduced the notion of compatible maps in 

fuzzy metric space, and compared this notion of compatible map, compatible map of type (β), compatible map 

of type (α), and get some fixed point theorems in absolute fuzzy metric space in the sense of Grabiec [2]. In [12] 

Vasuki introduce the concept of R-weakly commuting map, and prove a fixed point theorem in fuzzy metric 

space. Ranadive et. al. [9] introduced the concept of  metric space and proves the common fixed point theorem 

in this space.  Moreover Ranadive et. al. [9] observed that the new notion of map is neither a subclass of 

compatible maps nor a subclass of non-compatible maps. In [6] Mishra et. al. introduced maps in fuzzy metric 

space. In this paper, we obtain fixed point theorems in fuzzy metric space using  maps, an implicit relation with 

reciprocal continuity and compatible maps. 

 

II. Preliminaries 
We introduce some definitions and known results in fuzzy metric space.   

Definition 2.1 ( [13]). Let fuzzy set A in X is a function with domain X and value in [0, 1]. 

Definition 2.2 ( [11]). A triangular norm * (shortly t-norm) is a binary operation on the unit interval [0, 1] such 

that for all a; b; c; d[0, 1] the following conditions are fulfilled : 

(1)  a * 1 = 1, 

(2)  a * b = b *a , 

(3)  a * b · c * d whenever a ≤ c and b ≤ d , 

(4)  a * (b * c) = (a * b) * c. 

 

Definition 2.3 ( [4]). The 3-tuple (X;M; *) is called a fuzzy metric space if X is an arbitrary non-empty set, * is 

a continuous t - norm and M is a fuzzy set in X
2
 x [0, ∞) satisfying the following conditions, for all x, y, z X 

and s, t > 0. 

(1)  M(x, y, 0) = 0 ; 

(2) M(x, y, t) = 1 for all t > 0, iff x = y , 

(3) M(x, y, t) = M(y, x, t), 

(4) M(x, y, t) * M(y, z, s)¸ M(x, z, t + s) , 

(5) M(x, y, .) : [0, ∞) → [0, 1] is left continuous ; 

(6)   limt→∞M(x, y, t) = 1. 

 

In the definition of George and Veeramani [3] M is a fuzzy set on X
2
 x [0, ∞) an(1), (2), (5) are 

replaced respectively, with ( I), ( II), (III) below : 

(I)   M(x, y, 0) > 0, for all t > 0, 

(II)   M(x, x, t) = 1, for all t > 0 and x = y ) M(x, y, t) < 1 for all t > 0, 

(III)  M(x, y, .) : (0, ∞) → [0, 1] is continuous for all x, y   X. 

 

Example 2.4 ( [3]). Let (X, d) be a metric space. Define a * b = ab (or a * b = min[a, b]) and for all x, y   X 

and t > 0, M(x, y, t) = t / t+d(x, y) . 

Then (X, M, *) is a fuzzy metric space. We identify this is fuzzy metric M induced by the metric d the standard 

fuzzy metric. 

 

Definition 2.5 ( [3]). A sequence { xn } in a fuzzy metric space (X,M,*) is called  
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1. Cauchy if for each ε > 0 and t > 0, there exists Nn 0  such that M(xn, xm, t) > 1-ε for all n, m ≥ n0. 

2. Complete if every Cauchy sequence in X converges to a point in X.  

3.  Convergent to x  X if limn→∞M(xn, x, t) > 1-ε for each t > 0, there exists Nn 0 . 

 

Definition 2.6 ( [1]). A pair (A, B) of self maps of a fuzzy metric space (X, M, *) is said to  

1.reciprocal continuous if limn→∞ABxn = Ax and limn→∞BAxn = Bx, whenever there exists a sequence {xn}X 

such that limn→∞Axn = limn→∞Bxn = x for some x   X. If A and B are both continuous  

2.semi-compatible if limn→∞ABxn = Bx whenever there exists a sequence {xn}X such that limn→∞Axn = 

limn→∞Bxn = x for some x  X. 

Note: then they are obviously reciprocally continuous but the converse need not be true. 

 

Lemma 2.7 ( [5]). Let (X, M, *) be a fuzzy metric space. If there exists k(0,1) such that for all x, y   X, t > 0 

, M(x, y, kt) ≥ M(x, y, t), then x = y. 

Lemma 2.8 ([2]). M(x, y, .) is non-decreasing for all x, y   X.  

Proposition 2.9 ([7]). Let A and B be two self maps on a fuzzy metric space (X, M, *).  Assume that (A, B) is 

reciprocal continuous then (A, B) is semi-compatible if and only if (A, B) is compatible. 

 

III. A class of implicit relation 
Let Φ be the set of all real continuous functions F : (R+)

5
 → R non-decreasing in first argument 

satisfying the following conditions : 

(i)  For u, v ≥ 0, F(u, v, v, u, 1) ≥ 0 implies that u ≥ v. 

(ii)  F(u, 1, 1, u, 1) ≥ 0 or F(u, 1, u, 1, u) ≥ 0, or F(u, u, 1, 1, u) ≥ 0 implies that u ≥ 1. 

 

Proof. For u, v ≥ 0 ; 

(i)  F(u, v, v, u, 1) ≥ 0 = (a + d)u + (b + c)v ≥ 0, 

═> (a + d)u ≥ (a + d)v, i.e. u ≥ v, 

(ii)  F(u, 1, 1, u, 1) ≥ 0 = (a + d)u + (b + c) ≥ 0, 

═> (a + d)u ≥ (a + d), i.e. u ≥ 1 

 

Example 3.1. Define F(t1, t2, t3, t4, t5) = 10t1 - 8t2 - 7t3 + 5t4 + t5 - 1.  Then F . 

(i)  F(u, v, v, u, 1) = 15(u - v) ≥ 0 ═> u ≥ v. 

(ii)  F(u, 1, 1, u, 1) = 15(u - 1) ≥ 0 ═> u ≥ 1 or 

F(u, 1, u, 1, u) = 4(u - 1) ≥ 0 ═> u ≥ 1 

or 

F(u, u, 1, 1, u)  ═ u ≥ 1 

A characterization of Φ in linear form : Define 

F(t1, t2, t3, t4, t5) = at1 + bt2 + ct3 + dt4 + t5 – 1, 

where a, b, c, d  R, with a + b + c + d = 0, a > 0, b + d > 0 , c + d > 0, and a + d > 0. 

Then F . 

 

IV. Main result 
Theorem4.1. Let A, B, S and T be self mappings of a complete fuzzy metric space (X, M, *) with t - norm 

defined by a * b = min {a b}, satisfying : 

(4.1,1)     XTXA  ,    XSXB   

 

(4.1.2)  for some F , there exists k   (0, 1) such that for all x, y   X and t > 0,  
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If the pair {A,S}is reciprocal continuous   Then A, B, S and T have a unique common fixed point in X.  

Proof.  Since A(X)T(X) for any arbitrary Xx 0 , there exists a point x1X such that Ax0 = Tx1 and 

B(X)S(X) implies that for this point x1 we can find a point x2X such that Bx1 = Sx2 and so on.  Inductively, 

we can define a sequence {yn} in X such that 

(4.1)  y2n = Ax2n = Tx2n+1 
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  y2n+1 = Bx2n+1 = Sx2n+2,  n = 0, 1, 2, ……,… 

 

Now we prove that the sequence defined by (2.7) is a Cauchy sequence. By Lemma (2.8) it is sufficient 

to show that Fy2n,y2n+1(ku) ≥ Fy2n-1,y2n(u) for all u > 0 where k(0, 1). Suppose that Fy2n,y2n+1(ku) < Fy2n-1,y2n(u) 

and using (4.1.2), we have 
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Since k(0, 1) then u > ku for any u > 0 and Fy2n,y2n+1(u) > Fy2n,y2n+1(ku) and also 
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         0,, 12,2

2

12,212,2  kuFkuFuF nynynynynyny  

Since, (X, F, t) is complete, then the sequence {yn} converges to point z in X and the subsequence 

{Ax2n}, {Bx2n+1}, {Sx2n}, {Tx2n+1} of {y2n} also converge to z.  

Since    xBxA  , there exists pX, such that z = Tp by using (3.3.3) we have  
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Taking limit as n → ∞ gives, 
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Which means that Bp = z then we have B = Tp = z.  

By a similar way, since    XSXB  , there exists Xq such that z = Sq. 

Again by using (4.1.2). 
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Taking limit as n → ∞ gives,  
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This yields Aq = z then we have, Aq = Sq = z.  

Since {B, T} are weakly compatible then they commute at their coincidence point p. i.e., BTp = TBp or 

Bz = Tz.  

Now we show that z is a fixed point of B. 

By using (4.1.2),  
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, uF Bzz  

Which implies that Bz = Tz = z 

Similarly, since {A, S} are weakly compatible then they commute at their coincidence point q. i.e, ASq 

= SAq or Az = Sz. 

Now we show that z is a fixed point of A. By using (4.1.2), 
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   0
2

, uF zAz  which means that Az = Sz = z.  

Thus z is a common fixed point of A, B, S and T.  Finally in order to prove the uniqueness of z, 

suppose that z, w are common fixed points of A, B, S and T.  We prove the converse by putting x = z, y = w in 

(4.1.2). 
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