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I. Introduction 
Throught we shall deal with nxn quaternion matrices[7]. Let A* denote the conjugate 

transpose of A. Let A
-
 be the generalized inverse of A satisfying AA A  and z be the Moore-

Penrose of A[6]. Any matrix nXnA H is called q-EP(2) if R(A)=R(A
*
) and his called q-EPr, 

if A is q-EP and rk(A)=r, where N(A), R(A) and rk(A) denote the null space, range space and 

rank of A respectively. It is well known that sum and sum of parallel summable q-EP 

matrices are q-EP[3].In this paper we discuss theGeneralized Inverses, Group Inverses And 

Reverse Order Law For Range Quaternion Hermitian  Matrices (q-EP).In this section, 

equivalent conditions for various generalized inverses of a q-EPr matrix to be q-EPr are 

determined. Generalized inverses belonging to the sets A{1,2}, A{1,2,3} and A{1,2,4} of a 

q-EPr matrix A are characterized.A generalized inverse AA{1,2} is shown to be q-EPr 

whenever A is q-EPr under certain conditions in the following way. 
 

Theorem 1.1 

Let AHnXn, XA{1,2} and XA, AX are q-EPr matrices. Then A is q-EPr X is q-EPr 

 

Proof 

Since AX and XA are q-EPr, by theorem([2],11), we have R(AX) = R((AX)
*
) and R(XA) = R((XA

*
). 

 Since X{1,2} we have AXA = A, XAX = X 

Now, 

 R(A) = R(AX) 

          = R((AX)
*
) 

          = R(X
*
A

*
) 

          = R(X
*
) 

          R(A*) = R(A
*
X

*
) 

 = R((XA)
*
) 

  = R(XA) 

 = R(X) 

Now, A is q-EPr R(A) = R(A
*
) and rk(A) = r 

   R(X
*
) = R(X) and rk(A) = rk(X) = r 

   X is q-EPr 

Hence the theorem 

Remark 1.2 

 In the above theorem, the conditions that both AX and XA to be q-EPr are essential. 

For instance, let 
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 A = 
1

1

k

k

 
 
 

, A is q-EP1 

 X = A
=
= 

1 0

0 0

 
 
 

A{1,2} 

 AX = 
1 0

0k

 
 
 

 

 XA = 
1

0 0

k 
 
 

 

AX and XA are not q-EP1. Also X is not q-EP 

Now, we show that generalized inverses belonging to the sets A{1,2,3} and A{1,2,4] of a q-EPr matrix 

A is also q-EPr under certain conditions in the following theorems. 

 

Theorem 1.3 

Let AHnXn, XA{1,2,3}, R(X) = R(A
*
). Then A is q-EPr X is q-EPr 

 

Proof 

Since XA{1,2,3}, we have AXA = A, XAX = X, (AX)
*
 = AX. Therefore, 

  R(A) = R(AX) 

           = R((AX)
*
) 

           = R(X
*
A

*
)      

           = R(X
*
)     

  R(X) = R(A
*
)XX

†
 = A

*
(A

*
)
†

 [by[1]] 

 

     XX
†

 = A
*
(A

†
)

*
 

     XX
†

 = (A
†

A)
*
 

   XX
†

 = A
†

A 

   XX
†

 = (A
*
) ((A)

*
)
†

 

   X = R((A)
*
) 

   R(X) = R(A
*
)   

       A is q-EPr R(A) = R(A
*
) and rk(A) = r 

    R(X
*
) = R(X) and rk(A) = rk(X) = r 

    X is q-EPr 

Hence the theorem. 

Theorem 1.4 

Let AHnxn,X{1,2,4}, R(A)=R(X*). Then A is q-EPr X is q-EPr 

 

Proof 

Since XA{1,2,4}, we have AXA=A, XAX=A, (XA)* = XA. 

Also.      R(A) = R(X
*
). Now 

  R(A
*
) = R(A

*
X

*
) 

            = R((XA)
*
) 

            = R(XA) 

            = R(X) 

 A is q-EPr R(A)  = R(A
*
) and rk(A) = r 

   R(X*) = R(X) and rk(A) = rk(X) = r [by[2], 11] 

   X is q-EPr 

Remarks 1.5 

In particular, if X = A
†

 then R(A
†

)=R(
*A ) holds. Hence A is q-EPr is equivalent to A

†
is q-EPr. 
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II. Group Inverse of q-EP matrices 
In this section, the existence of the group inverse for q-EP matrices under certain condition is derived. 

It is well known that, for an EP matrix, group inverse exists and coincides with it Moore-Penrose inverse. 

However, this is not the case for a q-EP matrix. 

For example, 

 Consider  A = 
1

1

i

i

 
 
 

 

 A is q-EP, matrix, A
2
= 

2 2

2 2

i

i

 
 
 

, rk(A) = rk(A
2
) 

Therefore, by theorem [p.162[1]], group inverse A
†

does not exist for A. Here it is proved that for q-

EP matrix A, if the group inverse exists, it is also a q-EP matrix. 

 

Theorem 2.1 

Let AHnxn be q-EPr and rk(A) = rk(A
2
). Then A

# 
exists and is q-EPr 

 

Proof 

Since rk(A) = rk(A
2
), by theorem[p.162,[1]A

#exists for A. To show that A
#is q-EPr, it is enough to show that 

 R(A
#
) = R((A

#)
*
) 

Since AA
#
 = A

#
A 

We have R(A)= R(
#AA ) 

 = R( A A ) 

   = R( A
) 

AA A = A  *A  = 
*A ( A

)
* *A  

Therefore R(
*A ) = R(

*A ( A
)

* *A ) 

    = R(
*A ( A

)
*
) 

    = R(( A A )
*
) 

    = R((
#AA )

*
) 

    = R(( A
)

* *A ) 

    = R(( A
)

*
) 

Now, 

A is q-EPrR(A) = R(
*A ) and rk(A) = r 

  R(
*A ) = R(( A

)
*
) and 

          Rk(A) = rk( A
) = r 

   A
is q-EPr 

Hence the Theorem. 

 

Remark 2.2 

In the above theorem the condition that rk(A)=rk(A
2
) is essential. Therefore, A

does not exist for a q-EP 

matrix A. Thus, for a q-EP matrix A, if A
exists then it is also q-EPr. 

 

Theorem 2.3 

For at Hnxn, if A
exists then, A is q-EP A

 = A
†

 

Proof 

A is q-EP  A is Ep        [By Theorem11,[2]] 

   A
=A

†
  [p.164[8]] 

 Hence the theorem. 

Theorem 2.5 

For A Hnxn, A is q-EPr  A
†

= polynomial in A  
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Proof 

          It is clear that if A
†

 =f(A) for some polynomial f(X), then A commutes with (A)
†

 for some polynomial 

f(X), then A commutes with (A)
†

 

  AA
†

= A
†

A 

A is q-EPr                                                    [By [2],11] 

Conversely, 

 Let A be q-EPr, then AA
†

= A
†

A and A
†

A =AA
†

. 

 Now, we will prove the A
†

can be expressed as polynomial in A. 

 Let (A)
s
+ 1(A)

s+1
+ 2(A)

s+2
+……..+ q(A)

s+q
 = 0, 

Be the minimum polynomial of A. Then s=0 or s=1. 

For suppose that s 2, then 

 A
†

 [(A)
s
+ 1(A)

s+1
+…………+ q(A)

s+q
] = 0, 

 [AA
†

A]A
s-2

+ 1[AA
†

A]A
s-1

+……….+ 9[AA
†

A]A
s+q-2 

=0 

 That is (A)
s-1

+  1(A)
s
+………. 9(A)

s+q-1
=0 

 Which is contradiction. 

 If s=0 then 

  (A
†

) = A
-1

=- 1 I- 2(A)-………………….  q(A)
q-1

 

    A 
†

= A
-1

=- 1- 2(A)-…………………-  q(A)
q-1

 

   = [- 1I- 2A-……………………….- q(A)
q-1

] 

                        A
†

= polynomial in A 

  If s=1, then  (A
†

)[A+ 1(A)
2
+…….+ q(A)

q+1
] = 0 

  and it follows that 

  A
†

A=- 1(A)-  2(A
2
)-…………..-  q(A)

q
 is a polynomial in A.  

            However,  A
†

=[A
†

A]A
†

 

         = -  1(A)
†

 (A)-  2(A)-…………………-  q(A)
q-1

 

         = [- 1I- 2(A)-…………..-  q(A)
q-1

] 

   A
†

= polynomial in A. 

  Hence the theorem. 

 

III. Reverse order law for q-EP matrices 
For any two non singular matrices A,BHnxn (AB)

-1
=B

-1
A

-1
 holds. However, it is not true for 

generalized inverses of matrices [15]. In general, (AR)
†  B

†
A

†
 for any two matricesa and B. we say that 

reverse order law holds for Moore-Penrose inverse of the product of A and B, if (AB) 
†

=B
†

A
†

. It is well 

known that [P.181,[1]], (AB) 
†

=B
†

A
†

 if and only if R(BB
*
A) R(A

*
) and R(A

*
AB) R(B).In this section, 

for a pair of q-EPr matrices A and B, necessary and sufficient    condition    for (AB) 
†

=B
†

A
†

 given. 

 

Theorem 

If A and B are q-EPr matrices with R(A)=R(B
*
) then (AB) 

†
=B

†
A

†
 

Proof 

Since A is q-EPr, 

  R(A) = R(A
*
) 

  R(B
*
) = R(A)  (B is q-EPr) 
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  R(B) = R(A
*
) 

  R(B) = R(A † )  [by[8]] 

 That is, given xCnxn, there exists yCn such that Bx=A
†

y 

 Now, Bx = A
†

y  (B
†

A
†

A) Bx = (B
†

A
†

A)A
†

y 

   B
†

A
†

ABx = B
†

A
†

AA
†

y 

   B
†

A
†

ABx = B
†

A
†

y 

   B
†

A
†

ABx = B
†

Bx 

 Since B
†

B is hermitian, it follows that B
†

A
†

AB is hermitian. 

Similarly, 

  A
†

y = Bx  (ABB
†

)A
†

y = (ABB
†

B)x 

   ABB
†

A
†

y = A(BB
†

B)x 

   ABB
†

A
†

y = A(Bx) 

   ABB
†

A
†

 y = A(A
†

y) 

   ABB
†

A
†

y = AA
†

y 

 Since AA
†

 is hermitian, it follows that ABB
†

A
†

 is hermitian. Further, by theorem [8] 

  R(A)=R(B) AA
†

=BB
†

 

  R(A
†

)=R(B) A
†

 (A
†

)
†

=BB
†

 

   A
†

A = BB
†

 

 Hence (AB) (B
†

A
†

) (AB) = ABB
†

 (A
†

A)B 

       = ABB
†

 (B
†

BB
†

)B 

       = (AB)(B
†

)B 

       = A(BB
†

B) 

       = A(B) 

       = AB 

 lll
ly

 (B
†

A
†

) (AB) (B
†

A
†

) = B
†

A
†

. 

Thus, B
†

A
†

 satisfies the definition of the Moore-Penrose inverse, that is (AB) 
†

= B
†

A
†

 

Hence the theorem. 
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