On Generalized Inverses, Group Inverses And Reverse Order Law For Range Quaternion Hermitian Matrices (Q-Ep)

Dr.K.Gunasekaran ${ }^{1}$, S. Sridevi ${ }^{2}$,
${ }^{1}$ Ramanujan Research centre, PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam - 612002
${ }^{2}$ Ramanujan Research centre, PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam-612002, Tamil Nadu, India.

Abstract: In this paper we discuss theGeneralized Inverses, Group Inverses And Reverse
Order Law For Range Quaternion Hermitian Matrices ($q-E P)$.
Keywords :Moore-Penrose inverse , q-EP matrix, Generalized Inverses for $q-E P$, Group Inverses for $q-E P$, Reverse Order Law for $q-E P$.

I. Introduction

Throught we shall deal with nxn quaternion matrices[7]. Let A* denote the conjugate transpose of A . Let A^{-}be the generalized inverse of A satisfying $A A^{-} A$ and z be the MoorePenrose of $\mathrm{A}[6]$. Any matrix $A \in H_{n \times n}$ is called $\mathrm{q}-\mathrm{EP}(2)$ if $\mathrm{R}(\mathrm{A})=\mathrm{R}\left(\mathrm{A}^{*}\right)$ and his called $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$, if A is $q-E P$ and $r k(A)=r$, where $N(A), R(A)$ and $\operatorname{rk}(A)$ denote the null space, range space and rank of A respectively. It is well known that sum and sum of parallel summable q-EP matrices are q-EP[3].In this paper we discuss theGeneralized Inverses, Group Inverses And Reverse Order Law For Range Quaternion Hermitian Matrices (q-EP).In this section, equivalent conditions for various generalized inverses of a $q-\mathrm{EP}_{\mathrm{r}}$ matrix to be $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$ are determined. Generalized inverses belonging to the sets $\mathrm{A}\{1,2\}, \mathrm{A}\{1,2,3\}$ and $\mathrm{A}\{1,2,4\}$ of a $q-E P_{r}$ matrix A are characterized.A generalized inverse $A \in A\{1,2\}$ is shown to be $q-E P_{r}$ whenever A is $q-E P_{r}$ under certain conditions in the following way.

Theorem 1.1

Let $A \in H_{n X n}, X \in A\{1,2\}$ and $X A, A X$ are $q-E P_{r}$ matrices. Then A is $q-E P_{r} \Leftrightarrow X$ is $q-E P_{r}$

Proof

Since $A X$ and $X A$ are $q-E P_{r}$, by theorem $([2], 11)$, we have $R(A X)=R\left((A X)^{*}\right)$ and $R(X A)=R\left(\left(X A^{*}\right)\right.$. Since $\mathrm{X} \in\{1,2\}$ we have $\mathrm{AXA}=\mathrm{A}, \mathrm{XAX}=\mathrm{X}$
Now,

$$
\begin{aligned}
& \mathrm{R}(\mathrm{~A})=\mathrm{R}(\mathrm{AX}) \\
&=\mathrm{R}\left((\mathrm{AX})^{*}\right) \\
&=\mathrm{R}\left(\mathrm{X}^{*} \mathrm{~A}^{*}\right) \\
&=\mathrm{R}\left(\mathrm{X}^{*}\right) \\
& \mathrm{R}\left(\mathrm{~A}^{*}\right)=\mathrm{R}\left(\mathrm{~A}^{*} \mathrm{X}^{*}\right) \\
&=\mathrm{R}\left((\mathrm{XA})^{*}\right) \\
&= \mathrm{R}(\mathrm{XA}) \\
&=\mathrm{R}(\mathrm{X})
\end{aligned}
$$

Now, A is $q-E P_{r} \Leftrightarrow R(A)=R\left(A^{*}\right)$ and $r k(A)=r$

$$
\begin{aligned}
& \Leftrightarrow R\left(X^{*}\right)=R(X) \text { and } r k(A)=r k(X)=r \\
& \Leftrightarrow X \text { is } q-E P_{r}
\end{aligned}
$$

Hence the theorem

Remark 1.2

 In the above theorem, the conditions that both AX and XA to be $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$ are essential. For instance, let$$
\begin{aligned}
& \mathrm{A}=\left(\begin{array}{cc}
1 & k \\
-k & 1
\end{array}\right), \mathrm{A} \text { is } \mathrm{q}-\mathrm{EP}_{1} \\
& \mathrm{X}=\mathrm{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \in \mathrm{A}\{1,2\} \\
& \mathrm{AX}=\left(\begin{array}{cc}
1 & 0 \\
-k & 0
\end{array}\right) \\
& \mathrm{XA}=\left(\begin{array}{ll}
1 & k \\
0 & 0
\end{array}\right)
\end{aligned}
$$

AX and XA are not $\mathrm{q}-\mathrm{EP}_{1}$. Also X is not $\mathrm{q}-\mathrm{EP}$
Now, we show that generalized inverses belonging to the sets $\mathrm{A}\{1,2,3\}$ and $\mathrm{A}\{1,2,4]$ of a $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$ matrix A is also $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$ under certain conditions in the following theorems.

Theorem 1.3

Let $A \in H_{n X n}, X \in A\{1,2,3\}, R(X)=R\left(A^{*}\right)$. Then A is $q-E P_{r} \Leftrightarrow X$ is $q-E P_{r}$

Proof

Since $X \in A\{1,2,3\}$, we have $A X A=A, X A X=X,(A X)^{*}=A X$. Therefore,

$$
\begin{aligned}
\mathrm{R}(\mathrm{~A}) & =\mathrm{R}(\mathrm{AX}) \\
& =\mathrm{R}\left((\mathrm{AX})^{*}\right) \\
& =\mathrm{R}\left(\mathrm{X}^{*} \mathrm{~A}^{*}\right) \\
& =\mathrm{R}\left(\mathrm{X}^{*}\right)
\end{aligned}
$$

$$
\mathrm{R}(\mathrm{X})=\mathrm{R}\left(\mathrm{~A}^{*}\right) \Rightarrow \mathrm{XX}^{\dagger}=\mathrm{A}^{*}\left(\mathrm{~A}^{*}\right)^{\dagger}[\mathrm{by}[1]]
$$

$$
\Rightarrow \mathrm{XX}^{\dagger}=\mathrm{A}^{*}\left(\mathrm{~A}^{\dagger}\right)^{*}
$$

$$
\Rightarrow \mathrm{XX}^{\dagger}=\left(\mathrm{A}^{\dagger} \mathrm{A}\right)^{*}
$$

$$
\Rightarrow \mathrm{XX}^{\dagger}=\mathrm{A}^{\dagger} \mathrm{A}
$$

$$
\Rightarrow \mathrm{XX}^{\dagger}=\left(\mathrm{A}^{*}\right)\left((\mathrm{A})^{*}\right)^{\dagger}
$$

$$
\Rightarrow \mathrm{X}=\mathrm{R}\left((\mathrm{~A})^{*}\right)
$$

$$
\Rightarrow \mathrm{R}(\mathrm{X})=\mathrm{R}\left(\mathrm{~A}^{*}\right)
$$

$$
\mathrm{A} \text { is } \mathrm{q}-\mathrm{EP}_{\mathrm{r}} \Leftrightarrow \mathrm{R}(\mathrm{~A})=\mathrm{R}\left(\mathrm{~A}^{*}\right) \text { and } \mathrm{rk}(\mathrm{~A})=\mathrm{r}
$$

$$
\Leftrightarrow \mathrm{R}\left(\mathrm{X}^{*}\right)=\mathrm{R}(\mathrm{X}) \text { and } \mathrm{rk}(\mathrm{~A})=\operatorname{rk}(\mathrm{X})=\mathrm{r}
$$

$$
\Leftrightarrow X \text { is } q-E P_{r}
$$

Hence the theorem.

Theorem 1.4

Let $A \in H_{n \times n}, X \in\{1,2,4\}, R(A)=R\left(X^{*}\right)$. Then A is $q-E P_{r} \Leftrightarrow X$ is $q-E P_{r}$

Proof

Since $X \in A\{1,2,4\}$, we have $A X A=A, X A X=A,(X A)^{*}=X A$.
Also. $\quad R(A)=R\left(X^{*}\right)$. Now

$$
\mathrm{R}\left(\mathrm{~A}^{*}\right)=\mathrm{R}\left(\mathrm{~A}^{*} \mathrm{X}^{*}\right)
$$

$$
=\mathrm{R}\left((\mathrm{XA})^{*}\right)
$$

$$
=\mathrm{R}(\mathrm{XA})
$$

$$
=\mathrm{R}(\mathrm{X})
$$

A is $q-E P_{r} \Leftrightarrow R(A)=R\left(A^{*}\right)$ and $r k(A)=r$

$$
\Leftrightarrow \mathrm{R}\left(\mathrm{X}^{*}\right)=\mathrm{R}(\mathrm{X}) \text { and } \operatorname{rk}(\mathrm{A})=\operatorname{rk}(\mathrm{X})=\mathrm{r}[\mathrm{by}[2], 11]
$$

$$
\Leftrightarrow X \text { is } q-E P_{r}
$$

Remarks 1.5

In particular, if $\mathrm{X}=\mathrm{A}^{\dagger}$ then $\mathrm{R}\left(\mathrm{A}^{\dagger}\right)=\mathrm{R}\left(A^{*}\right)$ holds. Hence A is $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$ is equivalent to A^{\dagger} is $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$.

II. Group Inverse of q-EP matrices

In this section, the existence of the group inverse for q-EP matrices under certain condition is derived. It is well known that, for an EP matrix, group inverse exists and coincides with it Moore-Penrose inverse. However, this is not the case for a q-EP matrix.
For example,
Consider $\mathrm{A}=\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$
A is $q-E P$, matrix, $A^{2}=\left(\begin{array}{cc}2 & 2 i \\ -2 i & 2\end{array}\right), \operatorname{rk}(A)=\operatorname{rk}\left(\mathrm{A}^{2}\right)$
Therefore, by theorem [p.162[1]], group inverse A^{\dagger} does not exist for A. Here it is proved that for q EP matrix A, if the group inverse exists, it is also a q-EP matrix.

Theorem 2.1

Let $A \in H_{n \times n}$ be $q-E \operatorname{Pr}$ and $r k(A)=r k\left(A^{2}\right)$. Then $A^{\#}$ exists and is $q-E P_{r}$

Proof

Since $\operatorname{rk}(A)=\operatorname{rk}\left(A^{2}\right)$, by theorem[p.162,[1] $A^{\#}$ exists for A. To show that $A^{\# \text { is } q-E P}$, it is enough to show that

$$
R\left(A^{\#}\right)=R\left(\left(A^{\#}\right)^{*}\right)
$$

Since $A A^{\#}=A^{\#} A$

$$
\text { We have } \mathrm{R}(\mathrm{~A})=\mathrm{R}\left(A A^{\#}\right)
$$

$$
=\mathrm{R}\left(A^{\neq} A\right)
$$

$$
=\mathrm{R}\left(A^{\neq}\right)
$$

$$
A A^{\neq} A=A \Rightarrow A^{*}=A^{*}\left(A^{\neq}\right)^{*} A^{*}
$$

Therefore $\mathrm{R}\left(A^{*}\right)=\mathrm{R}\left(A^{*}\left(A^{\neq}\right)^{*} A^{*}\right)$

$$
\begin{aligned}
& =\mathrm{R}\left(A^{*}\left(A^{\neq}\right)^{*}\right) \\
& =\mathrm{R}\left(\left(A^{\neq} A\right)^{*}\right) \\
& =\mathrm{R}\left(\left(A A^{\#}\right)^{*}\right) \\
& =\mathrm{R}\left(\left(A^{\neq}\right)^{*} A^{*}\right) \\
& =\mathrm{R}\left(\left(A^{\neq}\right)^{*}\right)
\end{aligned}
$$

Now,

$$
\begin{gathered}
\mathrm{A} \text { is } \mathrm{q}-\mathrm{EP}_{\mathrm{r}} \Rightarrow \mathrm{R}(\mathrm{~A})=\mathrm{R}\left(A^{*}\right) \text { and } \mathrm{rk}(\mathrm{~A})=\mathrm{r} \\
\Rightarrow \mathrm{R}\left(A^{*}\right)=\mathrm{R}\left(\left(A^{\neq}\right)^{*}\right) \text { and } \\
\quad \operatorname{Rk}(\mathrm{A})=\operatorname{rk}\left(A^{\neq}\right)=\mathrm{r} \\
\Rightarrow A^{\neq} \text {is } \mathrm{q}-\mathrm{EP}_{\mathrm{r}}
\end{gathered}
$$

Hence the Theorem.

Remark 2.2

In the above theorem the condition that $\operatorname{rk}(\mathrm{A})=\operatorname{rk}\left(\mathrm{A}^{2}\right)$ is essential. Therefore, A^{\neq}does not exist for a q-EP matrix A. Thus, for a q-EP matrix A, if A^{\neq}exists then it is also q-EPr.

Theorem 2.3

For at $\mathrm{H}_{\mathrm{nxn}}$, if A^{\neq}exists then, A is q-EP $\Leftrightarrow A^{\neq}=\mathrm{A}^{\dagger}$

Proof

A is $\mathrm{q}-\mathrm{EP} \Leftrightarrow \mathrm{A}$ is $\mathrm{Ep} \quad$ [By Theorem11,[2]]

$$
\Leftrightarrow A^{\neq}=\mathrm{A}^{\dagger}{ }_{[\mathrm{p} \cdot 164[8]]}
$$

Hence the theorem.

Theorem 2.5

For $\mathrm{A} \in \mathrm{H}_{\mathrm{nx}}$, A is $\mathrm{q}-\mathrm{EPr} \Leftrightarrow \mathrm{A}^{\dagger}=$ polynomial in A

Proof

It is clear that if $A^{\dagger}=f(A)$ for some polynomial $f(X)$, then A commutes with (A) ${ }^{\dagger}$ for some polynomial $\mathrm{f}(\mathrm{X})$, then A commutes with (A) ${ }^{\dagger}$

$$
\Rightarrow \mathrm{AA}^{\dagger}=\mathrm{A}^{\dagger} \mathrm{A}
$$

$\Rightarrow \mathrm{A}$ is $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$
[By [2],11]

Conversely,
Let A be $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$, then $\mathrm{AA}^{\dagger}=\mathrm{A}^{\dagger} \mathrm{A}$ and $\mathrm{A}^{\dagger} \mathrm{A}=\mathrm{AA}^{\dagger}$.
Now, we will prove the $A{ }^{\dagger}$ can be expressed as polynomial in A.

$$
\text { Let }(\mathrm{A})^{s}+\lambda_{1}(\mathrm{~A})^{s+1}+\lambda_{2}(\mathrm{~A})^{s+2}+\ldots \ldots . .+\lambda_{\mathrm{q}}(\mathrm{~A})^{\mathrm{s}+\mathrm{q}}=0
$$

Be the minimum polynomial of A . Then $\mathrm{s}=0$ or $\mathrm{s}=1$.
For suppose that $\mathrm{s} \geq 2$, then

$$
\begin{aligned}
& A^{\dagger}\left[(A)^{s}+\lambda_{1}(A)^{s+1}+\ldots \ldots \ldots \ldots+\lambda_{q}(A)^{s+q}\right]=0, \\
& {\left[\mathrm{AA}^{\dagger} \mathrm{A}\right] \mathrm{A}^{\mathrm{s}-2}+\lambda_{1}\left[\mathrm{AA}^{\dagger} \mathrm{A}\right] \mathrm{A}^{\mathrm{s}-1}+\ldots \ldots \ldots .+\lambda_{9}\left[\mathrm{AA}^{\dagger} \mathrm{A}\right] \mathrm{A}^{\mathrm{s}+\mathrm{q}-2}=0} \\
& \text { That is }(A)^{s-1}+\lambda_{1}(A)^{s}+\ldots \ldots \ldots . . \lambda_{9}(A)^{s+q-1}=0 \\
& \text { Which is contradiction. } \\
& \text { If } s=0 \text { then } \\
& \left(\mathrm{A}^{\dagger}\right)=\mathrm{A}^{-1}=-\lambda_{1 \mathrm{I}-} \lambda_{2}(\mathrm{~A})-\ldots \ldots \ldots \ldots \ldots \ldots . . \lambda_{\mathrm{q}}(\mathrm{~A})^{\mathrm{q}-1} \\
& \mathrm{~A}^{\dagger}=\mathrm{A}^{-1}=-\lambda_{1^{-}} \lambda_{2}(\mathrm{~A})-\ldots \ldots \ldots \ldots \ldots \ldots . . \lambda_{\mathrm{q}}(\mathrm{~A})^{\mathrm{q}-1} \\
& =\left[-\lambda_{1}{ }^{\mathrm{I}}-\lambda_{2} \mathrm{~A}-\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \lambda_{\mathrm{q}}(\mathrm{~A})^{\mathrm{q}-1}\right] \\
& \mathrm{A}^{\dagger}=\text { polynomial in } \mathrm{A} \\
& \text { If } s=1 \text {, then }\left(A^{\dagger}\right)\left[A+\lambda_{1}(A)^{2}+\ldots \ldots .+\lambda_{q}(A)^{q+1}\right]=0 \\
& \text { and it follows that } \\
& \mathrm{A}^{\dagger} \mathrm{A}=-\lambda_{1}(\mathrm{~A})-\lambda_{2}\left(\mathrm{~A}^{2}\right)-\ldots \ldots \ldots \ldots . .-\lambda_{\mathrm{q}(\mathrm{~A})^{\mathrm{q}}} \text { is a polynomial in } \mathrm{A} \text {. } \\
& \text { However, } \\
& \mathrm{A}^{\dagger}=\left[\mathrm{A}^{\dagger} \mathrm{A}\right] \mathrm{A}^{\dagger} \\
& =-\lambda_{1(\mathrm{~A})}{ }^{\dagger}(\mathrm{A})-\lambda_{2}(\mathrm{~A})-\ldots \ldots \ldots \ldots \ldots \ldots . \lambda_{\mathrm{q}}(\mathrm{~A})^{\mathrm{q}-1} \\
& =\left[-\lambda_{1} \mathrm{I}-\lambda_{2}(\mathrm{~A})-\ldots \ldots \ldots \ldots . .-\lambda_{\mathrm{q}}(\mathrm{~A})^{\mathrm{q}-1}\right] \\
& \mathrm{A}^{\dagger}=\text { polynomial in } \mathrm{A} .
\end{aligned}
$$

Hence the theorem.

III. Reverse order law for q-EP matrices

For any two non singular matrices $A, B \in H_{n \times n}(A B)^{-1}=B^{-1} A^{-1}$ holds. However, it is not true for generalized inverses of matrices [15]. In general, (AR) ${ }^{\dagger} \neq B^{\dagger} A^{\dagger}$ for any two matricesa and B. we say that reverse order law holds for Moore-Penrose inverse of the product of A and B, if (AB) ${ }^{\dagger}=B^{\dagger} A^{\dagger}$. It is well known that $[P .181,[1]],(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ if and only if $R\left(B B^{*} A\right) \subseteq R\left(A^{*}\right)$ and $R\left(A^{*} A B\right) \subseteq R(B)$.In this section, for a pair of q-EPr matrices A and B, necessary and sufficient condition for (AB) ${ }^{\dagger}=B^{\dagger} A{ }^{\dagger}$ given.

Theorem

If A and B are $q-E P r$ matrices with $R(A)=R\left(B^{*}\right)$ then (AB) ${ }^{\dagger}=B^{\dagger} A^{\dagger}$
Proof
Since A is q-EPr,

$$
\begin{aligned}
& \Rightarrow R(A)=R\left(A^{*}\right) \\
& \Rightarrow R\left(B^{*}\right)=R(A) \quad(B \text { is } q-E P r)
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow R(B)=R\left(A^{*}\right) \\
& \Rightarrow R(B)=R\left(A^{\dagger}\right) \tag{8}
\end{align*}
$$

That is, given $x \in C_{n x n}$, there exists $y \in C_{n}$ such that $B x=A{ }^{\dagger} y$

$$
\text { Now, } \begin{aligned}
\mathrm{Bx}=\mathrm{A}^{\dagger} \mathrm{y} & \Rightarrow\left(\mathrm{~B}^{\dagger} \mathrm{A}^{\dagger} \mathrm{A}\right) \mathrm{Bx}=\left(\mathrm{B}^{\dagger} \mathrm{A}^{\dagger} \mathrm{A}\right) \mathrm{A}^{\dagger} \mathrm{y} \\
& \Rightarrow \mathrm{~B}^{\dagger} \mathrm{A}^{\dagger} \mathrm{ABx}=\mathrm{B}^{\dagger} \mathrm{A}^{\dagger} \mathrm{AA}^{\dagger} \mathrm{y} \\
& \Rightarrow \mathrm{~B}^{\dagger} \mathrm{A}^{\dagger} \mathrm{ABx}=\mathrm{B}^{\dagger} \mathrm{A}^{\dagger} \mathrm{y} \\
& \Rightarrow \mathrm{~B}^{\dagger} \mathrm{A}^{\dagger} \mathrm{ABx}=\mathrm{B}^{\dagger} \mathrm{Bx}
\end{aligned}
$$

Since $\mathrm{B}^{\dagger} \mathrm{B}$ is hermitian, it follows that $\mathrm{B}^{\dagger} \mathrm{A}^{\dagger} \mathrm{AB}$ is hermitian.
Similarly,

$$
\begin{aligned}
\mathrm{A}^{\dagger} \mathrm{y}=\mathrm{Bx} & \Rightarrow\left(\mathrm{ABB}^{\dagger}\right) \mathrm{A}^{\dagger} \mathrm{y}=\left(\mathrm{ABB}^{\dagger} \mathrm{B}\right) \mathrm{x} \\
& \Rightarrow \mathrm{ABB}^{\dagger} \mathrm{A}^{\dagger} \mathrm{y}=\mathrm{A}\left(\mathrm{BB}^{\dagger} \mathrm{B}\right) \mathrm{x} \\
& \Rightarrow \mathrm{ABB}^{\dagger} \mathrm{A}^{\dagger} \mathrm{y}=\mathrm{A}(\mathrm{Bx}) \\
& \Rightarrow \mathrm{ABB}^{\dagger} \mathrm{A}^{\dagger} \quad \mathrm{y}=\mathrm{A}^{\dagger}\left(\mathrm{A}^{\dagger} \mathrm{y}\right) \\
& \Rightarrow \mathrm{ABB}^{\dagger} \mathrm{A}^{\dagger} \mathrm{y}=\mathrm{AA}^{\dagger} \mathrm{y}
\end{aligned}
$$

Since AA^{\dagger} is hermitian, it follows that $\mathrm{ABB}^{\dagger} \mathrm{A}^{\dagger}$ is hermitian. Further, by theorem [8]

$$
\begin{aligned}
& \mathrm{R}(\mathrm{~A})=\mathrm{R}(\mathrm{~B}) \Rightarrow \mathrm{AA}^{\dagger}=\mathrm{BB}^{\dagger} \\
&{\mathrm{R}\left(\mathrm{~A}^{\dagger}\right)=\mathrm{R}(\mathrm{~B}) \Rightarrow \mathrm{A}^{\dagger}}^{\left(\mathrm{A}^{\dagger}\right)^{\dagger}=\mathrm{BB}^{\dagger}} \\
& \Rightarrow \mathrm{A}^{\dagger} \mathrm{A}=\mathrm{BB}^{\dagger}
\end{aligned} \quad \begin{aligned}
\text { Hence }(\mathrm{AB})\left(\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}\right)(\mathrm{AB}) & =\mathrm{ABB}^{\dagger}\left(\mathrm{A}^{\dagger} \mathrm{A}\right) \mathrm{B} \\
& =\mathrm{ABB}^{\dagger}\left(\mathrm{B}^{\dagger} \mathrm{BB}^{\dagger}\right) \mathrm{B} \\
& =(\mathrm{AB})\left(\mathrm{B}^{\dagger}\right) \mathrm{B} \\
& =\mathrm{A}\left(\mathrm{BB}^{\dagger} \mathrm{B}\right) \\
& =\mathrm{A}(\mathrm{~B}) \\
& =\mathrm{AB} \\
l^{\text {ly }}\left(\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}\right)(\mathrm{AB})\left(\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}\right) & =\mathrm{B}^{\dagger} \mathrm{A}^{\dagger} .
\end{aligned}
$$

Thus, $\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}$ satisfies the definition of the Moore-Penrose inverse, that is (AB) ${ }^{\dagger}=\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}$
Hence the theorem.

Reference

[1]. Ben Isreal . A and Greville . TNE : Generalized Inverses, Theory andapplications; Wiley and Sons , New York(1974).
[2]. KatzT.J and Pearl M.H: on Ep ${ }_{\mathrm{r}}$ and Normal Ep_{r} matriceJ.res.Nat.Bur.Stds. 70B, 47-77(1966).
[3]. Gunasekaran.K and Sridevi.S: On Range Quaternion Hermittian MatricesInter;J;Math.,Archieve-618, 159-163
[4]. Gunasekaran.G and Sridevi.S: On Sums of Range Quaternion Hermittian Matrices; Inter;J.Modern Engineering Res-.5, ISS.11. 44 49(2015)
[5]. Marsagila.GandStyanG.P.H :Equalities and Inequalities for rank of Matrices;lin.Alg.Appl.,2,269-292(1974)
[6]. Rao.CR and Mitra.SK: Generalized inverse of matrices and its Application: Wiley and Sons, Newyork(1971)
[7]. [Zhang.F, Quaternions and matrices of quaternions, linear Algebra and its Application, 251 (1997), 21 - 57

